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Bounds for Generalized Distance Spectral Radius and the
Entries of the Principal Eigenvector

Abdollah Alhevaz, Maryam Baghipur, Hilal Ahmad Ganie and Gui-Xian Tian

Abstract. For a simple connected graphG, the convex linear combinationsDα(G) of Tr(G)

andD(G) is defined asDα(G) = αTr(G)+(1−α)D(G), 0 ≤ α ≤ 1. AsD0(G) = D(G),
2D 1

2
(G) = DQ(G),D1(G) = Tr(G) andDα(G)−Dβ(G) = (α−β)DL(G), this matrix

reduces to merging the distance spectral and distance signless Laplacian spectral theories. In
this paper, we study the spectral properties of the generalized distance matrix Dα(G). We
obtain some lower and upper bounds for the generalized distance spectral radius, involving
different graph parameters and characterize the extremal graphs. Further, we obtain upper
and lower bounds for the maximal and minimal entries of the p-norm normalized Perron
vector corresponding to spectral radius ∂(G) of the generalized distance matrixDα(G) and
characterize the extremal graphs.

1 Introduction

In this paper, we consider only connected, undirected, simple and finite graphs. A graph is de-
noted by G = (V (G), E(G)), where V (G) = {v1, v2, . . . , vn} is its vertex set and E(G) is its
edge set. The order of G is the number n = |V (G)| and its size is the numberm = |E(G)|.The
set of vertices adjacent to v ∈ V (G), denoted byN(v), refers to the neighborhood of v.The degree
of v, denoted by dG(v) (we simply write dv if it is clear from the context) means the cardinality
ofN(v). A graph is called regular if each of its vertex has the same degree. The distance between
two vertices u, v ∈ V (G), denoted by duv , is defined as the length of a shortest path between
u and v in G. The diameter of G is the maximum distance between any two vertices of G. The
distance matrix of G is denoted by D(G) and is defined as D(G) = (duv)u,v∈V (G). The trans-
mission TrG(v) of a vertex v is defined to be the sum of the distances from v to all other vertices
in G, i.e., TrG(v) =

∑
u∈V (G)

duv. A graph G is said to be k-transmission regular if TrG(v) = k,

for each v ∈ V (G). The transmission of a graph G, denoted by W (G), is the sum of distances
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between all unordered pairs of vertices inG. Clearly,W (G) = 1
2

∑
v∈V (G)

TrG(v). For any vertex

vi ∈ V (G), the transmission TrG(vi) is called the transmission degree, shortly denoted by Tri
and the sequence {Tr1, T r2, . . . , T rn} is called the transmission degree sequence of the graphG.

The second transmission degree of vi, denoted by Ti is given by Ti =

n∑
j=1

dijTrj .

Let Tr(G) = diag(Tr1, T r2, . . . , T rn) be the diagonal matrix of vertex transmissions of
G. M. Aouchiche and P. Hansen [1, 2] introduced the Laplacian and the signless Laplacian for
the distance matrix of a connected graph. The matrix DL(G) = Tr(G) − D(G) is called the
distance Laplacian matrix of G, while the matrix DQ(G) = Tr(G) + D(G) is called the dis-
tance signless Laplacian matrix of G. The spectral properties of D(G), DL(G) and DQ(G) have
attracted much more attention of the researchers and a large number of papers have been pub-
lished regarding their spectral properties, like spectral radius, second largest eigenvalue, smallest
eigenvalue etc. For some recent works we refer to [3, 8, 4, 15, 17, 18, 19, 20, 21, 22, 25, 26, 27] and
the references therein.

Recently in [9], Cui et al. introduced the generalized distancematrixDα(G) as a convex com-
binations of Tr(G) and D(G), defined as Dα(G) = αTr(G) + (1 − α)D(G), for 0 ≤ α ≤ 1.
Since D0(G) = D(G), 2D 1

2
(G) = DQ(G), D1(G) = Tr(G) and Dα(G) − Dβ(G) =

(α−β)DL(G), any result regarding the spectral properties of generalized distance matrix, has its
counterpart for each of these particular graph matrices, and these counterparts follow immedi-
ately from a single proof. In fact, this matrix reduces tomerging the distance spectral and distance
signless Laplacian spectral theories. Since the matrixDα(G) is real symmetric, all its eigenvalues
are real. Therefore, we can arrange them as ∂1 ≥ ∂2 ≥ · · · ≥ ∂n. The largest eigenvalue ∂1 of
the matrixDα(G) is called the generalized distance spectral radius of G (From now onwards, we
will denote ∂1(G) by ∂(G)). AsDα(G) is nonnegative and irreducible, by the Perron-Frobenius
theorem, ∂(G) is the unique eigenvalue and there is a unique positive unit eigenvectorX corre-
sponding to ∂(G), which is called the generalized distance Perron vector of G. For some recent
papers on the generalized distance eigenvalues of a graph, we refer to [5, 6, 7, 16] and the refer-
ences therein.

