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Threshold dynamics of an HIV-TB co-infection

model with multiple time delays

M. Pitchaimani and A. Saranya Devi

Abstract. In this article, a mathematical model to study the dynamics of HIV-TB

co-infection with two time delays is proposed and analyzed. We compute the basic

reproduction number for each disease (HIV and TB) which acts as a threshold pa-

rameters. The disease dies out when the basic reproduction number of both diseases

are less than unity and persists when the basic reproduction number of atleast one of

the disease is greater than unity. A numerical study on the model is also performed

to investigate the influence of certain key parameters on the spread of the disease.

Mathematical analysis of our model shows that switching co-infection (HIV and TB)

to single infection (HIV) can be achieved by imposing treatment for both the disease

simultaneously as TB eradication is made possible with effective treatment.
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1 Introduction

Mathematical modeling of biological systems is an interesting research topic that attracted the
attention of many researchers. In particular, the study on population based mathematical models
are much more interesting as the populations under study are divided into compartments. In this
arena, the rate of transfer between compartments are expressed mathematically as derivatives
with respect to time of the sizes of the compartments which results in systems of ordinary
differential equations. In this row, let us discuss few properties of HIV and TB infection as we
propose to study in this paper. HIV attacks a specific type of immune cell in the body known
as CD4 helper cell or T cell and TB is an airborne transmitted disease. When someone has
both HIV and TB each disease speeds up the progress of the other [1, 6, 25]. The World Health
Organization has fore casted that tuberculosis (TB) and human immunodeficiency virus (HIV)
infectious will be among the top 20 causes of death in 2030. In 2010, there were 8.8 million
incident cases of TB and 1.1 million deaths from TB among HIV negative people and there was
an additional 0.35 million deaths from HIV associated TB [28].

As our ultimate aim is to study the dynamical behavior of HIV-TB co-infection delay model,
we can have a small briefing on the role of time delay. Mostly infectious diseases evolve by
infection, and then there appear certain symptoms over a period of time (namely the incubation
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period). Therefore, if an epidemic model considers time delay, then it is more consistent with
the actual situation. Delay-differential equations exhibit much more complicated dynamics than
ordinary differential equations since a time delay could cause a stable equilibrium to become
unstable and cause the populations to fluctuate [19, 21]. In this paper, we incorporate a discrete
time delay to the model to describe the time necessary for susceptible to become HIV infected
and susceptible to become TB infected. The resulting model forms a system of delay-differential
equations.

In last few decades, mathematical models have been applied in the literature to the modeling
of infectious disease. HIV and TB co-infection epidemiologies are the research topic of some of
those models. Many researchers have focused on the dynamics of HIV-TB co-infection. In 2005
Naresh and Tripathi [23] has introduced a simple model of HIV-TB co-infection in a variable
size population. This work was followed by Sunitha and Nareshkumar [26], who provided a
threshold for the control of disease in a HIV-TB co-infection model. After this, in the year
of 2014, Nita and Jyoti [24] have analyzed the HIV-TB co-infection model for all parameters
responsible for the disease spread. This article was followed by Carla and Ana in the same year
[2], who have introduced a simple co-infection model of HIV and HCV. Recently, in 2016, Bolarin
and Omatola [3] have analyzed about HIV-TB co-infection model with six mutually exclusive
compartments. After this, in 2017, Lusiana et al [20] studied a model of HIV-TB co-infection
with ten compartments and analyzed about the reason for disease spread. Currently, in 2018,
Grace and David [13] have carried out a case study of tigania west sub county, kenya for a HIV-TB
co-infection model.

The rest of this paper is structured as follows. In Section 2, we present the positivity and
boundedness of the delay system, followed by this, are the results on the existence of disease
free, HIV free, TB free and endemic equilibrium points in the system (2.2). Then the local and
global stability of four equilibria are analyzed which have been neglected in Carla and Ana [5]
work. In addition bifurcation analysis is also carried out for our modified model. In Section 2,
the local and global stability of system (2.2) has been discussed. In Section 3, we present some
numerical simulations and discussion of our system (2.2). In Section 4, simulation of system (2.2)
is compared with actual data. Lastly, in Section 5, we close with conclusion. Incorporation of
delay and the above analysis added rich dynamics to our model when compared to Carla and
Ana [5] model. Nextly we brief on the nonlinear delay system (2.2).

2 Model description

The motivation of present work is from the article of Abdullah et al. [5], which deals with integer
and fractional order versions of HIV-TB co-infection model. We also modified the basic model
proposed by Carla and Ana [5], by introducing recovered individual. Let S(t) represents the
susceptible individuals, H(t) represents the HIV infected individuals, A(t) represents the HIV
infected individuals showing symptoms of AIDS, T (t) represents the TB infected individuals,
D(t) represents the dually (HIV and TB) infected individuals, showing or not showing symptoms
of AIDS and R(t) represents the recovered individuals. The modified Carla and Ana [5] model
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is governed by system of nonlinear differential equation as follows,

dS(t)

dt
=α− C1β1H(t)S(t)− β2T (t)S(t)− µS(t),

dH(t)

dt
=C1β1S(t)H(t) + υA(t) + t1D(t) + (1− ϵ)θH(t)

− β3T (t)H(t)− (δ + µ)H(t),

dA(t)

dt
=δH(t)− (µ+ d1 + υ)A(t),

dT (t)

dt
=β2S(t)T (t)− (µ+ d2 + t2)T (t),

dD(t)

dt
=β3T (t)H(t)− (µ+ d3 + t1)D(t),

dR(t)

dt
=t2T (t)− µR(t).

(2.1)

In epidemic models, there is a tacit assumption that the individuals being in contact with the
others react on their stimuli immediately, for example, getting a disease makes them ill instantly,
and such an assumption is practically indefensible. That is, in transmitted disease, the class
of infectives need a time, during which they will be able to transmit the disease to susceptibles.
Thus, the latent period of disease should be considered, and here it is the phenomena of time delay.
In order to reflect the dynamical behaviors of the models depending on the past information, it
is more reasonable to incorporate time delays into ODE system (2.1). In fact, inclusion of delays
in epidemic models makes them more realistic by allowing the description of the effects of disease
latency or immunity [12, 14, 22, 29]. Hence, the density dependent disease transmission model
(2.1) is modified and extended by including two discrete delays τ1 and τ2, where τ1 is the delay
representing the time necessary for a susceptible to become HIV infected and τ2 is the delay
representing the time necessary for a susceptible to become TB infected. It is observed that the
first five equations in system (2.1) do not depend on the sixth equation and so this equation
can be omitted without loss of generality. This allows us to attack system (2.1) by studying the
subsystem (2.2), which is governed by system of nonlinear delay differential equation as follows,

dS(t)

dt
=α− C1β1H(t)S(t)− β2T (t)S(t)− µS(t),

dH(t)

dt
=β1C1S(t− τ1)H(t− τ1) + vA(t) + t1D(t)

+ (1− ϵ)θH(t)− β3T (t)H(t)− (δ + µ)H(t),

dA(t)

dt
=δH(t)− (µ+ d1 + υ)A(t),

dT (t)

dt
=β2S(t− τ2)T (t− τ2)− (µ+ d2 + t2)T (t),

dD(t)

dt
=β3T (t)H(t)− (µ+ d3 + t1)D(t).

(2.2)

In system (2.2), the total population N(t) is divided into five compartments, such that
N(t) = S(t)+H(t)+A(t)+T (t)+D(t) because all five classes are mutually disjoint. A fraction
of new born children are infected during birth and hence are directly recruited into the infectious
classes, H(t) at a rate (1− ϵ)θ and other children die at birth (0 ≤ ϵ ≤ 1), where ϵ is the fraction
of newborns infected with HIV who dies immediately after birth and θ is the rate of newborns
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infected with HIV. The complete dynamics of system (2.1) is represented by the flow chart in
Fig.(1), where as the description of parameters used in system (2.1) is in Table. 1.

