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Elliptic Systems of p-Laplacian Type

Farah Balaadich and Elhoussine Azroul

Abstract. We prove an existence result for solutions of nonlinear p-Laplacian systems with
data in generalized form:{

−divΦ(Du−Θ(u)) = f(x, u,Du) in Ω

u = 0 on ∂Ω

by the theory of Young measures.

1 Introduction

Let Ω be an open bounded subset of Rn, n ≥ 2. By Mm×n we denote the space of m × n

matrices with reduced Rmn topology, equipped with the inner product A : B =
∑

i,j AijBij . If
A ∈ Mm×n, then |A| is the norm ofAwhen regarded as a vector ofRmn. Consider the following
Dirichlet problem: {

−divΦ(Du−Θ(u)) = f(x, u,Du) in Ω

u = 0 on ∂Ω,
(1.1)

where
Φ(A) = |A|p−2A, ∀A ∈ Mm×n,

Θ : Rm → Mm×n and f : Ω× Rm ×Mm×n → Rm are two functions assumed to satisfy some
conditions (see below). We give only growth condition on f(.) and we point out the importance
of the Young measure for checking the weak limits of our operator and f .

In viewof [10], our system (1.1) is a nonlinear degenerate and singular elliptic systemaccording
to the cases p > 2 and 1 < p < 2. Throughout this paper, p is a real number such that p ∈ (1,∞).

For several decades, there have been intensive research activities for equations, or systems,
of p-Laplacian types. For example, in [13], we find several types of degenerate elliptic equations
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for which the existence of a weak solution is discussed by various methods. The authors in [7]
proved the existence of a local weak solution and some estimates ofDu in [BMOloc(Ω)]

Nm for
the following nonlinear elliptic system div(|Du|p−2Du) = div(|F |p−2F ), for F ∈ Lp

loc(Ω;R
m).

Regularity result is achieved in [14] for the second order derivatives of the solution for nonlinear
N -systems of the p-Laplacian type in n space variables. See also [15] for generalized p-Laplacian
operator with Neumann boundary value problems. F. Crispo et al. [6] proved existence and
uniqueness of solutions that are high regular for the p-Laplacian system −∇.(|∇u|p−2∇u) =

f , p ∈ (1, 2). Pucci and Servadei [12] established regularity and qualitative properties of the
solutions for p-Laplacian equations with weights.

When f in (1.1) is independent ofu andDu, Azroul andBalaadich proved in [2], the existence
of weak solutions by using the tool of Youngmeasure. Motivated by the previous work, our aim in
this paper is to prove the needed result when f is dependent on u andDu. For the utilization of
the theory of Young measure in elliptic partial differential equations, we cite for example [3, 4, 9].

Our assumptions are the following:
(H1)Θ : Rm → Mm×n is a continuous function satisfying

Θ(0) = 0 and |Θ(ξ)−Θ(η)| ≤ c|ξ − η| (1.2)

for all ξ, η ∈ Rm and c is a positive constant such that

c <
1

diam(Ω)

(1
2

) 1
p
,

where diam(Ω) is the diameter of Ω.
(H2) f : Ω×Rm×Mm×n → Rm is a Carathéodory function (i.e. x 7→ f(x, u,A) is measurable
for every (u,A) ∈ Rm×Mm×n and (u,A) 7→ f(x, u,A) is continuous for almost every x ∈ Ω).
Moreover, we assume that the following two additional conditions hold:

(i) For constants 0 < γ < p− 1, 0 ≤ µ < p− 1 and a function d ∈ Lp′(Ω) there holds

|f(x, ξ, A)| ≤ d(x) + |ξ|γ + |A|µ,

for a.e. x ∈ Ω and all (ξ,A) ∈ Rm ×Mm×n.

(ii) In addition to (i), the function f is independent of the third variable, or, for almost x ∈ Ω

and all u ∈ Rm, the mapping A 7→ f(x, u,A) is linear.

Remark 1. Note that, the constants γ, µ in (H2)(i) and c in (H1) allow to obtain the coercivity of
the mapping T defined in section 3.
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It is our purpose in this paper to prove an existence theorem for problems corresponding to
(1.1) when f is of general form. So that, we generalize our work [2].

We now introduce the definition of a weak solution for (1.1) as follows:

Definition 1. We say that u ∈ W 1,p
0 (Ω;Rm) is a weak solution to (1.1) if∫

Ω
Φ(Du−Θ(u)) : Dφdx =

∫
Ω
f(x, u,Du).φdx

holds for all φ ∈ W 1,p
0 (Ω;Rm).

We shall prove the following existence theorem.