The spectral radius of a general matrix M is a very attractive and interesting topic of re-
search and as such the investigation of the spectral radius of some matrices associated with a
graph become interesting. WhenM is restricted to a particular graph matrix, the spectral radius
has attracted much attention of the researchers as is clear from the fact that various papers can
be found in the literature in this direction. For a particular graph matrix (like adjacency, Lapla-
cian, signless Laplacian, etc), the much studied problem about the parameter spectral radius is
to obtain bounds in terms of various graph parameters. Another problem worth to mention is
to characterize the extremal graphs for the spectral radius of a graph matrix, in some classes of
graphs. For some recent works we refer to [15, 19, 20, 22, 25, 26, 27] and the references therein.
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A column vector X = (x1, x2, . . . , xn)
T ∈ Rn can be considered as a function defined on

V (G) which maps vertex vi to xi, i.e.,X(vi) = xi for i = 1, 2, . . . , n. Then,

XTDα(G)X = α

n∑
i=1

Tr(vi)x
2
i + 2(1− α)

∑
1≤i<j≤n

d(vi, vj)xixj ,

and λ is an eigenvalue ofDα(G) corresponding to the eigenvectorX if and only ifX ̸= 0 and,

λxi = αTr(vi)xi + (1− α)
n∑

j=1

d(vi, vj)xj .

These equations are called the (λ, x)-eigenequations ofG. For a normalized column vectorX ∈
Rn with at least one non-negative component, by the Rayleigh’s principle, we have

∂(G) ≥ XTDα(G)X,

with equality if and only ifX is the generalized distance Perron vector ofG.

One of the interesting problems that can be found in the literature is regarding the bounds
for the minimal and maximal entry of the Perron vector of the graphG. The problem is that, for
a particular graph matrix find upper and lower bounds for the minimal and maximal entry of the
Perron vector of the graph G and characterize the extremal graphs. The principal eigenvector is
of interest since it is often used in applications, see [24] for an overview. For a fixed real number
p, 1 ≤ p < ∞, the unique positive eigenvectorX = (x1, x2, . . . , xn)

T such that (
∑n

i=1 x
p
i )

1
p =

1 associated with the largest eigenvalue of a symmetric, non-negative and irreducible matrix, is
called the p-normalized principal eigenvector of the matrix. Let us denote the maximum and
minimum entry of X of by xmax and xmin, respectively. Several results regarding the maximal
and minimal entries of the principal eigenvector are available in the literature, here we mention
some of them. Papendieck and Recht [23] obtained an upper bound on the maximal entry of the
principal eigenvector of adjacency matrix of a simple connected graph and the bound depends
only on the adjacency spectral radius of the graph. Zhao and Hong [28] investigated the maximal
entry of the p-normalized principal eigenvector of symmetric non-negativematrix with zero trace
and gave both upper and lower bounds for the same. In [11], Cioabă and Gregory found an
upper bound of the maximal entry of the principal eigenvector of adjacency matrix in terms of
the maximum degree of the graph and showed that their upper bound improves the result of
Papendieck and Recht [23]. In [10], Cioabă gave a necessary and sufficient condition for a graph
to be bipartite in terms of principal eigenvector of the adjacency matrix of the graph. Das [12]
obtained a sharp upper bound on the maximum entry of the p-normalized principal eigenvector
for a symmetric non-negative matrix in terms of the order, spectral radius, largest and smallest
diagonal entries of the matrix. Moreover, in the same paper [12], Das found an upper bound on
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the maximum entry of the p-normalized principal eigenvector for the signless Laplacian matrix
of a graph. Further in [13] Das determined lower and upper bounds on the maximum entry and
an upper bound on minimum entry of the p-normalized principal eigenvector for the distance
matrix of a graph and characterized the extremal graphs. In 2015 Das et al. [14] considered the
distance signless Laplacian and determined upper and lower bounds on the maximum entry and
an upper bound on minimum entry of the p-normalized principal eigenvector and characterized
the extremal graphs. Recently, Atik and Panigrahi [8] obtained some upper and lower bounds of
the maximal andminimal entry of the p-normalized principal eigenvector for the distance matrix
and distance signless Laplacian matrix of a graph and showed that transmission regular graphs
are extremal for all these bounds. They also show that their bounds improve the bounds obtained
in [13] and [14] for some families of graphs.

Motivated by the works mentioned above, in this paper we study the spectral radius of gen-
eralized distance matrix Dα(G) and obtain some upper and lower bounds in terms of various
graph parameters. We also study the entries of the p-normalized principal eigenvector of the
generalized distance matrixDα(G) and obtain some lower and upper bounds in terms of several
graph parameters. Moreover, we characterize the extremal graphs attaining these bounds. Since
D0(G) = D(G) and 2D 1

2
(G) = DQ(G), therefore most of our results generalize the results

obtained in [8, 13, 14].

The rest of the paper is organized as follows. In Section 2, we obtain some bounds for the
generalized distance spectral radius of graphs and characterize the extremal graphs. In Section 3,
we obtain upper and lower bounds for theminimal andmaximal entry of the generalized distance
Perron vector of the graph G and characterize the extremal graphs. Our results in this section
generalizes many of the existing results in the literature, especially the results in the references
[8, 13, 14] to a more general setting.

2 Bounds on generalized distance spectral radius

In this section, we obtain upper and lower bounds for the generalized spectral radius ∂(G), in
terms of the transmission degree sequence and the second transmission degree sequence, the
diameter and the order of the graphG.