Figure 1: Flowchart diagram for model (2.1)

Table 1: Parameters description
Parameters Description

α The recruitment rate
υ The rate at which individuals with AIDS are treated
µ The natural death rate in all classes
δ The rate at which infected HIV individuals H(t), move to the AIDS class A(t)
β1 The sexual contact rate
β2 The tuberculosis transmission rate
β3 The rate of progress to the class D(t) by acquiring TB
C1 The average number of sexual partners per person and per unit time
d1 The death rate of individuals due to AIDS
d2 The death rate due to failure of treatment
d3 The death rate due to dual infection
t1 The rate at which the dually infected individuals are treated for TB and move

to H(t) class
t2 The rate at which TB infected individuals are treated for TB
ϵ The fraction of newborns infected with HIV who dies immediately after birth
θ The rate of newborns infected with HIV

Firstly, it is important to show that the positivity and the boundedness for the system (2.2)
as they represent human populations. Positivity implies that the human population survives and
the boundedness may be interpreted as a natural restriction to growth as a consequence of limited
resources. Let us begin the analysis of the nonlinear system (2.2) by analyzing its positivity and
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boundedness.

2.1 Positivity and Boundedness

We denote by C the Banach space of continuous function Ψ : [−τ, 0] → R5 with norm
∥Ψ∥=sup−τ≤θ1≤0 {| Ψ1(θ1) |, | Ψ2(θ1) |, | Ψ3(θ1) |, | Ψ4(θ1) |, | Ψ5(θ1) |},
Where Ψ = (Ψ1,Ψ2,Ψ3,Ψ4,Ψ5) and τ = max{τ1, τ2}.
Further, let
C+ = {Ψ = (Ψ1,Ψ2,Ψ3,Ψ4,Ψ5) ∈ C, Ψi ≥ 0 for all θ1 ∈ [−τ, 0],i = 1, 2, 3, 4, 5}.
The initial condition for the system (2.2) takes the form

S(θ1) = Ψ1(θ1),H(θ1) = Ψ2(θ1), A(θ1) = Ψ3(θ1), (2.3)

T (θ1) = Ψ4(θ1), D(θ1) = Ψ5(θ1),−τ ≤ θ1 ≤ 0.

Where Ψ = (Ψ1,Ψ2,Ψ3,Ψ4,Ψ5).
Now, the following result establishes the positivity and boundedness of solution for system (2.2)
with initial conditions (2.3).

Theorem 2.1. Let S(t), H(t), A(t), T(t), D(t) be the solution of the system (2.2) with initial
conditions (2.3). Then S(t),H(t), A(t), T (t) and D(t) are all positive and bounded for t > 0 at
which the solution exist.

Proof. It is easy to see that S(t) is positive. We proceed by contradiction, let t3 be the first time

such that S(t3) = 0. By the first equation of system (2.2), then we have dS(t)
dt = α > 0. That

means S(t) < 0 for t ∈ (t3 − ϵ̄, t3), where ϵ̄ is an arbitrarily small positive constant. This leads to
a contradiction. It follows that S(t) is always positive. Similarly we can see that H(t), A(t), T (t)
and D(t) are positive t > 0. Now to prove the ultimate boundedness of solution, we define
J(t) = S(t) +H(t+ τ1) +A(t+ τ1) + T (t+ τ1) +D(t+ τ1).
and ν1 = min{µ, d1 + µ, µ+ d2 + t2, d3 + µ}. By positivity of solution, it follows that

dJ(t)

dt
=α− µS(t)− µH(t+ τ1)− (µ+ d1)A(t+ τ1)

− (µ+ d2 + t2)T (t+ τ1)− (d3 + µ)D(t+ τ1),

dJ(t)

dt
≤α− ν1J(t).

Therefore the following set is positively invariant set for the system (2.2) is

Ω =

{
(S(t),H(t), A(t), T (t), D(t))|S(t) +H(t) +A(t) + T (t) +D(t) ≤ α

ν1

}
. (2.4)

It is easy to see that S(t),H(t), A(t), T (t) and D(t) are bounded in a invariant set Ω. This
completes the proof.

The above theorem shows the well-posedness of system (2.2) both mathematically and epi-
demiologically. R0 can be defined as metric that helps to determine whether or not an infectious
disease can spread through a population. A disease dies out if R0 < 1 and spreads if R0 > 1.
The biological meaning of the basic reproduction number (R0) is defined as the average number
of secondary infections caused by a single infectious individual during the course of the infectious
period.
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2.2 The basic reproduction number and equilibrium points

The basic reproduction number for each of the two disease (HIV and TB) has been derived using
the method of the next-generation matrix [5, 9, 15]. The basic reproduction number for HIV
(RHIV ) is obtained by taking T = D = 0 in the system (2.2) is

RHIV =
αC1β1(υ + d1 + µ)

µ{(υ + d1 + µ)((δ + µ)− (1− ϵ)θ)− δυ}
.

The basic reproduction number for TB (RTB) is obtained by taking H = A = D = 0 in the
system (2.2) is

RTB =
β2α

µ(µ+ d2 + t2)
.

The associative basic reproduction number (R0) is thus:

R0 = max{RHIV , RTB}.

The nonlinear dynamical system (2.2) possesses four kinds of equilibrium points which are de-
scribed below in Table. 2.

Table 2: Equilibrium points
Equilibrium Notation Values

Points

Disease free E0(S0, 0, 0, 0, 0) E0

(
α

µ
, 0, 0, 0, 0

)

HIV free E1(S1, 0, 0, T1, 0) E1

(
α

µRTB
, 0, 0,

µ(RTB − 1)

β2
, 0

)

TB free E2(S2, H2, A2, 0, 0) E2

(
α

µRHIV
,
(RHIV − 1)µ

C1β1
,

δH2

υ + d1 + µ
, 0, 0

)

Endemic E3(S3, H3, A3, T3, D3) E3

(
α

µRTB
, H3,

δH3

υ + d1 + µ
,
µ(RTB − 1)− C1β1H3

β2
,

β3T3H3

t1 + d3 + µ

)

HIV free equilibrium exists if RTB > 1. TB free equilibrium exists if RHIV > 1 where

H3 =

(
RHIV

RTB
− 1

)
αC1β1β2(µ+ d3 + t1)− µ2RHIV (µ+ d3)β3(RTB − 1)

µRHIV β1β3(t1 − C1(µ+ d3 + t1))
.

The endemic equilibrium exists if

(i) RHIV , RTB > 1,

(ii) µ(RTB − 1) > C1β1H3,

(iii) RHIV > RTB ,

(iv)

(
RHIV

RTB
− 1

)
αC1β1β2(µ+ d3 + t1) > µ2RHIV (µ+ d3)β3(RTB − 1) and
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(v) t1 > C1(µ+ d3 + t1).

The stability analysis performed to determine whether a system is pushed slightly from a equi-
librium point will return to that same equilibrium point with time. If this is true for small
perturbations from equilibrium, then we say that this equilibrium is locally stable and if a sys-
tem always returns to that equilibrium point, then we say that this equilibrium is globally stable.
Nextly, we are going to analyze some of the basic properties of the nonlinear delay system, (i.e.,)
the local and global behavior of the system (2.2) at each of its equilibrium points.

2.3 The local stability and Hopf bifurcation analysis

In this section, we shall provide the condition for the system to be locally asymptotically stable at
its positive equilibrium points. In the history of infectious disease modeling the basic reproduction
number R0 play a vital role in the disease dynamics. In the present HIV-TB co-infection model
the disease dynamics depend on the corresponding basic reproduction number RHIV and RTB .

Theorem 2.2. The disease free equilibrium E0 is locally asymptotically stable if RTB < 1 and
RHIV < 1, provided that τ1, τ2 ≥ 0.

Theorem 2.3. The HIV free equilibrium E1 is locally asymptotically stable if RHIV < 1 < RTB,
provided that τ1, τ2 ≥ 0.

Theorem 2.4. The TB free equilibrium E2 is locally asymptotically stable if RHIV > 1 > RTB,
provided that τ1, τ2 ≥ 0.

Remark 1.

• The analytical result of the Theorem (2.2) reveals that the delay term τ1 and τ2 does not
effect the stability of nonlinear system (2.2) at the disease free equilibrium point E0.

• The analytical result of the Theorem (2.3) reveals that the delay term τ1 and τ2 does not
effect the stability of the DDE system (2.2) at the HIV free equilibrium point E1.

• The analytical result of the Theorem (2.4) reveals that the delay term τ1 and τ2 does not
effect the stability of the system (2.2) at the TB free equilibrium point E2.

