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FUZZY VOLTERRA INTEGRAL EQUATIONS

WITH INFINITE DELAY

P. PRAKASH AND V. KALAISELVI

Abstract. In this paper, we study the existence and uniqueness of solutions for a class of fuzzy Volterra integral

equations with infinite delay by using the method of successive approximations.

1. Introduction

Kandel and Byatt [7] introduced the concept of fuzzy differential equations. Later it was

applied in fuzzy processes and fuzzy dynamical systems. Since 1987, the Cauchy problem for

first order fuzzy differential equations has been extensively investigated by Kaleva [6]. Song

et al. [10] discussed about the existence and comparison theorems to Volterra fuzzy integral

equations in (E n ,D). Diamond [4] discussed the theory of Volterra integral equations in a

fuzzy context by using the interpretation equations. Balachandran and Prakash [3] studied

the existence of solutions of nonlinear fuzzy Volterra-Fredholm integral equations by using

the Successive approximation method. Agarwal et al. [1] have given a very general formula-

tion of the stacking theorem approach for fuzzy Volterra integral equations. Recently, Xiaop-

ing and Yongiang [11] establish the existence and uniqueness of solutions for set differential

equations, the continuous dependence of solutions on initial values, and the structural stabil-

ity of solutions by using the Banach fixed point theorem. They also discussed the relationship

between small solutions and large solutions of fuzzy differential equations.

In this paper, we consider the fuzzy Volterra integral equation with infinite delay of the

form

x′(t) = h(t , x(t))+

∫t

−∞

q(t , s, x(s))d s, t ∈ T = (−∞,∞) (1)

where h : T ×E n → E n and q : T ×T ×E n →E n are levelwise continuous and satisfy the gener-

alized Lipschitz conditions.

Basic Assumption: For each t0 ∈ T , there exists a nonempty convex subset B(t0) of the

space of continuous functions φ : T1 = (−∞, t0] →E n such that φ ∈ B(t0) implies

∫t0

−∞

q(t , s,φ(s))d s :=Q(t , t0,φ)
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is continuous on T2 = [t0,∞). For a given t0 ∈ T and a continuous initial function φ : T1 → E n ,

we seek a continuous solution x(t , t0,φ) satisfying (1) for t ∈ [t0, t0 +β) for some β > 0 with

x(t , t0,φ) =φ(t) for t ≤ t0.

2. Preliminaries

Let PK (Rn ) denote the family of all nonempty, compact, convex subsets of Rn . Addition

and scalar multiplication in PK (Rn ) are defined as usual. Let A and B be two nonempty

bounded subsets of Rn . The distance between A and B is defined by the Hausdorff metric

d(A,B) = max

{

sup
a∈A

inf
b∈B

||a −b||, sup
b∈B

inf
a∈A

||a −b||

}

,

where || · || denotes the usual Euclidean norm in Rn . Then it is clear that (PK (Rn),d) becomes

a complete metric space [9].

Let I = [0,1] ⊆ R be a compact interval and let E n denote the set of all u : Rn → I such that

u satisfies the following conditions.

(i) u is normal, that is, there exists an x0 ∈Rn such that u(x0) = 1,

(ii) u is fuzzy convex,

(iii) u is upper semicontinuous,

(iv) [u]0 = cl{x ∈Rn : u(x) > 0} is compact.

For 0 <α≤ 1, denote [u]α = {x ∈ Rn : u(x) ≥α}. Then from (i)-(iv) it follows that the α-level

set [u]α ∈ PK (Rn ) for all 0 ≤α≤ 1.

If g : Rn ×Rn → Rn is a function, then using Zadeh’s extension principle,we can extend g

to E n ×E n → E n by the equation

g̃ (u, v)(z)= sup
z=g (x,y)

min{u(x), v(y)}.

It is well known that [g̃ (u, v)]α = g ([u]α, [v]α) for all u, v ∈ E n , 0 ≤ α ≤ 1 and any continuous

function g . Furthermore, we have [u+ v]α = [u]α+ [v]αand[ku]α = k[u]α, where k ∈ R.