Theorem 1.1. Assume that Θ satisfies the condition (H1) for some p ∈ (1,∞). Then for every f
satisfying (H2), the problem (1.1) has a weak solution in the sense of Definition 1.

2 Preliminaries and useful properties

Let Ω be a bounded open subset of Rn, n ≥ 2, with smooth boundary ∂Ω. In the sequel, the
Hölder inequality and the following Poincaré inequality (see [11, Lemma 2.2]); there exists a
positive constant α = diam(Ω) such that

‖z‖p ≤
α

2
‖Dz‖p, ∀z ∈ W 1,p

0 (Ω;Rm), (2.1)

are central to establish the required estimates to prove the desired results. As mentioned before,
we will use the tool of Young measure to prove our Theorem 1.1. In the following, we briefly
summarize some useful properties needed in the sequel.

ByC0(Rm) we denote the closure of the space of continuous functions onRm with compact
support with respect to the ‖.‖∞-norm. Its dual can be identified with M(Rm), the space of
signed Radon measures with finite mass. The related duality pairing is given by

〈ν, g〉 =
∫
Rm

g(λ)dν(λ)

for ν : Ω → M(Rm) and g ∈ C0(Rm).

Lemma 2.1. ([8, Theorem 1.5.2]) Let {zj}j≥1 be a bounded sequence in L∞(Ω;Rm). Then there
exist a subsequence {zk}k≥1 ⊂ {zj}j≥1 and a Borel probability measure νx on Rm for a.e. x ∈ Ω,
such that for almost each g ∈ C(Rm) we have

g(zk) ⇀
∗ g weakly in L∞(Ω;Rm),

where g(x) = 〈νx, g〉 =
∫
Rm g(λ)dνx(λ) for a.e. x ∈ Ω.
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Note that, when zk = Dvk for vk : Ω → Rm, then the above integrand remains true on
Mm×n, i.e.

〈νx, g〉 =
∫
Mm×n

g(λ)dνx(λ),

and we call {νx}x∈Ω the family of Young measures associated with {Dvk}k. In [5], it is shown
that for any Carathéodory function g : Ω × Rm → R and (zk)k generates a Young measure νx,
we have

g(x, zk) ⇀ 〈νx, g(x, .)〉 =
∫
Rm

g(x, λ)dνx(λ) (2.2)

weakly inL1(Ω′) for allmeasurableΩ′ ⊂ Ω, provided that the negative part g−(x, zk) is equiintegrable.
We end this section by recalling the following useful lemma:

Lemma 2.2. ([1]) Let ξ, η ∈ Rm and let p ∈ (1,∞). We have

|ξ|p−2ξ.(ξ − η) ≥ 1

p
|ξ|p − 1

p
|η|p.

3 Proof of the main result

In this section, we give the proof of Theorem 1.1 basing on the Galerkin method to construct
the approximating solutions and the theory of Young measure for the passage to the limit. Let
consider the operator T : W 1,p

0 (Ω;Rm) → W−1,p′(Ω;Rm) defined by

〈T (u), φ〉 =
∫
Ω
Φ(Du−Θ(u)) : Dφdx−

∫
Ω
f(x, u,Du).φdx.

Remark that our problem (1.1) is equivalent to find u ∈ W 1,p
0 (Ω;Rm) for which 〈T (u), φ〉 = 0

for all φ ∈ W 1,p
0 (Ω;Rm). Here 〈., .〉 denote the duality pairing ofW 1,p

0 (Ω;Rm) and its dual. In
the sequel, the value of the positive constant C may change from line to line.

To prove the existence of the approximating solutions, we proceed by the following assertions:
Assertion 1: T (u) is linear, well defined and bounded.
Indeed, for arbitrary u ∈ W 1,p

0 (Ω;Rm), T (u) is trivially linear and (without loss of generality, we
may assume that γ = p− 1 = µ)

|〈T (u), φ〉| =
∣∣ ∫

Ω

Φ(Du−Θ(u)) : Dφdx−
∫
Ω

f(x, u,Du).φdx
∣∣

≤
∫
Ω

|Du−Θ(u)|p−1|Dφ|dx+

∫
Ω

|f(x, u,Du)||φ|dx

≤
(∫

Ω

|Du−Θ(u)|pdx
) 1

p′ ‖Dφ‖p +
(
‖d‖p′ + ‖u‖p−1

p + ‖Du‖p−1
p

)
‖φ‖p

≤ 2
(p−1)2

p

(∫
Ω

|Du|p + |Θ(u)|dx
) 1

p′ ‖Dφ‖p +
(
‖d‖p′ + ‖u‖p−1

p + ‖Du‖p−1
p

)
‖φ‖p
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≤ C‖φ‖1,p,

where we have used the Poincaré inequality, the Eq. (1.2) and (2.1) and the following inequality

|a+ b|p ≤ 2p−1(|a|p + |b|p) for p > 1. (3.1)