The equilibrium point that gives deeper insights about the system under the study is the
point E3 which represents the overall dynamics of HIV, TB and co-infected population. Thus, in
the following Theorem we study the local stability of the system (2.2) at the equilibrium point
E3.

Theorem 2.5. If τ1 > 0 and τ2 = 0 , then the model (2.2) is locally asymptotically stable at the
endemic equilibrium E3 when RHIV > 1 and RTB > 1.

Proof. The Jacobian matrix of the system (2.2) at endemic equilibrium point E3 in case of τ1 > 0
and τ2 = 0 as follows,

J(E3) =


−a4 h4 0 −i4 0

f4e
−λτ1 −b4e

−λτ1 υ −g4 t1
0 δ −j4 0 0
k4 0 0 q4 0
0 m4 0 n4 −p4

 ,
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where
a4 = C1β1H3 + β2T3 + µ, h4 = C1β1S3, i4 = β3S3 − t2, f4 = C1β1H3,
b4 = β3T3 + (δ + µ)− (1− ϵ)θ − C1β1S3, g4 = β3H3, j4 = v + d1 + µ, k4 = β2T3,
q4 = β2S3 − (µ+ d2 + t2), m4 = β3T3, n4 = β3H3, p4 = t1 + d3 + µ.
The characteristic polynomial of the jacobian matrix J(E3) in case of τ1 > 0 and τ2 = 0 is

H(λ, τ1) = λ5 + ĉ1λ
4 + ĉ2λ

3 + ĉ3λ
2 + ĉ4λ+ ĉ5

+ e−λτ1(ẑ1λ
4 + ẑ2λ

3 + ẑ3λ
2 + ẑ4λ+ ẑ5) = 0,

(2.5)

where

ĉ1 = p4 − q4 + j4 + a4,

ẑ1 = b4,

ĉ2 = a4[j4 + p4 − q4] + j4[p4 − q4] + i4k4 −m4t1 − p4q4 − δυ,

ẑ2 = b4[a4 + j4 + p4 − q4]− f4h4,

ĉ3 = a4j4[p4 − q4] +m4t1[−a4 − j4 + q4] + δυ[−a4

− p4 + q4]− p4q4[a4 + j4] + k4[g4h4 + i4j4 + k4p4],

ẑ3 = a4b4[j4 + p4 − q4] + b4j4[p4 − q4] + b4[i4k4 − p4q4]

− f4h4[j4 + p4 − q4],

ĉ4 = h4k4[g4j4 − n4t1 + p4g4] + δυ[−i4k4 + a4q4 − p4a4 + p4q4]

+m4t1[−a4j4 + a4q4 − i4k4 + j4q4] + p4j4[−a4q4 + k4i4],

ẑ4 = b4j4[i4k4 + p4a4 − a4q4 − p4q4] + f4h4[j4q4 − p4j4 + p4q4]

+ p4b4[−a4q4 + k4i4],

ĉ5 = t1j4[−h4k4n4 + a4m4q4 − i4k4m4] + p4g4h4j4k4 + p4δυ[−i4k4 + a4q4],

ẑ5 = p4b4j4[i4k4 − a4q4] + p4f4h4j4q4.

Put λ = iω̂ (ω̂ > 0) be the root of (2.5), and separating the real and imaginary parts, we have

ĉ1ω̂
4 − ĉ3ω̂

2 + ĉ5 = cos(ω̂τ1)[−ẑ1ω̂
4 + ω̂2ẑ3 − ẑ5] + sin(ω̂τ1)[z2ω̂

3 − ω̂ẑ4]

ω̂5 − ĉ2ω̂
3 + ĉ4ω̂ = cos(ω̂τ1)[ẑ2ω̂

3 − ω̂ẑ4]− sin(ω̂τ1)[−ẑ1ω̂
4 + ω̂2ẑ3 − ẑ5]. (2.6)

Squaring and adding the equations (2.6), we obtain

ω̂10 + [ĉ21 − 2ĉ2 − ẑ21 ]ω̂
8 + [ĉ22 − 2ĉ1ĉ3 + 2ẑ1ẑ3 − ẑ22 ]ω̂

6 + [2ĉ1ĉ5 + 2ĉ4 + ĉ23

−2ĉ2ĉ4 − ẑ23 − 2ẑ5ẑ1 + 2ẑ4ẑ2]ω̂
4 + [ĉ24 − 2c3c5 + 2ẑ5ẑ3 − ẑ24 ]ω̂

2 + ĉ25 − ẑ25 = 0,
(2.7)

put ω̂2 = ŷ into (2.7), we have

ŷ5 + F1ŷ
4 + F2ŷ

3 + F3ŷ
2 + F4ŷ + F5 = F (ŷ) = 0, (2.8)

where

F1 = ĉ21 − 2ĉ2 − ẑ21 ,

F2 = ĉ22 − 2ĉ1ĉ3 + 2ẑ1ẑ3 − ẑ22 ,

F3 = 2ĉ1ĉ5 + 2ĉ4 + ĉ23 − 2ĉ2ĉ4 − ẑ23 − 2ẑ5ẑ1 + 2ẑ4ẑ2,
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F4 = ĉ24 − 2c3c5 + 2ẑ5ẑ3 − ẑ24 ,

F5 = ĉ25 − ẑ25 .

It may be noted that Eq.(2.8) will have all the roots with negative real part iff the Routh-
Hurwitz criterion is satisfied and hence (2.5) no purely imaginary root.
It is easy to show that F1 > 0, F2 > 0, F3 > 0, F4 > 0 and F5 > 0, hence the Routh-Hurwitz
criterion is satisfied if

(i) F1F2F3 > F 2
3 + F 2

1F4, (2.9)

(ii) (F1F4 − F5)(F1F2F3 − F 2
3 − F 2

1F4) > F5(F1F2 − F3)
2 + F1F

2
5 .

Hence Eq.(2.8) will have all the roots with negative real parts provided (2.9) is satisfied.
Now this shows that for any value of τ1 the characteristic equation (2.5) will always have roots
in negative half-plane only. Therefore if RHIV > 1 and RTB > 1, then the infected steady state
E3 of system (2.2) is locally asymptotically stable in the case of τ1 > 0 and τ2 = 0. Thus the
Theorem (2.5) is true.

Now we proceed to investigate the existence of Hopf bifurcation in the following Theorem.

Theorem 2.6. If τ1 = 0 and τ2 > 0 , then the model (2.2) is locally asymptotically stable at
the endemic equilibrium E3 when τ2 < τ2

∗. Moreover, it undergoes Hopf bifurcation at E3 when
τ2 = τ2

∗.

Proof. The Jacobian matrix of the system (2.2) at the equilibrium point E3 in case of τ1 = 0 and
τ2 > 0 as follows,

J(M5) =


−a5 −b5 0 −r5 0
d5 −f5 υ −p5 t1
0 δ −k5 0 0

l5e
−λτ2 0 0 m5e

−λτ2 − g5 0
0 n5 0 p5 −q5

 ,

where
a5 = C1β1H3 + β2T3 + µ, b5 = C1β1S3, r5 = β2S3 − t2, d5 = C1β1H3,
f5 = β3T3 + (δ + µ)− C1β1S3 − (1− ϵ)θ, p5 = β3H3, k5 = v + d1 + µ,
l5 = β2T3,m5 = β2S3, p5 = β3H3, g5 = µ+ d2 + t2, n5 = β3T3, q5 = t1 + d3 + µ.
The characteristic polynomial of the above matrix J(M5) can be written as

H(λ, τ2) = λ5 + c1λ
4 + c2λ

3 + c3λ
2 + c4λ+ c5

+ e−λτ2(z1λ
4 + z2λ

3 + z3λ
2 + z4λ+ z5) = 0,

(2.10)

where

c1 = q5 + g5 + k5 + f5 + a5,

z1 = −m5,

c2 = a5[f5 + g5 + k5 + q5] + f5[g5 + k5 + q5] + k5[g5 + q5] + b5d5 − n5t1 − δυ,

z2 = −m5[a5 + f5 + k5 + q5],

c3 = a5f5[g5 + k5 + q5] + a5g5[k5 + q5] + k5q5[a5 + f5 + g5] + b5d5[g5 + k5 + q5]