Theorem 2.1.([8]) If u ∈ E n , then

(i) [u]α ∈PK (Rn)for 0 ≤α≤ 1,

(ii) [u]α2 ⊂ [u]α1 for 0≤α1 ≤α2 ≤ 1, and

(iii) If {αk } ⊂ [0,1] is a nondecreasing sequence converging to α> 0, then

[u]α =
⋂

k≥1

[u]αk .
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Conversely, if {Aα : 0 ≤ α ≤ 1} is a family of subset A of Rn satisfying (i)-(iii), then there

exists a u ∈ E n such that

[u]α = Aα for 0 <α≤ 1

and

[u]0
=

⋃

0<α≤1

Aα ⊂ A0.

Define the metric D : E n ×E n → R+ ∪ {0} by D(u, v) = sup
0≤α≤1

d([u]α, [v]α), where d is the

Hausdorff metric defined in PK (Rn).

The following definitions are given in [5].

Definition 2.1. A mapping F : I → E n is strongly measurable, if for all α ∈ [0,1] the set-

valued mapping Fα : I → PK (Rn ) defined by Fα(t) = [F (t)]α is Lebesgue measurable when

PK (Rn ) has the topology induced by the Hausdorff metric d .

Definition 2.2. A mapping F : I → E n is called levelwise continuous at t0 ∈ I if the set-

valued mapping Fα(t)= [F (t)]α is continuous at t = t0 with respect to the Hausdorff metric d

for all α∈ [0,1].

Definition 2.3. A mapping F : I → E n is called integrably bounded if there exists an inte-

grable function h such that ‖x‖ ≤ h(t) for every x ∈ F0(t).

Definition 2.4. The integral of a fuzzy mapping F : I → E n is defined levelwise by [
∫

I F (t)d t ]α =
∫

I Fα(t)d t = The set of all
∫

I f (t)d t such that f : I → Rn is a measurable selection for Fα for all

α∈ [0,1].

Theorem 2.2. ([2]) If F : I → E n is strongly measurable and integrably bounded, then F is

integrable.

It is known that

[∫

I
F (t)d t

]0

=

∫

I
F0(t)d t .

Theorem 2.3. Let F,G : I →E n be integrable and λ∈ R. Then

(i)

∫

I
(F (t)+G(t))d t =

∫

I
F (t)d t +

∫

I
G(t)d t ,

(ii)

∫

I
λF (t)d t =λ

∫

I
F (t)d t ,

(iii) D(F,G) is integrable,

(iv) D

(∫

I
F (t)d t ,

∫

I
G(t)d t

)

≤

∫

I
D(F (t),G(t))d t .

Definition 2.5. A mapping F : I → E n is called differentiable at t0 ∈ I if, for any α ∈ [0,1],

the set-valued mapping Fα(t) = [F (t)]α is Hukuhara differentiable at t0 with DFα(t0) and the

family {DFα(t0)|α ∈ [0,1]} define a fuzzy number F (t0) ∈E n .
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If F : I → E n is differentiable at t0 ∈ I , then we say that F ′(t0) is the fuzzy derivative of F (t)

at the point t0.

Theorem 2.4. Let F : I →E 1 be differentiable. Denote Fα(t) = [ fα(t), gα(t)]. Then fα and gα

are differentiable and [F ′(t)]α = [ f ′
α(t), g ′

α(t)].

Theorem 2.5. Let F : I → E n be differentiable and assume that the derivative F ′ is integrable

over I . Then, for each s ∈ I , we have

F (s)= F (a)+

∫s

a
F ′(t)d t .

Definition 2.6. A mapping f : I ×E n →E n is called levelwise continuous at point (t0, x0) ∈

I ×E n provided, for any fixed α∈ [0,1] and arbitrary ǫ> 0, there exists a δ(ǫ,α) > 0 such that

d([ f (t , x)]α, [ f (t0, x0)]α) < ǫ

whenever |t − t0| < δ(ǫ,α) and d([x]α, [x0]α) < δ(ǫ,α) for all t ∈ I , x ∈E n .

3. Main results

Assume that h : T0 ×E n → E n and q : T0 ×T0 ×E n → E n are levelwise continuous, where

T0 = {t ∈ T : t0 ≤ t < t0 +β}. Consider the fuzzy Volterra integral equation (1) where φ(t0) ∈ E n .

We denote J = T0×B(φ(t0),b) and J0 = T0×T0×B(φ(t0),b) where a > 0, b > 0, φ(t0) ∈E n , and

B(φ(t0),b) = {x ∈ E n : D(x,φ(t0)) ≤ b}.