Theorem 2.1. LetX = (x1, x2, . . . , xn)
T be the generalized distance Perron vector of graphG. If

xi = max{xk|k = 1, 2, . . . , n} and xj = min{xk|k = 1, 2, . . . , n}, then

Trj ≤ ∂(G) ≤ Tri. (2.1)

Equality occurs on both sides if and only ifG is a transmission regular graph.
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Proof. From the i-th eigenequation we have,

∂(G)xi = αTrixi + (1− α)
∑n

j=1 dijxj

⇒ ∂(G)− αTri = (1− α)
∑n

j=1 dij
xj

xi

⇒ ∂(G)− αTri ≤ (1− α)Tri and ∂(G)− αTri ≥ (1− α)Trj

⇒ Trj ≤ ∂(G) ≤ Tri.

Suppose that equality occurs on the right side of (2.1), then X is an eigenvector of ∂(G) with
xi = xk for all k = 1, 2, . . . , n. This gives all the row sums of Dα(G) are same, and so G is a
transmission regular graph. The equality on the left side can be discussed similarly.

Since for a graphwith diameter atmost two, we haveTri = 2n−2−di, for all i = 1, 2, . . . , n,
it follows that a graphGwith diameter atmost two is transmission regular if and only if it is degree
regular. The following observation gives a lower bound for ∂(G), in terms of the order n and the
maximum degree∆, and follows fromTheorem 2.1.

Corollary 2.2. If∆ denotes the maximum degree of a graphG, then

∂(G) ≥ 2n−∆− 2,

with equality if and only ifG is a regular graph with diameter at most 2.

Proof. UsingTheorem 2.1 and the fact that Tri ≥ di+2(n−di−1) = 2n−di−2, with equality
if and only ifG is a regular graph with diameter at most 2, the result follows.

The following gives a lower bound for ∂(G), in terms of the order n, the maximum degree
∆1 and the second maximum degree∆2 of the graphG.

Theorem 2.3. Let G be a connected graph of order n having maximum degree ∆1 and second
maximum degree∆2. Then for s = ∆1 +∆2

∂(G) ≥
α(4n− 4− s) +

√
α2(4n− 4− s)2 + 4(1− 2α)(2n− 2−∆1)(2n− 2−∆2)

2
,

(2.2)

with equality if and only ifG is a regular graph with diameter at most two.

Proof. Let X = (x1, x2, . . . , xn)
T be the generalized distance Perron vector of graph G and let

xi = min{xk|k = 1, 2, . . . , n} and xj = mink ̸=i{xk|k = 1, 2, . . . , n}. From the i-th equation
ofDα(G)X = ∂(G)X , we obtain

∂xi = αTrixi + (1− α)

n∑
k=1,k ̸=i

dikxk ≥ αTrixi + (1− α)Trixj . (2.3)
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Similarly, from the j-th equation ofDα(G)X = ∂(G)X , we obtain

∂xj = αTrjxj + (1− α)

n∑
k=1,k ̸=j

djkxk ≥ αTrjxj + (1− α)Trjxi. (2.4)

Since

Trp =
n∑

p=1,k ̸=p

djp ≥ dp + 2(n− 1− dp) = 2n− 2− dp, for all p = 1, 2, . . . , n (2.5)

it follows that

(∂ − α(2n− 2− di))xi ≥ (1− α)(2n− 2− di)xj

and

(∂ − α(2n− 2− dj))xj ≥ (1− α)(2n− 2− dj)xi.

Multiplying the corresponding sides of these inequalities and using the fact that xk > 0 for all k,
we obtain

∂2 − α(4n− 4− di − dj)∂ − (1− 2α)(2n− 2− di)(2n− 2− dj) ≥ 0,

which in turn gives

∂(G) ≥
α(4n− 4− di − dj) +

√
α2(4n− 4− di − dj)2 + 4(1− 2α)(2n− 2− di)(2n− 2− dj)

2
.

Now, using di + dj ≤ ∆1 +∆2, the result follows.
Suppose that equality occurs in (2.2), then equality occurs in each of the above inequalities.

If equality occurs in (2.3) and (2.4), then we obtain xi = xk, for all k = 1, 2, . . . , n giving thatG
is a transmission regular graph. Also equality in (2.5) gives thatG is a graph of diameter at most
two and equality in di + dj ≤ ∆1 + ∆2 gives that G is a regular graph. Combining all these, it
follows that equality occurs in (2.2) ifG is a regular graph of diameter at most two.

Conversely, ifG is a connected∆-regular graph of diameter atmost two, then ∂(G) = Tri =

2n− 2−∆. Also

α(4n− 4− s) +
√

α2(4n− 4− s)2 + 4(1− 2α)(2n− 2−∆1)(2n− 2−∆2)

2

=
α(4n− 4− s) + α(4n− 4− s)(1− α)

2
= 2n− 2−∆ = ∂(G).

That completes the proof.
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Remark 1. For any connected graph G of order n having maximum degree∆, the lower bound
given byTheorem 2.3 is always better than the lower bound given by Corollary 2.2. As

α(4n− 4− s) +
√
α2(4n− 4− s)2 + 4(1− 2α)(2n− 2−∆1)(2n− 2−∆2)

2

≥
α(4n− 4− 2∆1) +

√
α2(4n− 4− 2∆1)2 + 4(1− 2α)(2n− 2−∆1)2

2

=
α(4n− 4− 2∆1) + α(4n− 4− s)(1− α)

2
= 2n− 2−∆.