+ f5g5[k5 + q5]− δυ[a5 + g5 + q5]− n5t1[a5 + g5 + k5],

z3 = −a5m5[f5 + k5 + g5] + r5l5[f5 + k5 + q5]−m5q5[f5 + k5]



210 M. Pitchaimani and A. Saranya Devi

−m5[b5d5 + f5k5 − n5t1],

c4 = −δυ[a5q5 + a5g5 + g5q5] + a5f5[g5k5 + q5g5 + q5k5] + b5d5[g5k5 + q5g5]

− n5t1[g5a5 + k5a5 + g5k5] + q5k5[a5g5 + b5d5 + f5g5],

z4 = δυ[−r5l5 + a5m5 + q5m5] + f5l5[r5q5 + r5k5] + n5t1[m5a5 − l5r5 +m5k5]

− q5m5[a5f5 + a5k5 + b5d5 + f5k5] + q5l5[r5k5 − b5p5]− k5m5[a5f5 + b5d5]

+ p5l5[b5t1 − b5k5],

c5 = g5k5[−n5t1a5 + q5a5f5 + q5b5d5]− q5a5g5δυ,

z5 = qδυ[a5m5 − r5l5]− q5b5k5[l5p5 + d5m5] + l5r5k5[q5f5 − n5t1]

+ a5k5m5[n5t1 − q5f5] + k5p5l5b5t1.

Suppose iω is a root of (2.10), by separating the real and imaginary parts of H(iω, τ2) we have,

c1ω
4 − c3ω

2 + c5 = cos(ωτ2)[−z1ω
4 + ω2z3 − z5] + sin(ωτ2)[z2ω

3 − ωz4]

ω5 − c2ω
3 + c4ω = cos(ωτ2)[z2ω

3 − ωz4]− sin(ωτ2)[−z1ω
4 + ω2z3 − z5]. (2.11)

Squaring and adding the two equations in (2.11), we obtain,

ω10 + [c21 − 2c2 − z21 ]ω
8 + [c22 − 2c1c3 + 2z1z3 − z22 ]ω

6 + [2c1c5 + 2c4 + c23 (2.12)

−2c2c4 − z23 − 2z5z1 + 2z4z2]ω
4 + [c24 − 2c3c5 + 2z5z3 − z24 ]ω

2 + c25 − z25 = 0,

Let y = ω2, the above Eq. (2.12) becomes,

y5 + [c21 − 2c2 − z21 ]y
4 + [c22 − 2c1c3 + 2z1z3 − z22 ]y

3

+[2c1c5 + 2c4 + c23 − 2c2c4 − z23 − 2z5z1 + 2z4z2]y
2

+[c24 − 2c3c5 + 2z5z3 − z24 ]y + c25 − z25 = F (y) = 0.

(2.13)

Taking derivative with respect to y of Eq. (2.13), with y = ω∗2 yields

F
′
(ω∗2) =5(ω∗)

8
+ 4(ω∗)

6
[c21 − 2c2 − z21 ] + 3(ω∗)

4
[c22 − 2c1c3 + 2z1z3 − z22 ]

+ 2(ω∗)
2
[2c1c5 + 2c4 + c23 − 2c2c4 − z23 − 2z5z1 + 2z4z2]

+ [c24 − 2c3c5 + 2z5z3 − z24 ].

(2.14)

It is easy to verify that c21 − 2c2 − z21 > 0, c22 − 2c1c3 + 2z1z3 − z22 > 0
2c1c5+2c4+c23−2c2c4−z23−2z5z1+2z4z2 > 0, c24−2c3c5+2z5z3−z24 > 0 and hence F

′
((ω∗)) > 0.

By Descartes rule of signs, Eq. (2.13) has positive real root y∗ and thus Eq. (2.12) has a pair
of purely imaginary roots ±iω∗. From the transcendental Eq. (2.11), we obtain tan(ωτ∗2 ) =

N1

N2
,

where, N1 = (z2ω
3 − ωz4)(c1ω

4 − ω2c3 + c5) − (−z1ω
4 + ω2z3 − z5)(ω

5 − ω3c2 + ωc4) and
N2 = (z2ω

3 − ωz4)(ω
5 − ω3c2 + ωc4) + (−z1ω

4 + ω2z3 − z5)(c1ω
4 − ω2c3 + c5). Then, the

corresponding positive value of ω∗, τ∗2 is given by

τ∗2 =
1

ω∗

[
tan−1

(
N1

N2

)
+ kπ

]
,where k = 0, 1, 2.... (2.15)

Now, we determine sign{dRe(λ)
dτ2

|τ2=τ∗
2
} where sign is the signum function and Re(λ) is the real

part of λ. By using the following mathematical calculation, we can say that the endemic equi-
librium of system (2.2) remains stable for τ2 < τ∗2 and Hopf bifurcation occurs when τ2 = τ∗2 .
Differentiating the Eq. (2.10) with respect to τ2, we have,

{5λ4 + 4c1λ
3 + 3c2λ

2 + 2c3λ+ c4 − τ3 e−λτ2(z1λ
4 + z2λ

3 + z3λ
2 + z4λ+ z5)
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+ e−λτ2(4λ3z1 + 3λ2z2 + 2λz3 + z4)}
dλ

dτ2
= λe−λτ2(z1λ

4 + z2λ
3 + z3λ

2 + z4λ+ z5). (2.16)

From Eq. (2.10) we get,

e−λτ2 =
−(λ5 + c1λ

4 + c2λ
3 + c3λ

2 + c4λ+ c5)

z1λ4 + z2λ3 + z3λ2 + z4λ+ z5
. (2.17)

Now Eq. (2.16) becomes(
dλ

dτ2

)−1

=
−(5λ4 + 4c1λ

3 + 3c2λ
2 + 2c3λ+ c4)

λ(λ5 + c1λ4 + c2λ3 + c3λ2 + c4λ+ c5)

+
4λ3z1 + 3λ2z2 + 2λz3 + z4

λ(z1λ4 + z2λ3 + z3λ2 + z4λ+ z5)
− τ2

λ
.

(2.18)

For the imaginary root λ = iω∗, taking the real part of ( dλ
dτ2

)−1, at τ2 = τ∗2 , we have,

Re

[(
dλ

dτ2

)−1
∣∣∣∣∣ τ2 = τ∗2

]
=

ξ1
ξ2

+
ξ3
ξ4

, (2.19)

where

ξ1 =5ω∗8 + ω∗6(−3c2 − 5c2 + 4c21) + ω∗4(c4 + 3c22 + 5c4 − 6c3c1)

+ ω∗2(−c4c2 − 3c2c4 + 2c23 + 4c1c5) + (c24 − 2c3c5),

ξ2 =ω∗10 + ω∗8(c21 − 2c2) + ω∗6(2c4 + c22 − 2c1c3) + ω∗4(c23 + 2c1c5 − 2c4c2)

+ ω∗2(c24 − 2c3c5) + c25,

ξ3 =ω∗6(−4z21) + ω∗4(−3z22 + 6z1z3) + ω∗2(4z4z2 − 2z23 − 4z1z5) + (2z3z5 − z24),

ξ4 =ω∗8z21 + ω∗6(z22 − z1z3) + ω∗4(z23 − 2z3z4 + 2z5z1) + ω∗2(z24 − 2z3z5) + z25 .

Using Eq. (2.14) the above equation is reduced to

Re

[(
dλ

dτ2

)−1
∣∣∣∣∣ τ2 = τ∗2

]
=

F
′
((ω∗)2)

ξ4
. (2.20)

Hence

sign

{
dRe(λ)

dτ2
|τ2=τ∗

2

}
= sign

{
Re

[
(
dλ

dτ2
)−1|τ2=τ∗

2

]}
= sign

{
F

′
(ω∗)2

}
.

Since
{
F

′
(ω∗)2

}
> 0,

dRe(λ)

dτ2
is positive at τ2 = τ∗2 . Thus the solution curve of the

characteristic Eq.(2.10) crosses the imaginary axis. This shows that a Hopf bifurcation occurs
at 0 < τ2 = τ∗2 . By continuity, the endemic equilibrium is locally asymptotically stable when
τ2 < τ∗2 .