Thus T is well defined and bounded.
Assertion 2: The restriction of T to a finite linear subspace ofW 1,p

0 (Ω;Rm) is continuous.
Indeed, let W be a finite subspace of W 1,p

0 (Ω;Rm) with dim W = r and (wi)i=1,..,r a basis of
W . Let (uk = aikwi) be a sequence inW which converges to u = aiwi inW (with conventional
summation). Then uk → u andDuk → Du almost everywhere for a subsequence still denoted
by (uk). On the one hand, the continuity ofΘ and f implies that

Φ(Duk −Θ(uk)) → Φ(Du−Θ(u))

and
f(x, uk, Duk) → f(x, u,Du)

almost everywhere. On the other hand, since uk → u strongly inW∫
Ω
|uk − u|pdx → 0 and

∫
Ω
|Duk −Du|pdx → 0.

Thus, there exists a subsequence of (uk) still denoted by (uk) and g1, g2 ∈ L1(Ω) such that
|uk − u|p ≤ g1 and |Duk −Du|p ≤ g2. According to (3.1), we get

|uk|p = |uk − u+ u|p ≤ 2p−1(|uk − u|p + |u|p)

≤ 2p−1(g1 + |u|p).

Similarly
|Duk|p ≤ 2p−1(g2 + |Du|p).

Consequently, ‖uk‖p and ‖Duk‖p are bounded by a constantC . Now, in order to apply the Vitali
Theorem, we show that the sequences

(
Φ(Duk − Θ(uk)) : Dφ

)
and

(
f(x, uk, Duk).φ

)
are

equiintegrable. To do this, we take Ω′ ⊂ Ω to be measurable, then by the assertion 1, we have
(without loss of generality, we may assume that γ = p− 1 = µ)∫

Ω′
|Φ(Duk −Θ(uk)) : Dφ|dx ≤ 2

(p−1)2

p

(
‖Duk‖pp︸ ︷︷ ︸

≤C

+ cp‖uk‖pp︸ ︷︷ ︸
≤C

) 1
p′
(∫

Ω′
|Dφ|pdx

) 1
p

and ∫
Ω′

|f(x, uk, Duk).φ|dx ≤ α

2

(
‖d‖p′ + ‖uk‖p−1

p︸ ︷︷ ︸
≤C

+ ‖Duk‖p−1
p︸ ︷︷ ︸

≤C

)( ∫
Ω′

|Dφ|pdx
) 1

p
.
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Since
∫
Ω′ |Dφ|pdx is arbitrary small if themeasure ofΩ′ is chosen small enough, then the equiintegrability

of
(
Φ(Duk −Θ(uk)) : Dφ

)
and

(
f(x, uk, Duk).φ

)
follows. By virtue of the Vitali Theorem, T

is continuous.
Assertion 3: T is coercive.
Indeed, by taking φ = u in the definition of T , we have

〈T (u), u〉 =
∫
Ω
Φ(Du−Θ(u)) : Dudx−

∫
Ω
f(x, u,Du).udx. (3.2)

To prove the coercivity of T we argue as follows:
By Lemma 2.2, we have

|A|p−2A : (A−B) ≥ 1

p
|A|p − 1

p
|B|p,

then by taking A = Du−Θ(u) andB = −Θ(u), we obtain

|Du−Θ(u)|p−2(Du−Θ(u)) : Du

= |Du−Θ(u)|p−2(Du−Θ(u)) : (Du−Θ(u) + Θ(u))

≥ 1

p
|Du−Θ(u)|p − 1

p
|Θ(u)|p.

(3.3)

Since

1

2p−1
|Du|p = 1

2p−1
|Du−Θ(u) + Θ(u)|p

≤ 1

2p−1

[
2p−1

(
|Du−Θ(u)|p + |Θ(u)|p

)]
= |Du−Θ(u)|p + |Θ(u)|p,

then (3.3) and (1.2) implies

|Du−Θ(u)|p−2(Du−Θ(u)) : Du ≥ 1

p

1

2p−1
|Du|p − 2

p
|Θ(u)|p

≥ 1

p

1

2p−1
|Du|p − 2

p
cp|u|p.