The following gives an upper bound for ∂(G), in terms of transmission degrees Tri of the
graphG.

Theorem 2.4. LetG be connected graph of order n having transmission degree sequence
{Tr1, T r2, . . . , T rn}.Then

∂(G) ≤ max
1≤i ̸=j≤n

{αTri + (1− α)Trj}, (2.6)

with equality if and only ifG is a transmission regular graph.

Proof. Let X = (x1, x2, . . . , xn)
T be an eigenvector of Tr(G)−1Dα(G)Tr(G) corresponding

to ∂(G) and xi = max{xj |j = 1, 2, . . . , n}.The (i, j)-th entry of Tr(G)−1Dα(G)Tr(G) is{
αTri if i = j

Trj
Tri

(1− α)dij otherwise.

We have

Tr(G)−1Dα(G)Tr(G)X = ∂(G)X. (2.7)

From the i-th equation of (2.7), we have

∂(G)xi = αTrixi + (1− α)

n∑
j=1,j ̸=i

Trjdij
Tri

xj

⇒ (∂(G)− αTri)xi = (1− α)
n∑

j=1,j ̸=i

Trjdij
Tri

xj

⇒ xi(∂(G)− αTri)xi = (1− α)
n∑

j=1,j ̸=i

Trj
Tri

xidijxj ≤ (1− α)x2i

n∑
j=1

Trj
Tri

dij (2.8)

⇒ ∂(G) ≤ αTri +
1− α

Tri

n∑
j=1,j ̸=i

Trjdij
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≤ αTri +
1− α

Tri
max

1≤j ̸=i≤n
{Trj}

n∑
j=1

dij (2.9)

≤ αTri + (1− α) max
1≤j≤n

{Trj}

≤ max
1≤i,j≤n

{αTri + (1− α)Trj}.

Which completes the proof of inequality (2.6). Now, suppose that equality in (2.6) holds, then
all inequalities in the above argument must be equalities. From equality in (2.8), we get x1 =

x2 = · · · = xn, giving that G is a transmission regular graph. From equality in (2.9), we get
Tr1 = Tr2 = · · · = Trn = max

1≤j ̸=i≤n
{Trj}. Let Trs := max

1≤j ̸=i≤n
{Trj}, then either Tri = Trs

or Tri ̸= Trs. If Tri = Trs, then all the transmissions of the vertices are equal andG is a trans-
mission regular graph. On the other hand, if Tri ̸= Trs, then the graph G is not a transmission
regular graph and so equality can not occur in this case.

Conversely, suppose thatG is a transmission regular graph, then it can easily seen that equal-
ity occurs in (2.6). That completes the proof.

The following gives another upper bound for ∂(G), in terms of transmission degree sequence
and the second transmission degree sequence of the graphG.

Theorem 2.5. If the transmission degree sequence and the second transmission degree sequence of
G are {Tr1, T r2, . . . , T rn} and {T1, T2, . . . , Tn}, respectively, then

∂(G) ≤ max
vi∈V (G)

{
αTri +

√
Θ

2

}
, (2.10)

where Θ = α2Tr2i +
4(1−α)
Tri

n∑
j=1

dij
(
(1− α)Tj + αTr2j

)
.Moreover, if 1

2 ≤ α < 1, the equality

holds if and only ifG is a transmission regular graph.

Proof. Let X = (x1, x2, . . . , xn)
T be an eigenvector corresponding to the eigenvalue ∂(G) of

Tr−1(G)Dα(G)Tr(G).Weassume that one eigencomponentxi is equal to 1 and the other eigen-
components are less than or equal to 1, that is xk < 1, for all k = 1, 2, . . . , n, k ̸= i. The (i, j)-th
entry of Tr(G)−1Dα(G)Tr(G) is{

αTri if i = j
Trj
Tri

(1− α)dij otherwise.

We have

Tr(G)−1Dα(G)Tr(G)X = ∂(G)X. (2.11)
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From the i-th equation of (2.11), we have

∂(G)xi = αTrixi +
∑n

j=1
Trj
Tri

(1− α)dijxj ,

⇒ ∂(G) = αTri +
∑n

j=1
Trj
Tri

(1− α)dijxj . (2.12)

Similarly from the j-th equation of (2.11), we have

∂(G)xj = αTrjxj +
n∑

k=1

Trk
Trj

(1− α)djkxk.

Multiplying both sides of (2.12) by ∂(G) and substituting the value of ∂(G)xj , we get

∂2(G) = αTri∂(G) +

n∑
j=1

{
Trj
Tri

(1− α)dij

[
αTrjxj +

n∑
k=1

Trk
Trj

(1− α)djkxk

]}

= αTri∂(G) + α(1− α)

n∑
j=1

Tr2j
Tri

dijxj + (1− α)2
n∑

j=1

n∑
k=1

Trk
Tri

dijdjkxk

≤ αTri∂(G) + α(1− α)

n∑
j=1

Tr2j
Tri

dij + (1− α)2
n∑

j=1

Tj

Tri
dij (2.13)

= αTri∂(G) +
1− α

Tri

n∑
j=1

dij((1− α)Tj + αTr2j ).