Remark 2. The existence of endemic equilibrium assures the persistence of the disease among
the population with the the condition that the basic reproduction number must be greater than
unity. The Theorem (2.6) reveals that the system (2.2) undergo Hopf bifurcation at endemic
equilibrium point when 0 < τ2 = τ∗2 . Hopf bifurcation is the characteristic phenomenon of a
nonlinear system, where the system stability switches and a periodic solution arises, when it
passes through the critical point.
Previous section only establish the local stability of the system (2.2). In the following section, by
constructing a Lyapunov functional, we can actually obtain globally asymptotic stability of the
system (2.2) under certain conditions.
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2.4 Global behavior at equilibrium points

To establish global stability, we construct suitable Lyapunov functionals and use the theory of
LaSalle’s invariance principle. We define a function g : R+ −→ R+ ∪ {0} as g(u) = u− 1− lnu.
Note that, g(u) ≥ 0 for any u > 0 and attains a global minimum 0 at u = 1. The Lyapunov
functionals used here are similar to those used in [4, 16, 27] essentially.

Theorem 2.7. If RHIV < 1 and RTB < 1, the disease free equilibrium E0 of the system (2.2) is
globally asymptotically stable for any τ1, τ2 ≥ 0.

Proof. Let (S(t),H(t), A(t), T (t), D(t)) be any positive solution of the system (2.2) with the
initial condition (2.3), define a Lyapunov functional W1(t) as follows,

W1(t) = η1g

(
S(t)

S0

)
+ η1H(t) + υA(t) +

η1β2α

µ(µ+ d2 + t2)
T (t) + η1D(t)

+ C1β1η1

t∫
t−τ1

S(ξ)H(ξ)dξ +
η1β2

2α

µ(µ+ d2 + t2)

t∫
t−τ2

S(ξ)T (ξ)dξ,

(2.21)

where η1 = υ + d1 + µ.
Differentiating W1(t) along the solution of system (2.2), we obtain

dW1(t)

dt
= η1

(
1− S0

S(t)

)
(α− C1β1H(t)S(t)− β2T (t)S(t)− µS(t))

+ η1

(
β1C1S(t− τ1)H(t− τ1) + υA(t) + t1D(t) + (1− ϵ)θH(t)

− β3T (t)H(t)− (δ + µ)H(t)

)
+ υ

(
δH(t)− (µ+ d1 + υ)A(t)

)
+

η1β2α

µ(µ+ d2 + t2)

(
β2S(t− τ2)T (t− τ2)− (µ+ d2 + t2)T (t)

)
+ η1

(
β3T (t)H (t)− (µ+ d3 + t1)D(t)

)
+ C1β1η1S(t)H(t)

− C1β1η1S(t− τ1)H(t− τ1) +
η1β

2
2S(t)T (t)α

µ (µ+ d2 + t2)

− η1β
2
2S (t− τ2)T (t− τ2)α

µ (µ+ d2 + t2)
.

(2.22)

Using
α

µ
= S0 in (2.22) we obtain,

dW1(t)

dt
=

−η1µ

S(t)
(S(t)− S0)

2 +
η1αβ

2
2S(t)T (t)

µ(µ+ d2 + t2)
− η1β2S(t)T (t)

+H(t)

(
η1αC1β1

µ
− αC1β1η1

RHIV µ

)
− η1(µ+ d3)D(t).

(2.23)

dW1(t)

dt
=

−η1µ

S(t)
(S(t)− S0)

2 + η1β2S(t)T (t)(RTB − 1)

+
αC1β1η1H(t)

RHIV µ
(RHIV − 1)− η1(µ+ d3)D(t).

(2.24)
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It follows from Eq.(2.24) that dW1(t)
dt ≤ 0 with equality holding S(t) = S0,H(t) = A(t) = T (t) =

D(t) = 0. According to the Theorem (2.2), E0 is locally asymptotically stable. By the LaSalle
invariance principle, the disease free equilibrium E0 of the model (2.2) is globally asymptotically
stable.

Theorem 2.8. If RHIV < 1 < RTB, the HIV free equilibrium E1 of the system (2.2) is globally
asymptotically stable for any τ1, τ2 ≥ 0.

Proof. Let us consider a Lyapunov functional W2(t) as follows.

W2(t) = η2g

(
S(t)

S1

)
+ η2H(t) +

η2v

υ + d1 + µ
A(t) + η2g

(
T (t)

T1

)
+ η2D(t) + η2C1β1

∫ t

t−τ1

S(ξ)H(ξ)dξ

+ η2β2S1T1

∫ t

t−τ2

(
S(ξ)T (ξ)

S1T1
− 1− ln

S(ξ)T (ξ)

S1T1

)
dξ,

(2.25)

where η2 =
(υ + d1 + µ)β2α

µ(µ+ d2 + t2)
.

Differentiating W2(t) along the solution of system (2.2), we obtain

dW2(t)

dt
= η2

(
1− S1

S(t)

)(
α− C1β1H(t)S(t)− β2T (t)S(t)− µS(t)

)
+ η2

(
β1C1(t− τ1)H(t− τ1) + vA(t) + t1D(t) + (1− ϵ)θH(t)

− β3T (t)H(t)− (δ + µ)H(t)

)
+

υη2
υ + d1 + µ

(
δH(t)− (µ+ d1 + υ)A(t)

)
+ η2

(
1− T1

T (t)

)(
β2S(t− τ2)T (t− τ2)− (µ+ d2 + t2)T (t)

)
+ η2

(
β3T (t)H(t)− (µ+ d3 + t1)D(t)

)
+ η2C1β1S(t)H(t)− η2C1β1S(t− τ1)H(t− τ1)

+ η2β2S1T1

(
S(t)T (t)

S1T1
− S(t− τ2)T (t− τ2)

S1T1
+ ln

(
S(t− τ2)T (t− τ2)

S(t)T (t)

))
.

(2.26)

Let,

α− β2T1S1 − µS1 = 0,

β2S1T1 − (µ+ d2 + t2)T1 = 0.
(2.27)
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Using Eq.(2.27) in Eq.(2.26), we get

dW2(t)

dt
= η2

(
1− S1

S(t)

)(
β2T1S1 + µS1 − C1β1H(t)S(t)

− β2T (t)S(t)− µS(t)

)
+ η2β1C1S(t− τ1)H(t− τ1) + η2υA(t)

+ η2t1D(t)− η2β3T (t)H(t) +H(t)η2((1− ϵ)θ − (δ + µ)) +
vη2δH(t)

v + d1 + µ

− vη2A(t) + η2

(
1 +

T1

T (t)

)(
β2S(t− τ2)T (t− τ2)− β2S1T (t)

)
+ η2β3T (t)H(t)− η2(µ+ d3 + t1)D(t) + η2C1β1S(t)H(t)

− η2C1β1S(t− τ1)H(t− τ1) + η2β2S(t)T (t)− η2β2S(t− τ2)T (t− τ2)

+ η2β2S1T1 ln

(
S(t− τ2)T (t− τ2)

S(t)T (t)

)
.

(2.28)

dW2(t)

dt
= − µ

S(t)
η2(S − S1)

2

+
η2αC1β1H(t)

µRHIV

(
RHIV

RTB
− 1

)
− η2(µ+ d2)D(t)

− η2β2S1T1

(
S1

S(t)
− 1− 1n

(
S1

S(t)

))
− η2β2S1T1

(
S(t− τ2)T (t− τ2)

T (t)S1
− 1− ln

(
S(t− τ2)T (t− τ2)

T (t)S1

))
.

(2.29)

Since the function g(u) = u− 1− lnu is always positive except for u = 1 where g(1) = 0. It

follows from Eq.(2.29) that dW2(t)
dt ≤ 0 with equality holding S(t) = S1, T (t) = T1,H(t) = A(t) =

D(t) = 0. According to the Theorem (2.3), E1 is locally asymptotically stable. By the LaSalle
invariance principle, the HIV free equilibrium E1 of the model (2.2) is globally attracting.

Theorem 2.9. If RHIV > 1 > RTB, the TB free equilibrium E2 of the system (2.2) is globally
asymptotically stable for any τ1, τ2 ≥ 0.