Definition 3.1. A mapping x : T0 → E n is a solution to the problem (1) if it is levelwise

continuous and satisfies the integral equation

x(t) =φ(t0)+

∫t

t0

h(s, x(s))d s +

∫t

t0

∫u

t0

q(u, s, x(s))d sdu+

∫t

t0

Q(u, t0,φ)du, for all t ∈ T0.

Assume that the following conditions hold.

(A) h : J → E n is levelwise continuous and for any pair (t , x), (t , y) ∈ J and α∈ [0,1], we have

d([h(t , x)]α , [h(t , y)]α) ≤ kh d([x]α, [y]α),

where kh is a given constant.

(B) q : J0 → E n is levelwise continuous and for any pair (t , s, x1), (t , s, x2) ∈ J0, −b ≤ s ≤ t ≤ b

and α ∈ [0,1], we have

d([q(t , s, x1)]α, [q(t , s, x2)]α) ≤ kq

[

d([x1]α, [x2]α)
]

,

where kq is a given constant.
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(C) Let K = max{kh ,kq } be such that 0 < K < 1.

Theorem 3.1. If the conditions (A)−(C) hold, then there exists a unique solution x = x(t) of

(1) defined on the interval t0 ≤ t < t0 +β.

Proof. Let 0< L <β be given. Therefore t0 ≤ t ≤ t0 +L.

Let

δ= min







L,

√

(

M +M2

M1

)2

+
2b

M1
−

(

M +M2

M1

)







,

where M = D(h(t ,φ(t0)), 0̂), 0̂ ∈ E n , such that 0̂(t) = 1 for t = 0 and 0 otherwise, and for any

(t , x) ∈ J and M1 = D(q(u, s,φ(t0)), 0̂) for any (u, s,φ(t0)) ∈ J0, and M2 = D(Q(u, t0,φ(t0)), 0̂) for

any (u, t0,φ(t0))∈ J0.

We will show that the sequence of functions defined inductively on [t0, t0 +L] by

x0(t) ≡ φ(t0), t ∈T0,

xn (t) = φ(t0)+

∫t

t0

h(s, xn−1(s))d s +

∫t

t0

∫u

t0

q(u, s, xn−1(s))d sdu

+

∫t

t0

Q(u, t0,φ)du, n = 1,2,3, . . . , (2)

From (2), it follows that, for n = 1,

x1(t)=φ(t0)+

∫t

t0

h(s,φ(t0))d s +

∫t

t0

∫u

t0

q(u, s,φ(t0))d sdu+

∫t

t0

Q(u, t0,φ(t0))du, (3)

which proves that x1(t) is levelwise continuous on |t − t0| ≤ L and hence on |t − t0| ≤ δ. More-

over, for any α∈ [0,1], we have

d([x1(t)]α, [x0(t)]α) =d

([

φ(t0)+

∫t

t0

h(s,φ(t0))d s +

∫t

t0

∫u

t0

q(u, s,φ(t0))d sdu

+

∫t

t0

Q(u, t0,φ(t0))du

]α

,
[

φ(t0)
]α

)

≤

∫t

t0

d([h(s,φ(t0))]α, 0̂)d s +

∫t

t0

∫u

t0

d([q(u, s,φ(t0))]α, 0̂)d sdu

+

∫t

t0

d([Q(u, t0,φ(t0))]α, 0̂)du,
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and by the definition of D, we get

D(x1(t), x0(t)) ≤

∫t

t0

D(h(s,φ(t0)), 0̂)d s +

∫t

t0

∫u

t0

D(q(u, s,φ(t0)), 0̂)d sdu

+

∫t

t0

D(Q(u, t0,φ(t0)), 0̂)du

≤ (M +M2)|t − t0|+M1
|t − t0|

2

2!

≤ (M +M2)δ+M1
δ2

2!
≤ b. (4)

Now, assume that xn−1(t) is levelwise continuous on |t − t0| ≤ δ and that

D(xn−1(t), x0(t))≤ b.

From (2), we deduce that xn(t) is levelwise continuous on |t − t0| ≤ δ and that

D(xn (t), x0(t)) ≤ b.