This shows that

∂2(G)− αTri∂(G)− 1− α

Tri

n∑
j=1

dij((1− α)Tj + αTr2j ) ≤ 0.

From this the result now follows. Suppose that the equality holds in (2.10). Then all inequalities
in the above argument must be equalities. From equality in (2.13), we get xj = 1 for all j. From
this one can easily show that xi = 1 for all i ∈ V.Hence

αTr1 +
(1− α)T1

Tr1
= αTr2 +

(1− α)T2

Tr2
= · · · = αTrn +

(1− α)Tn

Trn
.

LetTrmax andTrmin denote themaximumandminimumvertex transmission, respectively. With-
out loss of generality, assume that Tri = Trmax and Trj = Trmin.Therefore,

αTrmax +
(1− α)Ti

Trmax
= αTrmin +

(1− α)Tj

Trmin
.

Since Ti ≥ TrmaxTrmin and Tj ≤ TrmaxTrmin, it follows that

αTrmax+(1−α)Trmin ≤ αTrmax+
(1− α)Ti

Trmax
= αTrmin+

(1− α)Tj

Trmin
≤ (1−α)Trmax+αTrmin.

This gives that Trmax = Trmin for 1
2 ≤ α < 1.HenceG is a transmission regular graph.

Conversely, suppose that for 1
2 ≤ α < 1 the graphG is a transmission regular graph, then it

can easily seen that equality occurs in (2.10). This completes the proof.
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3 Bounds for the entries in the Perron vector of the generalized distance
matrix

In this section, we obtain upper and lower bounds on the minimal and maximal entries of the
p-norm normalized Perron vector corresponding to spectral radius ∂(G) and characterize the
extremal graphs.

The p-norm of a vectorX = (x1, x2, . . . , xn)
T is defined as follows:

∥X∥p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p , 1 ≤ p < ∞.

For a fixed real number p, 1 ≤ p < ∞, the unique positive eigenvector X = (x1, x2, . . . , xn)
T

such that (
∑n

i=1 x
p
i )

1
p = 1 associated with the largest eigenvalue of a symmetric, non-negative

and irreducible matrix, is called the p-normalized principal eigenvector of the matrix.

The following gives a lower bound and an upper bound for the minimal entry xmin of the
Perron vector for ∂(G).

Theorem 3.1. LetG be a connected graph of order n and letX = (x1, x2, . . . , xn)
T be the Perron

vector corresponding to spectral radius ∂(G) of Dα(G) with x1 ≥ x2 ≥ . . . ≥ xn. Then for
0 ≤ α < 1,

1− α

∂ − Trmin + n(1− α)
≤ xn = xmin ≤ ∂ − αTrmin

(1− α)2W
. (3.1)

Equality occurs for both the inequalities if and only ifG is a transmission regular graph.

Proof. By given X = (x1, x2, . . . , xn)
T is the unit eigenvector corresponding to the eigenvalue

∂(G) of the matrixDα, therefore

DαX = ∂X,
n∑

k=1

xk = 1

giving that

∂(G)xi = αTrixi + (1− α)
n∑

k=1,k ̸=i

dikxk

⇒ (∂(G)− αTrmin)xi ≥ (1− α)
n∑

k=1,k ̸=i

dikxk. (3.2)

Summing over all i and using the fact
n∑

k=1

xk = 1, we get

(∂(G)− αTrmin) ≥ (1− α)
n∑

i=1

n∑
k=1,k ̸=i

dikxk
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≥ (1− α)2Wxmin.

From this the right hand inequality follows.
Again from (3.2), we have

(∂(G)− αTrmin + (1− α))xi ≥ (1− α)xi + (1− α)
n∑

k=1,k ̸=i

dikxk

⇒ (∂(G)− αTrmin + (1− α))xi ≥ (1− α)
n∑

k=1

xk + (1− α)
n∑

k=1,k ̸=i

(dik − 1)xk.

Since this inequality is true for all i, therefore we have

(∂(G)− αTrmin + (1− α))xmin ≥ (1− α) + (1− α)(Trmin − (n− 1))xmin.

From this the left hand inequality follows.
Suppose that equality occurs in the left hand inequality of (3.1), then equality occurs in (3.2),

giving that Tri = Trmin and xmin = xi, for all i = 1, 2, . . . , n. This shows that all the row
sums of the matrixDα(G) are equal, implying thatG is a transmission regular graph. Similarly, it
can be seen that equality occurs in the left hand inequality of (3.1), ifG is a transmission regular
graph.

Conversely, if G is a transmission regular graph, then Trmin = ∂, 2W = nTrmin andX =

( 1n ,
1
n , . . . ,

1
n)

T is the unit vector corresponding to eigenvalue ∂ of the matrixDα(G). We have

1− α

∂ − Trmin + n(1− α)
=

1

n
=

∂ − αTrmin

(1− α)2W
.

That completes the proof.

The following gives a lower and an upper bound for the maximal entry xmax of the Perron
vector for ∂(G).