Proof. Define a Lyapunov functional W3(t) as follows,

W3(t) = S(t) +H(t) + η3A(t) + T (t) +D(t)

+ C1β1

∫ t

t−τ1

S(ξ)H(ξ)dξ + β2

∫ t

t−τ2

S(ξ)T (ξ)dξ
(2.30)

where η3 =
υ

υ + d1 + µ
.
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We calculate the derivative of W3(t) along the solution of the system (2.2), we obtain

dW3(t)

d(t)
= α− C1β1H(t)S(t)− β2T (t)S(t)− µS(t) +

(
C1β1S(t− τ1)H(t− τ1)

+ υA(t) + t1D(t) + (1− ϵ)θH(t)− β3T (t)H(t)− (δ + µ)H(t)

)
+ η3

(
δH(t)− (µ+ d1υ)A(t)

)
+

(
β2S(t− τ2)T (t− τ2)

− (µ+ d2 + t2)T (t)

)
+

(
β3T (t)H(t)− (µ+ d3t1)D(t)

)
+ C1β1S(t)H(t)

− C1β1S(t− τ1)H(t− τ1) + β2S(t)T (t)− β2S(t− τ2)T (t− τ2).

(2.31)

Note that

α− C1β1H2S2 − µS2 = 0,

C1β1S2H2 + υA2 + (1− ϵ)θH2 − (δ + µ)H2 = 0,

δH2 − (υ + d1 + µ)A2 = 0.

(2.32)

Substituting (2.32) into (2.31), we obtain

dW3(t)

dt
= C1β1H2S2 + µS2 − C1β1H(t)S(t)− β2T (t)S(t)− µS(t)

+ C1β1S(t− τ1)H(t− τ1) + υA(t) + t1D(t) + (1− ϵ)θH(t)

− β3T (t)H(t)−
(
C1β1S2 +

υA2

H2
+ (1− ϵ)θ

)
H(t)

+
η3(υ + d1 + µ)A2H(t)

H2
− υA(t) + β2S(t− τ2)T (t− τ2)

− (µ+ d2 + t2)T (t) + β3T (t)H(t)− (µ+ d3 + t1)D(t) + C1β1S(t)H(t)

− C1β1S(t− τ1)H(t− τ1) + β2S(t)T (t)− β2S(t− τ2)T (t− τ2).

(2.33)

dW3(t)

dt
≤ −C1β1S2H(t) +

T (t)αβ2

µRTB

(
RTB

RHIV
− 1

)
− (µ+ d3)D(t)− β2αT (t)

µRHIV
.

(2.34)

It follows from Eq.(2.34) that dW3(t)
dt ≤ 0 with equality holding S(t) = S2,H(t) = H2, A(t) =

A2, T (t) = D(t) = 0. According to the Theorem (2.4), E2 is locally asymptotically stable.
By the LaSalle invariance principle, the TB free equilibrium E2 of the model (2.2) is globally
asymptotically stable. This completes the proof.

Theorem 2.10. Let RHIV > 1 and RTB > 1 , if endemic equilibrium E3 of the system (2.2)
exist, then it is is globally asymptotically stable for any τ1, τ2 ≥ 0, when τ2 < τ∗2 , provided that

β3H3α

µ
+ υA3 +

α(d3 + µ)D3

µH3
+

α(d1 + µ)A3

µH3
< (d3 + µ)D3.



216 M. Pitchaimani and A. Saranya Devi

Proof. Let us consider a Lyapunov functional W4(t) as follows,

W4(t) = g

(
S(t)

S3

)
+ g

(
H(t)

H3

)
+A(t) + g

(
T (t)

T3

)
+D(t)

+ C1β1S3H3

∫ t

t−τ1

(
S(ξ)H(ξ)

S3H3
− 1− ln

S(ξ)H(ξ)

S3H3

)
dξ

+ β2S3T3

∫ t

t−τ2

(
S(ξ)T (ξ)

S3T3
− 1− ln

S(ξ)T (ξ)

S3T3

)
dξ.

(2.35)

Differentiating the Eq. (2.35), with respect to time yields

dW4(t)

dt
=

(
1− S3

S(t)

)
(α− C1β1H(t)S(t)− β2T (t)S(t)− µS(t))

+

(
1− H3

H(t)

)(
C1β1S(t− τ1)H(t− τ1) + υA(t) + t1D(t)

+ (1− ϵ)θH(t)− β3T (t)H(t)− (δ + µ)H(t)

)
+ δH(t)− (υ + d1 + µ)A(t)

+

(
1− T3

T (t)

)(
β2S(t− τ2)T (t− τ2)− (µ+ d2 + t2)T (t)

)
+ β3T (t)H(t)− (t1 + d3 + µ)D(t)

+ C1β1S3H3

(
S(t)H(t)

S3H3
− S(t− τ1)H(t− τ1)

S3H3
+ ln

S(t− τ1)H(t− τ1)

S(t)H(t)

)

+ β2S3T3

(
ST

S3T3
− S(t− τ2)T (t− τ2)

S3T3
+ ln

S(t− τ2)T (t− τ2)

S(t)T (t)

)
.

(2.36)

Note that

α− C1β1H3S3 − β2T3S3 − µS3 = 0,

C1β1H3S3 + υA3 + t1D3 + (1− ϵ)θH3 − β3T3H3 − (δ + µ)H3 = 0,

β2S3T3 − (µ+ d2 + t2)T3 = 0.

(2.37)

By using (2.37) in (2.36) , we get

dW4(t)

dt
= − µ

S(t)
(S(t)− S3)

2 − C1β1S3H3

(
S(t− τ1)H(t− τ1)

S3H(t)
+

S3

S(t)
− 2

− ln

(
S(t− τ1)H(t− τ1)

S(t)H(t)

))
− β2S3T3

(
S(t− τ2)T (t− τ2)

S3T (t)

+
S3

S(t)
− 2− ln

(
S(t− τ2)T (t− τ2)

S(t)T (t)

))
+ υA(t) + t1D(t)− υA(t)H3

H(t)

− t1D3H3

H(t)
+ β3H3T (t) + υA3 + t1D3 − β3T3H3 − υ

A3

H3
H(t)− t1

D3

H3
H(t)

+ β3T3H(t) + δH(t)− (υ + d1 + µ)A(t)− (t1 + d3 + µ)D(t).

(2.38)

Note that

δH3 − (υ + d1 + µ)A3 = 0,

β3T3H3 − (t1 + d3 + µ)D3 = 0.
(2.39)
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By using (2.39) in (2.38) , we get

dW4(t)

dt
=

−µ(S(t)− S3)
2

S(t)
− C1β1S3H3

(
S3

S(t)
− 1− ln

(
S3

S(t)

))
− C1β1S3H3

(
S(t− τ1)H(t− τ1)

S3H(t)
− 1− ln

(
S(t− τ1)H(t− τ1)

S3H(t)

))
− β2T3S3

(
S3

S(t)
− 1− ln

(
S3

S(t)

))
− β2S3T3

(
S(t− τ2)T (t− τ2)

T (t)S3
− 1− ln

(
S(t− τ2)T (t− τ2)

T (t)S3

))
− H3

H(t)

(
υA(t) + t1D(t)

)
+ β3H3T (t) + υA3 − (d3 + µ)D3 −

υA3H(t)

H3

− t1D3H(t)

H3
+ β3T3H(t) +

(υ + d1 + µ)A3H(t)

H3
− (d1 + µ)A(t).

(2.40)

dW4(t)

dt
≤ −µ(S(t)− S3)

2

S(t)
− C1β1S3H3

(
S3

S(t)
− 1− ln

(
S3

S(t)

))
− C1β1S3H3

(
S(t− τ1)H(t− τ1)

S3H(t)
− 1− ln

(
S(t− τ1)H(t− τ1)

S3H(t)

))
− β2T3S3

(
S3

S(t)
− 1− ln

(
S3

S(t)

))
− β2S3T3

(
S(t− τ2)T (t− τ2)

T (t)S3
− 1− ln

(
S(t− τ2)T (t− τ2)

T (t)S3

))
− H3

H(t)
(υA(t) + t1D(t))− (d1 + µ)A(t) +

(
β3H3α

µ
+ υA3

+
α(d3 + µ)D3

µH3
+

α(d1 + µ)A3

µH3
− (d3 + µ)D3

)
.

(2.41)

Since the function g(u) = u − 1 − lnu is always positive except for u = 1 where g(1) = 0.