By the Hölder inequality, the Eq. (2.1) and the condition (H2)(i), we get

∣∣ ∫
Ω
f(x, u,Du).udx

∣∣ ≤ ∫
Ω
d(x)|u|dx+

∫
Ω
|u|γ |u|dx+

∫
Ω
|Du|µ|u|dx

≤ ‖d‖p′‖u‖p + ‖u‖γγp′‖u‖p + ‖Du‖µµp′‖u‖p

≤ α

2
‖d‖p′‖Du‖p +

(α
2

)γ+1
‖Du‖γ+1

p +
α

2
‖Du‖µ+1

p .
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Consequently, owing to (3.2), by (2.1) and the choice of the constant c in (H1), we obtain

〈T (u), u〉

≥ 1

p

1

2p−1

∫
Ω

|Du|pdx− 2

p
cp

∫
Ω

|u|pdx− α

2
‖d‖p′‖Du‖p −

(α
2

)γ+1

‖Du‖γ+1
p − α

2
‖Du‖µ+1

p

≥ 1

p

1

2p

∫
Ω

|Du|pdx− α

2
‖d‖p′‖Du‖p −

(α
2

)γ+1

‖Du‖γ+1
p − α

2
‖Du‖µ+1

p .

From the above estimation it follows that

〈T (u), u〉 → ∞ as ‖u‖1,p → ∞,

since p > max{1, γ + 1, µ+ 1}.

Now, wehave all ingredients to construct the approximating solutions by theGalerkinmethod.
Let W1 ⊂ W2 ⊂ .. ⊂ W 1,p

0 (Ω;Rm) be a sequence of finite dimensional subspaces with the
property that ∪

k≥1
Wk is dense inW 1,p

0 (Ω;Rm). Such a sequence (Wk) exists sinceW 1,p
0 (Ω;Rm)

is separable. Let fix k and assume that dim Wk = r. For simplicity, we write
∑

1≤i≤r
aiwi = aiwi

where (wi)
r
i=1 is a basis ofWk. Define the mapping

G : Rr −→ Rr

(a1, ..., ar) →
(
〈T (aiwi), wj〉

)
j=1,..,r

.

Lemma 3.1. G is continuous andG(a).a → ∞ as ‖a‖Rr → ∞.

Proof. Since T restricted toWk is continuous by the assertion 2,G is continuous. Let be a ∈ Rr

and u = aiwi ∈ Wk. Then ‖a‖Rr → ∞ is equivalent to ‖u‖1,p → ∞ and

G(a).a = 〈T (u), u〉.

Assertion 3 givesG(a).a → ∞ when ‖a‖Rr → ∞.

Lemma 3.2. For all k ∈ N there exists uk ∈ Wk such that

〈T (uk), φ〉 = 0 for all φ ∈ Wk, (3.4)

and there is a constant R > 0 such that

‖uk‖1,p ≤ R for all k ∈ N. (3.5)

Proof. Since G(a).a → ∞ as ‖a‖Rr → ∞ by Lemma 3.1, it follows the existence of R > 0

such that for all a ∈ ∂BR(0) ⊂ Rr we have G(a).a > 0. Thanks to the usual topological
arguments (see e.g. [16, Proposition 2.8]), G(x) = 0 has a solution x ∈ BR(0). Hence, for all
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k ∈ N there exists uk ∈ Wk such that (3.4) holds. On the other hand, since 〈T (u), u〉 → ∞ as
‖u‖1,p → ∞, it follows that there exists R > 0 with the property, that 〈T (u), u〉 > 1 whenever
‖u‖1,p > R. Consequently, for the sequence of Galerkin approximations uk ∈ Wk which satisfy
〈T (uk), uk〉 = 0 by (3.4), it follows the uniform bound (3.5).

Proof of Theorem 1.1. Let {uk} be the sequence defined in Lemma 3.2. According to Lemma 2.1
and the Eq. (3.5), there exists a Young measure νx generated byDuk. Now, thanks to [2, Lemma
4.1], we recover some facts about the Young measure ν = {νx}x∈Ω as follows:

(a) νx is a probability measure, i.e. ‖νx‖M(Mm×n) = 1 for a.e. x ∈ Ω.

(b) The weak L1-limit ofDuk is given by

〈νx, id〉 =
∫
Mm×n

λdνx(λ).

(c) νx satisfies 〈νx, id〉 = Du(x) for a.e. x ∈ Ω.

The proof of Theorem 1.1 is divided into two cases, accordingly to the assumptions (i) and (ii):
Case (i): Let Ek,ϵ = {x ∈ Ω : |uk(x) − u(x)| ≥ ϵ} for ϵ positive. By (3.5), we have (for a
subsequence) uk → u in Lp(Ω;Rm). Since∫

Ω
|uk − u|pdx ≥

∫
Ek,ϵ

|uk − u|pdx ≥ ϵp|Ek,ϵ|,

it follows that
|Ek,ϵ| ≤

1

ϵp

∫
Ω
|uk − u|pdx → 0 as k → ∞.