Theorem 3.2. LetG be a connected graph of order n and letX = (x1, x2, . . . , xn)
T be the Perron

vector corresponding to spectral radius ∂(G) of Dα(G) with x1 ≥ x2 ≥ . . . ≥ xn. Then for
0 ≤ α < 1,

∂ − αTrmax

2W (1− α)
≤ x1 = xmax ≤

(1− α)Trmax

(
∂ − Trmin + 2(1− α)

)
(
∂ + (1− 2α)Trmax

)(
∂ − Trmin + n(1− α)

) .
Equality occurs for both the inequalities if and only ifG is a transmission regular graph.
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Proof. By given X = (x1, x2, . . . , xn)
T is the unit eigenvector corresponding to the eigenvalue

∂(G) of the matrixDα, therefore from

DαX = ∂X,

n∑
k=1

xk = 1

it follows that

∂x1 = αTr1x1 + (1− α)
n∑

k=1,k ̸=1

dikxk

⇒ (∂ − αTrmax)x1 ≤ (1− α)

n∑
k=1,k ̸=1

dikx2 ≤ (1− α)Trmaxx2

= (1− α)Trmax(1− x1 − x3 − · · · − xn)

≤ (1− α)Trmax(1− xmax − (n− 2)xn).

This shows that

(∂ + (1− 2α)Trmax)xmax ≤ (1− α)Trmax(1− (n− 2)xmin). (3.3)

Using the left hand inequality of (3.1) in (3.3), it follows that

xmax ≤
(1− α)Trmax

(
∂ − Trmin + 2(1− α)

)
(
∂ + (1− 2α)Trmax

)(
∂ − Trmin + n(1− α)

) .
This completes the proof of right hand inequality.

Again from the i-th equation ofDαX = ∂X , we have

∂(G)xi = αTrixi + (1− α)
n∑

k=1,k ̸=i

dikxk

⇒ (∂(G)− αTrmax)xi ≤ (1− α)
n∑

k=1,k ̸=i

dikxmax.

Summing over all i and using the fact
n∑

k=1

xk = 1, we get

(∂(G)− αTrmax) ≤ (1− α)
n∑

i=1

n∑
k=1,k ̸=i

dikxmax

= (1− α)2Wxmax.

From this the left hand inequality follows.
Equality case can be discussed similarly as in Theorem 3.1. That completes the proof.
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The following lower bound for maximal entry xmax and upper bound for the minimal entry
xmin of the unit Perron vector X of the spectral radius ρ of distance matrix D(G) was obtained
in [8]:

xmax ≥
ρ+ 1− n

2W − n(n− 1)
and xmin ≤ ρ+ 1− n

2W − n(n− 1)
, (3.4)

with equality if and only if G is a transmission regular graph. We note that for the (n − 1)-
transmission regular graphKn, each of these bounds become an indeterminate form. Therefore,
for the complete graphKn these bounds and the bounds obtained by using these bounds in Sec-
tion 3 of the paper [8] does not make any sense. However, if in the statement the complete graph
is excluded, then these results always hold.

For p > 1, letX = (x1, x2, . . . , xn)
T be the p-norm normalized Perron vector correspond-

ing to spectral radius ∂(G) and letY = (y1, y2, . . . , yn)
T be the unit Perron vector corresponding

to spectral radius ∂(G) of the matrixDα(G). It is easy to see that

xi =
yi

(
∑n

i=1 y
p
i )

1
p

, for all i = 1, 2, . . . , n.

From this it is clear that

xmax =
ymax

(
∑n

i=1 y
p
i )

1
p

and xmin =
ymin

(
∑n

i=1 y
p
i )

1
p

. (3.5)

Using the fact

(
n∑

i=1

ypi )
1
p ≤ n

1
p ymax and (

n∑
i=1

ypi )
1
p ≥ n

1
p ymin,

with equality if and only if G is a transmission regular graph. This fact together with (3.5), it
follows that from any bound for ymax and ymin, we can obtain a bound for xmax and xmin. Thus,
corresponding to the bounds obtained inTheorems 3.1 and 3.2, we can obtain the bounds for the
maximal and minimal entry in the p-norm normalized Perron vector (p > 1) corresponding to
spectral radius ∂(G).

A complete split graph, denoted byCSt,n−t, is the graph consisting of a clique onn−t vertices
and an independent set on the remaining t vertices, such that each vertex of the clique is adjacent
to every vertex of the independent set. It is clear that the graph CSt,n−t is the join of complete
graphKn−t and the empty graphKt, that is CSt,n−t = Kn−t ∨Kt.

The following gives an upper bound on the minimal entry of the Perron vector of the gener-
alized distance spectral radius of a graphG.
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Theorem 3.3. LetG be a connected graph of order n and letX = (x1, x2, . . . , xn)
T be the p-norm

normalized Perron vector corresponding to spectral radius ∂(G) ofDα(G) with x1 ≥ x2 ≥ . . . ≥
xn. If p ≥ 1 and α ∈ [0, 1), then

xmin = xn

≤ min
{(

(∂ − α(β + n− 2)− 2(1− α)(β − 1))p

(n− β)(∂ − α(β + n− 2)− 2(1− α)(β − 1))p + β(1− α)p(n− β)p

) 1
p

,(
(∂ − α(2n+ β)− n+ β + 1)p

β(∂ − α(2n+ β)− n+ β + 1)p + (n− β)βp(1− α)p

) 1
p
}
, (3.6)

where β is the independence number of G.Moreover, the equality holds in (3.6) if and only if G ∼=
CSβ,n−β .