Consequently, we conclude that xn (t) consists of levelwise continuous mappings on |t −

t0| ≤ δ and that

(t , xn (t))∈ J and (t , s, xn (t))∈ J0, |t − t0| ≤ δ,n=1,2, . . . ,

Let us prove that there exists a fuzzy set-valued mapping x : [t0, t0+L] → E n such that D(xn (t), x(t)) →

0 uniformly on |t − t0| ≤ δ as n →∞. For n = 2, from (2),

x2(t) =φ(t0)+

∫t

t0

h(s, x1(s))d s +

∫t

t0

∫u

t0

q(u, s, x1(s))d sdu+

∫t

t0

Q(u, t0,φ(t0))du. (5)

From (3) and (5), we have

d([x2(t)]α, [x1(t)]α)

= d

([∫t

t0

h(s, x1(s))d s +

∫t

t0

∫u

t0

q(u, s, x1(s))d sdu+

∫t

t0

Q(u, t0,φ(t0))du

]α

,

[∫t

t0

h(s,φ(t0))d s +

∫t

t0

∫u

t0

q(u, s,φ(t0))d sdu+

∫t

t0

Q(u, t0,φ(t0))du

]α)

≤ kh

∫t

t0

d([x1(s)]α, [φ(t0)]α)d s +kq

∫t

t0

∫u

t0

d([x1(s)]α, [φ(t0)]α)d sdu,

So by the definition of D, we have

D(x2(t), x1(t)) ≤ kh

∫t

t0

D(x1(s),φ(t0))d s +kq

∫t

t0

∫u

t0

D(x1(s),φ(t0))d sdu. (6)
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Now, we can apply the first inequality (4) in the right-hand side of (6) to get

D(x2(t), x1(t))

≤ (M +M2)K
|t − t0|

2

2!
+M1K

|t − t0|
3

3!
+ (M +M2)K

|t − t0|
3

3!
+M1K

|t − t0|
4

4!

≤ K

[

(M +M2)
δ2

2!
+ (M +M1 +M2)

δ3

3!
+M1

δ4

4!

]

. (7)

Starting from (4) and (7), assume that

D(xn (t), xn−1(t))

≤ K n−1

[

(n−1)C0(M +M2)
δn

n!
+

[

(n−1)C1(M +M2)+(n−1) C0M1

] δn+1

(n+1)!
+·· ·

+ [(n−1)Cn−1(M +M2)+(n−1) Cn−2M1]
δ2n−1

(2n−1)!
+M1

δ2n

2n!

]

, (8)

and we prove that such an inequality holds for D(xn+1(t), xn (t)). Indeed, from (2) and the

assumptions, it follows that

d([xn+1(t)]α, [xn (t)]α) =

≤ kh

∫t

t0

d([xn (s)]α, [xn−1(s)]α)d s +kq

∫t

t0

∫u

t0

d([xn (s)]α, [xn−1(s)]α)d sdu,

for any α ∈ [0,1] and from the condition on D, we have

D(xn+1(t), xn(t)) ≤ kh

∫t

t0

D(xn (s), xn−1(s))d s +kq

∫t

t0

∫u

t0

D(xn(s), xn−1(s))d sdu.

According to (8), we get

D(xn+1(t), xn (t))

≤ K n

[

nC0(M +M2)
δn+1

(n+1)!
+ [nC1(M +M2)+n C0M1]

δn+2

(n+2)!

+ ·· ·+ [nCn (M +M2)+n Cn−1M1]
δ2n+1

(2n+1)!
+M1

δ2n+2

(2n+2)!

]

.

Consequently, inequality (8) holds for n = 1,2, · · · We can also write

D(xn (t), xn−1(t))

≤
K n

K

[

n−1C0(M +M2)
δn

n!
[(n−1)C1(M +M2)+(n−1) C0M1]

δn+1

(n+1)!
+·· ·

+ [(n−1)C(n−1)(M +M2)+(n−1) Cn−2M1]
δ2n−1

(2n−1)!
+M1

δ2n

(2n)!

]

, (9)

for n = 1,2, . . . , and |t − t0| ≤ δ.
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Let us mention that

xn (t) = x0(t)+ [x1(t)− x0(t)]+·· ·+ [xn (t)− xn−1(t)],

which implies that the sequence {xn(t)} and the series

x0(t)+
∞
∑

n=1

[xn (t)− xn−1(t)]

have the same convergence properties. From (9), it follows that D(xn (t), xn−1(t)) → 0 uni-

formly on |t − t0| ≤ δ as n →∞. Hence, there exists a fuzzy set-valued mapping x : [t0, t0+L] →