It follows from Eq. (2.41) that dW4(t)
dt ≤ 0 with equality holding S(t) = S3,H(t) = H3, A(t) =

A3, T (t) = T3, D(t) = D3. According to the Theorem (2.6), E3 is locally asymptotically stable
when τ2 < τ∗2 . By the LaSalle invariance principle, the endemic equilibrium E3 of the model
(2.2) is globally asymptotically stable, in the case of τ2 < τ∗2 .

Remark 3. The main objective of the above Theorems (2.7)-(2.10) is to analyze the global
stability of the equilibrium points of the nonlinear delay system (2.2). That is to find conditions
for local and global stability of the equilibria and work out the relations among these stability
conditions. Here, the basic reproduction number acts as the threshold parameter. The above
Theorems (2.7)-(2.10) reveal that the nonlinear delay system (2.2) always return to its corre-
sponding equilibrium points with time, meaning there by, the solution trajectories of the system
will be attracted towards the equilibrium point with time and establishing the global stability
of the system at equilibrium points. The condition for the existence of local and global stability
of four equilibria have been tabulated in Table. 3. In the following section 3, we estimate the
length of the delay as we aim to preserve the stability of the system.



218 M. Pitchaimani and A. Saranya Devi

Table 3: Condition for existence and stability of equilibrium points
Equilibrium Point Condition for Existence Stability

Disease free Always exist g.a.s when RHIV < 1 and RTB < 1
HIV free Exists when RHIV < 1 < RTB g.a.s when RHIV < 1 < RTB

TB free Exists when RHIV > 1 > RTB g.a.s when RHIV > 1 > RTB

Endemic Exists when RHIV > 1 and RTB > 1 g.a.s when RHIV > 1 and RTB > 1

Table 4: Values for model parameters
Parameters Case 1 Case 2 Case3 Case 4 Units

[Assumed]
α 24000 24000 24000 24000 day−1

υ 0.23 0.06 0.1 0.04 day−1

µ 0.98 2 0.05 3.96 day−1

δ 0.6 0.6 0.3 8.8 day−1

β1 0.0000001 0.00002 0.0000001 0.00008 day−1

β2 0.00000015 0.00025 0.000000001 0.00136 day−1

β3 0.000001 0.001 0.0000001 0.0008 day−1

C1 1 1 1 8 day−1

d1 0.893 0.03 0.3125 7.65 day−1

d2 0.035 0.035 0.0625 2.1 day−1

d3 0.21 0.21 0.375 0.00004 day−1

t1 0.11 0.11 0.11 0.0000004 day−1

t2 0.2 0.34 0.2 0.8 day−1

ϵ 0.2 0.2 0.2 0.2 day−1

θ 0.3 0.3 0.3 0.3 day−1

3 Numerical Simulation and Discussion

To illustrate the main theoretical results of HIV-TB co-infection model, the numerical calculations
have been carried out using MATLAB(R2015). We have selected parameter set given in Table.
4, to investigate the effect of the sexual contact rate β1, the tuberculosis transmission rate β2,
the treatment rate υ, t2 and effect of parameter β3.
First, we simulate the four equilibrium points of the system (2.2) as follows:
Case 1: Using the parameters as listed in the 2nd column of Table. 4, by simple computing, we
can obtain that RHIV = 0.0019 < 1 and RTB = 0.0030 < 1. (Note Fig.(2)).
Case 2: Using the parameters as listed in the 3rd column of Table. 4, by simple computing, we
can obtain that RHIV = 0.1024 < 1 and RTB = 1.2623 > 1. (Note Fig.(3)).
Case 3: Using the parameters as listed in the 4th column of Table. 4, by simple computing, we
can obtain that RHIV = 1.0635 > 1 and RTB = 0.0015 < 1. (Note Fig.(4)).
Case 4: Using the parameters as listed in the 5th column of Table. 4, by simple computing, we
can obtain that RHIV = 1.2393 > 1 and RTB = 1.2015 > 1. (Note Fig.(5)).

3.1 Effect of treatment

The ultimate aim of our research is to investigate the effect of treatment on AIDS infected and TB
infected populations. To achieve our objective, we vary the parameters υ and t2 which represent
the rate at which the AIDS individuals and TB individuals are treated.

• Fig.(9) represents the TB infected of HIV free state (TB endemic state) where RHIV < 1
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Figure 2: The above figure denotes graph trajectories of S(t),H(t), A(t), T (t) and D(t)
versus time t of system (2.2) choosing the initial conditions as S(0) = 20000,H(0) =
18000, A(0) = 17000, T (0) = 16000 and D(0) = 14000, for τ1 = 4 and τ2 = 5 . Where
RHIV = 0.0019 < 1 and RTB = 0.0030 < 1.(For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article, DOI:10.5556/j.tkjm.53.2022.3295)
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Figure 3: The above figure denotes graph trajectories of S(t),H(t), A(t), T (t) and D(t)
versus time t of system (2.2) choosing the initial conditions as S(0) = 20000,H(0) =
18000, A(0) = 17000, T (0) = 16000 and D(0) = 14000, for τ1 = 4 and τ2 = 5 . Where
RHIV = 0.1024 < 1 and RTB = 1.2623 > 1.(For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article, DOI:10.5556/j.tkjm.53.2022.3295)

https://dx.doi.org/10.5556/j.tkjm.53.2022.3295
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Figure 4: The above figure denotes graph trajectories of S(t),H(t), A(t), T (t) and D(t)
versus time t of system (2.2) choosing the initial conditions as S(0) = 20000,H(0) =
18000, A(0) = 17000, T (0) = 16000 and D(0) = 14000, for τ1 = 4 and τ2 = 5 . Where
RHIV = 1.0635 > 1 and RTB = 0.0015 < 1.(For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article, DOI:10.5556/j.tkjm.53.2022.3295)
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Figure 5: The above figure denotes graph trajectories of S(t),H(t), A(t), T (t) and D(t)
versus time t of system (2.2) choosing the initial conditions as S(0) = 20000,H(0) =
18000, A(0) = 17000, T (0) = 16000 and D(0) = 14000, for τ1 = 4 and τ2 = 5 . Where
RHIV = 1.2393 > 1 and RTB = 1.2015 > 1.(For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article, DOI:10.5556/j.tkjm.53.2022.3295)
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Figure 6: The above figure has been plotted with same initial conditions and parame-
ters used for Fig.(4), which denotes the variation of parameter β1 among HIV infected
population.(For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article, DOI:10.5556/j.tkjm.53.2022.3295)
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Figure 7: The above figure has been plotted with same initial conditions and parameters
used for Fig.(3), which denotes the variation of parameter β2 among TB infected popu-
lation.(For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article, DOI:10.5556/j.tkjm.53.2022.3295)
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Figure 8: The above figure has been plotted with same initial conditions and parameters
used for Fig.(5), which denotes the variation of parameter β3 among dually infected
population.(For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article, DOI:10.5556/j.tkjm.53.2022.3295)
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Figure 9: The above figure has been plotted with same initial conditions and parameters
used for Fig.(3), which denotes the impact of treatment among TB infected popula-
tion.(For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article, DOI:10.5556/j.tkjm.53.2022.3295)
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Figure 10: The above figure has been plotted with same initial conditions and parame-
ters used for Fig.(5), which denotes the impact of treatment among TB infected popula-
tion.(For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article, DOI:10.5556/j.tkjm.53.2022.3295)

and RTB > 1. It can be noted that the TB infected population decreases when the the
treatment rate υ and t2 is increases.

• Fig.(10) represents the TB infected population of endemic state where RHIV > 1 and
RTB > 1. It can be noted that the TB infected population is inversely proportional to
the treatment rate υ and t2. It biologically denotes that after the treatment infected
population get cure from disease and return to the recovered compartment. This shows
that the treatment is a good control measure for both AIDS and TB. If the treatment is
emphasized, (i,e.,) when we increase the rate of t2, TB infected population will be shifted
to the recovery compartment.