Proof. SinceG is a connected graph of order nwith independence number β,we can assume that
V (G) = A∪B, such thatA = {v1, v2, . . . , vβ} andB = {vβ+1, vβ+2, . . . , vn} and there are no
two adjacent vertices in the setA.We can assume that xi = minvk∈A xk, and xj = minvk∈B xk.

SinceDαX = ∂X, we have

∂xi = αTrixi + (1− α)

β∑
k=1,k ̸=i

dikxk + (1− α)
n∑

k=β+1

dikxk

≥ αTrixi + (1− α)

β∑
k=1,k ̸=i

dikxi + (1− α)
n∑

k=β+1

dikxj

≥ α(2(β − 1) + n− β)xi + 2(1− α)(β − 1)xi + (1− α)(n− β)xj ,

that is

xi ≥
(1− α)(n− β)xj

∂ − α(β + n− 2)− 2(1− α)(β − 1)
. (3.7)

Similarly, we have

∂xj ≥ αTrjxj + (1− α)

β∑
k=1

djkxi + (1− α)

n∑
k=β+1,k ̸=j

djkxj

≥ α(n− 1)xj + β(1− α)xi + (1− α)(n− β − 1)xj ,

that is

xj ≥
β(1− α)xi

∂ − α(2n+ β)− n+ β + 1
. (3.8)

It follows from normalization that

βxpi + (n− β)xpj ≤ 1. (3.9)
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Substituting (3.7) in (3.9), we obtain

xj ≤
(

(∂ − α(β + n− 2)− 2(1− α)(β − 1))p

(n− β)(∂ − α(β + n− 2)− 2(1− α)(β − 1))p + β(1− α)p(n− β)p

) 1
p

and Substituting (3.8) in (3.9), we obtain

xi ≤
(

(∂ − α(2n+ β)− n+ β + 1)p

β(∂ − α(2n+ β)− n+ β + 1)p + (n− β)βp(1− α)p

) 1
p

.

Thus, we complete the first part of the proof.
Suppose that equality holds in (3.6). Then all inequalities in the above argument must be

equalities. From equality in (3.7), we get

xk = xj , dik = 1, for all vk ∈ B

and xk = xi, dik = 2, for all vk ∈ A.

From equality in (3.8), we get

xk = xj , djk = 1, for all vk ∈ B

and xk = xi, djk = 1, for all vk ∈ A.

Thus each vertex in A is adjacent to all the vertices of the set B and each vertex in B is adjacent
to all the remaining vertices inB.Hence we must haveG ∼= CSβ,n−β.

Conversely, if G ∼= CSβ,n−β, then it can be easily seen that equality occurs in (3.6). That
completes the proof.

The following observation can be found in [23].

Lemma 3.1. [23] If a1, a2, . . . , an are positive numbers, then,

b1 + b2 + · · ·+ bn
a1 + a2 + · · ·+ an

≤ max
i

bi
ai
,

for any real numbers b1, b2, . . . , bn. Equality holds if and only if all the ratios bi
ai

are equal.

The following gives an upper bound on the maximal entry in the Perron vector of the gener-
alized distancematrix in terms ofminimum transmission degree, maximum transmission degree,
diameter and spectral radius ∂(G) ofDα(G).
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Theorem3.4. LetG be a connected graph of ordernhaving diameterd and letX = (x1, x2, . . . , xn)
T

be the p-norm normalized Perron vector corresponding to spectral radius ∂(G) of Dα(G) with
x1 ≥ x2 ≥ . . . ≥ xn. Let α ∈ [0, 1). If p = 1, then

xmax = x1 ≤
d(1− α)

∂ − αTrmax + d(1− α)
,

and if p > 1, then

xmax = x1 ≤
(

d(1− α)(∂ − αTrmin)
p−1

(d(1− α))p−1(∂ − αTrmax) + d(1− α)(∂ − αTrmin)p−1

) 1
p

.

For p = 1, equality occurs if and only ifG ∼= Kn.

Proof. SinceDαX = ∂X, for v1 ∈ V (G), we have

∂x1 = αTr1x1 + (1− α)
n∑

k=2

d1kxk

⇒ (∂ − αTr1)x1 = (1− α)

n∑
k=2

d1kxk. (3.10)

It follows from normalization that
∑n

k=2 x
p
k = 1− xp1, then from (3.10) and Lemma 3.1, we get

(∂ − αTr1)x1
1− xp1

=
(1− α)

∑n
k=2 d1kxk∑n

k=2 x
p
k

≤ max
k∈{2,...,n}

(1− α)d1kxk
xpk

≤ max
k∈{2,...,n}

(1− α)d

xp−1
k

.

Let j ∈ {2, . . . , n} be the index such that maxk
(1−α)d

xp−1
k

= (1−α)d

xp−1
j

, then

(∂ − αTrmax)x1
1− xp1

≤ (∂ − αTr1)x1
1− xp1

≤ d(1− α)

xp−1
j

.