E n such that D(xn (t), x(t))→ 0 uniformly on |t − t0| ≤ δ as n →∞. From the assumptions, we

get

d([h(t , xn (t))]α, [h(t , x(t))]α)≤ khd([xn (t)]α, [x(t)]α)

for any α ∈ [0,1], and so

D(h(t , xn (t)),h(t , x(t)))≤ kh D(xn (t), x(t))→ 0 (10)

uniformly on |t − t0| ≤ δ as n →∞. Furthermore,

d([q(t , s, xn (s))]α, [q(t , s, x(s))]α),≤ kq d([xn (s)]α, [x(s)]α)

for any α ∈ [0,1], and

D(q(t , s, xn (s)), q(t , s, x(s))) ≤ kq D(xn (s), x(s)) → 0 (11)

uniformly on |t − t0| ≤ δ as n →∞.

Taking (10) and (11) into account, from (2), we obtain,

x(t) =φ(t0)+

∫t

t0

h(s, x(s))d s +

∫t

t0

∫u

t0

q(u, s, x(s))d sdu+

∫t

t0

Q(u, t0,φ(t0))du

for n →∞,

Consequently, there is at least one levelwise continuous solution of (1).

We want to prove now that this solution is unique, that is, from

y(t) =φ(t0)+

∫t

t0

h(s, y(s))d s +

∫t

t0

∫u

t0

q(u, s, y(s))d sdu+

∫t

t0

Q(u, t0,φ(t0))du (12)

on |t − t0| ≤ δ, we want to show that D(x(t), y(t))≡ 0. Indeed, from (2) and (12), we have

d([y(t)]α, [xn (t)]α) ≤ kh

∫t

t0

d([y(s)]α, [xn−1(s)]α)d s +kq

∫t

t0

∫u

t0

d([y(s)]α, [xn−1(s)]α)d sdu

for any α ∈ [0,1], n = 1,2, . . ..
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By the definition of D, we have

D(y(t), xn(t)) ≤ K

∫t

t0

D(y(s), xn−1(s))d s +K

∫t

t0

∫u

t0

D(y(s), xn−1(s))d sdu (13)

But D(y(t), x0(t))≤ b on |t − t0| ≤ δ, y(t) being a solution of (12). It follows from (13) that

D(y(t), x1(t)) ≤ K

∫t

t0

D(y(s), x0(s))d s +K

∫t

t0

∫u

t0

D(y(s), x0(s))d sdu

≤ K b

[

|t − t0|+
|t − t0|

2

2!

]

on |t − t0| ≤ δ. Also,

D(y(t), x2(t)) ≤ K

∫t

t0

D(y(s), x1(s))d s +K

∫t

t0

∫u

t0

D(y(s), x1(s))d sdu

≤ K 2b

[

|t − t0|
2

2!
+2

|t − t0|
3

3!
+
|t − t0|

4

4!

]

on |t − t0| ≤ δ. Now assume that

D(y(t), xn(t)) ≤ K nb

[

(n−1)C0
|t − t0|

n

n!
+

(n−1) C1
|t − t0|

n+1

(n+1)!

+·· ·+
(n−1) Cn

|t − t0|
2n

(2n)!

]

(14)

on the interval |t − t0| ≤ δ. From

D(y(t), xn+1(t)) ≤ K

∫t

t0

D(y(s), xn (s))d s +K

∫t

t0

∫u

t0

D(y(s), xn (s))d sdu

and (14), one obtains

D(y(t), xn+1(t))≤ K n+1b

[

nC0
|t − t0|

n+1

(n+1)!
+

n C1
|t − t0|

n+2

(n+2)!
+·· ·+

n Cn
|t − t0|

2n+1

(2n+1)!

]

(15)

Consequently, (14) holds for any n, which leads to the conclusion

D(y(t), xn (t))= D(x(t), xn (t)) → 0

on the interval |t − t0| ≤ δ as n →∞. Thus, there exists an unique solution on [t0, t0 +L]. Since

L is arbitrary in (0,β).Therefore, there exists an unique solution on [t0, t0 +β).

Example. Consider the fuzzy Volterra integral equation with infinite delay

x′(t) =

(

5

6
−

6

11e

)

x(t)+

∫t

−∞

e(s−t−1)x(s)d s,

[x(t)]α = [φ(t)]α = e2t [(1+α), (3−α)], t ∈ (−∞,0],α ∈ [0,1].
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Since the conditions (A)-(C) hold, from Theorem 3.1 the above equation has a unique solu-

tion.
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