3.2 Effect of sexual contact rate β1

In our investigation process, next we concentrate on the effect of sexual contact rate among
HIV infected population , we carry out some numerical simulations to show the contribution
of sexual transmission rate β1 during the whole infection. Then we increase the β1 to observe
the change in the HIV infected compartment. Fig.(6) (β1 = 0.00000005, β1 = 0.00000008, β1 =
0.0000001, β1 = 0.0000002) shows that the HIV infected population reach the peak level more
quickly as β1 increases. Therefore, sexual contact rate β1 plays a vital role in whole infection.
It can be seen that C1 and β1 always appear together and their product C1β1 determines the
rate of RHIV . It can be observed that, HIV population is directly proportional to RHIV , where
as RHIV is directly proportional to β1. We also find that, another way of controlling HIV other
than treatment is by controlling the rate of C1β1.

https://dx.doi.org/10.5556/j.tkjm.53.2022.3295
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3.3 Effect of TB transmission rate β2

At the same time, TB transmission rate β2 also has a great influence on the TB population
dynamics. In the system (2.2), we set the TB transmission rate β2 as (β2 = 0.0001, β2 =
0.00015, β2 = 0.0002, β2 = 0.0003) (see Fig.(7)) for monitoring the impact of parameter β2. It can
be viewed from Fig.(7), the TB population increases as β2 increases. This happens because TB
spreads whenRTB > 1 and dies out whenRTB < 1. Then, also the spread of TB disease is directly
proportional to RTB , where as RTB is directly proportional to β2. Other than implementing
treatment for disease control, we can also control the TB spread by controlling the rate of β2 as
we did for HIV infection in the previous subsection.

3.4 Effect of parameter β3

In this subsection, we study the effect of the parameter β3 in the system (2.2). The rate of progress
to the dually infected compartment, after acquiring TB is denoted by β3. It can also be denoted
as the rate at which the single infection become co-infection. We can observe from Fig.(8). that
the co-infected population is proportional to β3. So it is possible to make co-infection to single
infection, by maintaining β3 at a very low level.

• Here, Fig.(2). depicts the graphical representation of the system (2.2) when RHIV < 1
and RTB < 1. It can be observed that the disease dies out after some time and only the
susceptible population attains a constant value hereby indicating that when RHIV < 1 and
RTB < 1, the disease cannot persist for longer duration of time, biologically.

• Fig.(3). depicts the graphical representation of the system (2.2) when RHIV < 1 < RTB .
It can be observed that HIV, AIDS and co-infected population decreases rapidly with time
and finally vanishes while the susceptible and TB infected population approaches a con-
stant value. This biologically means that the TB population exist as RTB > 1, while the
HIV population vanishes as RHIV < 1.

• Fig.(4). depicts the graphical representation of the system (2.2) when RHIV > 1 > RTB .
It can be observed that the TB and co-infected population decreases and finally vanishes
with time while the HIV and AIDS infected population attains a constant value. This
biologically means that the HIV and AIDS population exist as RHIV > 1 while the TB
population vanishes as RTB < 1.

• Fig.(5). depicts the graphical representation of the system (2.2) when RHIV > 1 and
RTB > 1. It can be observed that the HIV, AIDS, TB and co-infected population ap-
proaches a constant value . This biologically means that the infected population exist as
RHIV > 1 and RTB > 1.

4 Parameter estimation

The baseline parameter values are obtained through curve fitting are presented under the caption
of Fig.(11). The full list of parameter ranges used in the simulation is given in the 5th column of
Table. 4.
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4.1 Data

The data were obtained from Pan American health Organization (PAHO, 2020). The data
used represent new TB/HIV infection in America. Data are collected routinely on a yearly
basis and was retrieved for the period beginning January 2005 to December 2018. The pictorial
representation of the raw data is given in Fig.(11).

4.2 Curve fitting

In this section, we fit system (2.2) to data to determine the trend of HIV in male and female
populations. Curve fitting is a process that allows us to quantitatively estimate the trend of
the outcomes. The curve fitting process fits equations of approximating curves to the raw field
data. However, for a given set of data, the fitting curves of a given type are generally not unique.
Thus, a curve with a minimal deviation from all data points is desired. This best fitting curve
can be obtained by the method of least squares. In this method, the parameters not known are
approximated through minimization of the sum of the squared deviations between the data and
the model. It minimizes the sum of squared distances between the observed values and the model
values. This can be mathematically expressed as

RSS =

n∑
i=1

θ2i =

n∑
i=1

(Yi − Ŷ )2

where θi = (Yi − Ŷ ) and n refers to the data points and RSS refers to the sum of square error
estimate which is assumed to follow a normal distribution. The following parameters were fixed
at the following values: υ = 0.04, µ = 3.96, δ = 8.8, β1 = 0.00008, β2 = 0.00136, β3 = 0.0008, C1 =
8, d1 = 7.65, d2 = 2.1, d3 = 0.00004, t1 = 0.0000004, t2 = 0.8, ϵ = 0.2, θ = 0.3. The parameter
ranges/values in parameter values in 5th column of Table. 4 are used in the curve fitting and
the resulting point values estimated are presented under the caption of Fig.(11). It is important
to observe that the cases of dual(TB/HIV) infection peaked in the year 2014. The results show
that there was a rise in dual(TB/HIV) infection between 2011 and 2014. We observe in Fig.(11)
that the model fits well with the data.

5 Conclusion

In the recent times, the studies on co-infection models have gained more attention among the
research communities. Particularly HIV-TB co-infection had become major global health chal-
lenge. Compared to the people with single infection, people with co-infection are reported to
have poorer health and enhanced pathogen abundance. Co-infecting pathogen interact synergis-
tically with each other so that the presence of one enhance the virulence of the other henceforth
increasing the risk of co-infection [7, 8, 10]. In this article, a nonlinear mathematical model with
discrete time delay is proposed and analyzed to study the transmission of HIV and curable TB
pathogen. The novelty of the proposed delay model (2.2) consists in combining analysis on the
two infections (HIV and TB) together into a single model. To our best knowledge, this has not
been done before in the literature in such complex model. The study reveal the fact that the
impact of delay made our model more accurate than the model introduced by Carla and Ana
[5]. When the delay term τ2 is fixed as bifurcation parameter, we found that the system (2.2)
undergoes the Hopf bifurcation as delay value τ2 crosses the critical value. Hence the subsystem
of (2.1) shows complex dynamics when delay is taken into account. In the present work, the
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Figure 11: Model system (2.2) fitted to data for the dually infected cases. The base-
line parameter values obtained from the curve fitting are: υ = 0.0535, µ = 5.22, δ =
7.469, β1 = 0.00011, β2 = 0.00058, β3 = 0.00028, C1 = 3, d1 = 7.278, d2 = 2.77, d3 =
0.000039, t1 = 0.000000387, t2 = 0.942, ϵ = 0.225, θ = 0.001.

stability analysis (local and global) has been performed for DDE system at their equilibrium
points which have been neglected in the work of Carla and Ana [5].

We have also presented a numerical simulation for DDE model which depicts its dy-
namical behavior. We provide a accurate analytical study by examining the effects of introducing
delay on stability of solutions something that was neglected in the analysis of previous non-delay
model [5]. From our analytical study, we gained more useful results in the course of disease
dynamics of the HIV-TB co-infection model which have discussed in a great detail in the pre-
vious section. Also the discussion section comprises useful results not only at the rate of basic
reproduction number but also at the effects of some important parameters β1, β2, β3, t2 and υ.
(Note Fig.(6) - Fig.(10)).

The number of co-infected population increases rapidly when the HIV infected indi-
viduals are co-infected by other disease that is TB. Thus by providing simultaneous treatment
to both(HIV and TB) the disease, the spread of TB can be slowed down and the TB will be
eradicated form the population with effective treatment. At this stage we have only HIV/AIDS
infected individuals in population. The progression from HIV to AIDS can be slowed down by
effective treatment. Thus, from our analysis we observed that the HIV infection can be sup-
pressed at an early stage by drug therapy or other control mechanism thereby the life span of
HIV individuals can be increased. It can be viewed graphically from (Fig.(9) and Fig.(10)) the
infected population gradually decreases with increase in the treatment rate. The conclusion of
the study is that to face the challenge of controlling the spread of co-infection by providing si-
multaneous treatment for both the disease. All TB patients should be tested for HIV/AIDS
and all HIV/AIDS patients should be tested for TB. The co-infected patients should undergo
treatment, so that the disease (TB) that can be controlled by treatment can be eradicated with
perfect treatment and the disease (HIV) that cannot be eradicated can be treated to increase the
life span of the infected individuals. From the results of the model, we infer possible measures
that could be implemented in order to reduce the number of co-infected individuals.
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