For p = 1 this leads to

x1 ≤
d(1− α)

∂ − αTrmax + d(1− α)
.

If p > 1, we have

xj ≤
(
d(1− α)(1− xp1)

x1(∂ − αTrmax)

) 1
p−1

. (3.11)

For the j-th row ofDα(G), we have

∂xj = αTrjxj + (1− α)

n∑
k=1,k ̸=j

djkxk,
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this gives that

(∂ − αTrmin)xj ≥ (∂ − αTrj)xj ≥ d(1− α)x1. (3.12)

From (3.11) and (3.12), we get

x1 ≤
(∂ − αTrmin)

d(1− α)
.

(
d(1− α)(1− xp1)

x1(∂ − αTrmax)

) 1
p−1

⇒ x1 ≤
(

d(1− α)(∂ − αTrmin)
p−1

(d(1− α))p−1(∂ − αTrmax) + d(1− α)(∂ − αTrmin)p−1

) 1
p

.

For p = 1, it follows from Lemma 3.2 that equality occurs if and only if d1k = d for all k =

2, 3, . . . , n and Trmax = Tr1. Since d1k = d, for all k = 2, 3, . . . , n, it implies that Trmax =

Tr1 = d(n− 1). If d = 1, then it is clear thatG ∼= Kn. So, suppose that d ≥ 2, then d1k = d for
all k = 2, 3, . . . , n gives that distance from v1 to all other vertices is at least two. Which implies
that v1 is an isolated vertex inG, which is not possible asG is a connected graph. This completes
the proof.

The following gives a lower bound for the maximal entry of the Perron vector corresponding
to the spectral radius ∂(G) in terms of minimum transmission degree, maximum transmission
degree and spectral radius ∂(G) ofDα(G).

Theorem 3.5. LetG be a connected graph of order n and letX = (x1, x2, . . . , xn)
T be the p-norm

normalized Perron vector corresponding to spectral radius ∂(G) ofDα(G) with x1 ≥ x2 ≥ . . . ≥
xn. If p ≥ 1 and α ∈ [0, 1), then

xmax = x1 ≥

(
(1− α)∂p−1

(1− α)∂p−1 + (∂ − αTrmin)Tr
p−1
max

) 1
p

, (3.13)

with equality if and only ifG ∼= Kn.

Proof. SinceDαX = ∂X, for v1 ∈ V (G), we have

∂x1 = αTr1x1 + (1− α)
n∑

k=2

d1kxk ≥ αTrminx1 + (1− α)
n∑

k=2

xk. (3.14)

Now, we multiply both sides of (3.14) by xp−1
2 , and get

∂x1x
p−1
2 ≥ αTrminx1x

p−1
2 + (1− α)

∑n
k=2 xkx

p−1
2

≥ αTrminx1x
p−1
2 + (1− α)

∑n
k=2 x

p
k

⇒ ∂x1x
p−1
2 ≥ αTrminx1x

p−1
2 + (1− α)(1− xp1)
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⇒ x2 ≥
(

(1−α)(1−xp
1)

x1(∂−αTrmin)

) 1
p−1

. (3.15)

Also, for v2 ∈ V (G), we have

∂x2 = αTr2x2 + (1− α)

n∑
k=1,k ̸=2

d2kxk ≤ αTrmaxx1 + (1− α)Trmaxx1 ≤ Trmaxx1. (3.16)

From (3.15) and (3.16), we get

∂
(

(1−α)(1−xp
1)

x1(∂−αTrmin)

) 1
p−1 ≤ Trmaxx1

⇒ xp1 ≥
(1−α)∂p−1

(1−α)∂p−1+(∂−αTrmin)Trp−1
max

,

which gives the lower bound in (3.13). Suppose that equality holds in (3.13). Then all inequalities
in the above must be equalities. From equality in (3.15), we get d1k = 1, Tr1 = Trmin and
x2 = xk, for all k = 2, 3, . . . , n. Also, from equality in (3.16), we get Tr2 = Trmax and x1 =

x2 = · · · = xn.This shows that all the row sums ofDα(G) are equal, that is Tr1 = Tr2 = · · · =
Trn, and so ∂ = Tr1 = n − 1. This shows that equality occurs in (3.13) if and only if G is a
transmission regular graph with Tri = n− 1, which is only possible if and only ifG ∼= Kn.This
completes the proof.

Next, we obtain a lower bound for xmax, in terms of minimum degree, diameter and spectral
radius ∂(G) ofDα(G).

Theorem 3.6. Let G be a connected graph of order n having diameter d. Fix p ≥ 1, and let
X = (x1, x2, . . . , xn)

T be the p-norm normalized Perron vector corresponding to the spectral ra-
dius ∂(G) ofDα(G) with x1 ≥ x2 ≥ . . . ≥ xn. Let δ be the minimum degree of the graph G and
let α ∈ [0, 1). Then

x1 = xmax ≥
(

∂p−1(1− α)

(∂ − αTrmin)((n− 1)d− (d− 1)δ)p−1 + ∂p−1(1− α)

) 1
p

. (3.17)

Moreover, the equality holds if and only ifG ∼= Kn.

Proof. Proof follows fromTheorem 3.5 by using the fact

Trmax ≤ δ + (n− 1− δ)d
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