Hence uk → u in measure for k → ∞, and we may infer that, after extraction of a suitable
subsequence, if necessary

uk → u almost everywhere for k → ∞.

The continuity of the function Θ and the weak limit defined in the above properties (a) and (b)
implies that

Duk −Θ(uk) ⇀

∫
Mm×n

(λ−Θ(u))dνx(λ)

=

∫
Mm×n

λdνx(λ)︸ ︷︷ ︸
=:Du(x)

−Θ(u)

∫
Mm×

dνx(λ)︸ ︷︷ ︸
=:1

= Du−Θ(u)
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weakly in L1(Ω), since (Duk −Θ(uk)) is equiintegrable by (1.2). Therefore

Φ(Duk −Θ(uk)) ⇀ Φ(Du−Θ(u))

weakly in L1(Ω). Since Lp(Ω) is reflexive and Φ(Duk − Θ(uk)) is bounded (see Assertion 1 if
necessary), the sequence

{
Φ(Duk − Θ(uk))

}
converges in Lp′(Ω). Hence its weak Lp′-limit is

also Φ(Du−Θ(u)). We may infer that

lim
k→∞

∫
Ω
Φ(Duk −Θ(uk)) : Dφdx =

∫
Ω
Φ(Du−Θ(u)) : Dφdx ∀φ ∈ ∪

k≥1
Wk.

To pass to the limit on the source term, we need the convergence almost everywhere of Duk.
Similarly to Ek,ϵ, we consider Fk,ϵ = {x ∈ Ω : |Duk(x)−Du(x)| ≥ ϵ}, then

Duk → Du in measure for k → ∞.

Thus (for a subsequence),Duk → Du almost everywhere for k → ∞. The continuity of f permit
to deduce that

f(x, uk, Duk).φ → f(x, u,Du).φ

for arbitraryφ ∈ W 1,p
0 (Ω;Rm). By the growth condition (H2)(i), we have

(
f(x, uk, Duk).φ(x)

)
is equiintegrable (see Assertion 2 if necessary), thus f(x, uk, Duk).φ(x) → f(x, u,Du).φ(x) in
L1(Ω) by the Vitali ConvergenceTheorem. This implies

lim
k→∞

∫
Ω
f(x, uk, Duk).φ(x)dx =

∫
Ω
f(x, u,Du).φ(x)dx, ∀φ ∪

k≥1
Wk.

Case (ii): If f is independent of the third variable, we easily verify that

f(x, uk) ⇀ f(x, u) in Lp′(Ω).

In the other situation, we have that, for a.e. x ∈ Ω and all u ∈ Rm, the mappingA 7→ f(x, u,A)

is linear. Here we argue as follows to identify the weak limit of f(x, uk, Duk):

f(x, uk, Duk) ⇀ 〈νx, f(x, u, .)〉 =
∫
Mm×n

f(x, u, λ)dνx(λ)

= f(x, u, .)o

∫
Mm×n

λdνx(λ)︸ ︷︷ ︸
=:Du(x)

= f(x, u,Du),

since f(x, uk, Duk) is equiintegrable.
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Conclusion

For every φ ∈ W 1,p
0 (Ω;Rm), since ∪

k≥1
Wk is dense in W 1,p

0 (Ω;Rm), there exists a sequence

{φk} ⊂ ∪
k≥1

Wk such that φk → φ inW 1,p
0 (Ω;Rm) as k → ∞. We can now pass to the limit in

the Galerkin equations:

〈T (uk), φk〉 − 〈T (u), φ〉

=

∫
Ω
Φ(Duk −Θ(uk)) : Dφkdx−

∫
Ω
Φ(Du−Θ(u)) : Dφdx

−
∫
Ω
f(x, uk, Duk).φkdx+

∫
Ω
f(x, u,Du).φdx

=

∫
Ω
Φ(Duk −Θ(uk)) : (Dφk −Dφ)dx+

∫
Ω

(
Φ(Duk −Θ(uk))− Φ(Du−Θ(u))

)
: Dφdx

−
∫
Ω
f(x, uk, Duk).(φk − φ)dx−

∫
Ω

(
f(x, uk, Duk)− f(x, u,Du)

)
.φdx.

Theright hand side of the above equation tends to zero as k tends to infinity by the previous results.
By virtue of Lemma 3.2, it follows that 〈T (u), φ〉 = 0 for all φ ∈ W 1,p

0 (Ω;Rm) as desired.
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