ON HUA'S INEQUALITY IN REAL INNER PRODUCT SPACES

J. PEČARIĆ

Abstract

Generalization of results in [1] concerning the Hua's inequality in real inner product spaces are given.

1. Introduction

The following generalizations of the Hua's inequality in real inner product spaces was given in [1]:

Theorem 1.1. Let $(X ;()$,$) be a real inner product space and \alpha>0, \beta>0$. For all $x, y \in X$ one has the inequality

$$
\begin{equation*}
(\delta-(x, y))^{2}+\alpha\|x\|^{2} \geq \alpha \delta^{2} /\left(\alpha+\|y\|^{2}\right) \tag{1.1}
\end{equation*}
$$

The equality holds in (1.1) iff

$$
x=\left(\delta /\left(\alpha+\|y\|^{2}\right)\right) y
$$

Theorem 1.2. Let $(X ;()$,$) be an inner product space and x_{i} \in X(i=1,2, \ldots, n), y \in$ X and $\alpha>0$. Then one has the inequality:

$$
\begin{equation*}
\left\|y-\sum_{i=1}^{n} x_{i}\right\|^{2}+\alpha \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \geq(\alpha /(n+\alpha))\|y\|^{2} \tag{1.2}
\end{equation*}
$$

The equality holds in (1.2) iff

$$
x_{i}=(1 /(n+\alpha)) y, \quad \text { for all } i=1,2, \ldots, n
$$

In this paper we shall give some new generalization of these results.

2. Results

First we shall prove the following result:

Received July 19, 1991.

2000 Mathematics Subject Classification. 26D15.
Key words and phrases. Hua's inequality, inner product spaces.

Theorem 2.1. Let the conditions of Theorem 1.1. be satisfied and let $(x, y)<\delta, p, q>$ $1,1 / p+1 / q=1$. Then one has the inequality

$$
\begin{equation*}
(\delta-(x, y))^{p}+\alpha^{p-1}\|x\|^{p} \geq\left(\alpha /\left(\alpha+\|y\|^{q}\right)\right)^{p-1} \delta^{p} \tag{2.1}
\end{equation*}
$$

The equality holds in (2.1) iff

$$
\begin{equation*}
\left.x=\left(\delta\|y\|^{q-2} / \alpha+\|y\|^{q}\right)\right) y \tag{2.2}
\end{equation*}
$$

Proof. Applying Hölder's and Schwarz's inequality we have

$$
\begin{aligned}
& \left(1+\alpha^{-1}\|y\|^{q}\right)^{1 / q}\left[(\delta-(x, y))^{p}+\alpha^{-1} \alpha^{p}\|x\|^{p}\right]^{1 / p} \\
& \quad \geq \delta-(x, y)+\alpha^{-1}\|y\| \alpha\|x\|=\delta-(x, y)+\|x\|\|y\| \geq \delta
\end{aligned}
$$

This inequality is equivalent to (2.1). From the conditions for equality in Holder's inequality we have

$$
\begin{equation*}
\alpha^{p}\|x\|^{p}=C\|y\|^{q},(\delta-(x, y))^{p}=C \tag{2.3}
\end{equation*}
$$

while the equality in Schwarz's inequality gives

$$
\begin{equation*}
x=\lambda y, \quad(\lambda>0) \tag{2.4}
\end{equation*}
$$

From (2.4) and (2.3) we have

$$
\alpha^{p} \lambda^{p}\|y\|^{p}=C\|y\|^{q}
$$

that is

$$
\begin{equation*}
C=\alpha^{p} \lambda^{p}\|y\|^{p-q} \tag{2.5}
\end{equation*}
$$

From (2.4), (2.3) and (2.5) we have

$$
(\delta-(x, y))^{p}=\alpha^{p} \lambda^{p}\|y\|^{p-q}
$$

i.e.

$$
\begin{aligned}
\delta-\lambda\|y\|^{2} & =\alpha \lambda\|y\|^{1-q / p} \\
& =\alpha \lambda\|y\|^{2-q}
\end{aligned}
$$

where from we have

$$
\begin{equation*}
\lambda=\delta\|y\|^{q-2} /\left(\alpha+\|y\|^{q}\right) \tag{2.6}
\end{equation*}
$$

Now, (2.4) and (2.6) gives (2.2).
Remark. For $p=2$, we have Theorem 1.1.
The following theorem is also valid:

Theorem 2.2. Let x, y, δ, α satisfy the conditions of Theorem 2.1 and let f be a convex nondecreasing function on $[0, \infty)$. Then

$$
\begin{equation*}
f(\delta-(x, y))+\alpha^{-1}\|y\| f(\alpha\|x\|) \geq((\alpha+\|y\|) / \alpha) f(\alpha \delta /(\alpha+\|y\|)) \tag{2.7}
\end{equation*}
$$

If f is strictly convex, then the equality holds in (2.7) iff

$$
\begin{equation*}
x=(\delta /(\|y\|((\alpha+\|y\|))) y . \tag{2.8}
\end{equation*}
$$

Proof. By applying Jensen's and Schwarz's inequlity and the nondecreasing property of f, we have

$$
\begin{aligned}
& f(\delta-(x, y))+\alpha^{-1}\|y\| f(\alpha\|x\|) \\
\geq & (1+\|y\| / \alpha) f((\delta-(x, y)+\|x\|\|y\|) /(1+\|y\| / \alpha)) \\
\geq & ((\alpha+\|y\|) / \alpha) f(\alpha \delta /(\alpha+\|y\|))
\end{aligned}
$$

The case of equality for Jensen's and Schwarz's inequality gives respectivity

$$
\delta-(x, y)=\alpha\|x\| \quad \text { and } x=\lambda y(\lambda>0),
$$

where from we have

$$
\lambda=\delta /(\|y\|(\alpha+\|y\|)),
$$

and so we have (2.8).
Similarly we can prove the following result.
Theorem 2.3. Let the conditions of Theorem 1.2. be satisfied. If f is a convex nondecreasing function on $[0, \infty)$, then

$$
\begin{equation*}
f\left(\left\|y-\sum_{i=1}^{n} x_{i}\right\|\right)+\alpha^{-1} \sum_{i=1}^{n} f\left(\alpha\left\|x_{i}\right\|\right) \geq((\alpha+n) / \alpha) f(\alpha\|y\| /(\alpha+n)) \tag{2.9}
\end{equation*}
$$

If f is a strictly convex, then equality holds iff

$$
\begin{equation*}
x_{i}=(1 /(n+\alpha)) y \quad \text { for all } i=1,2, \ldots, n . \tag{2.10}
\end{equation*}
$$

Proof. By the triangle inequality we have

$$
\begin{equation*}
\left\|y-\sum_{i=1}^{n} x_{i}\right\| \geq\left|\|y\|-\left\|\sum_{i=1}^{n} x_{i}\right\|\right| \tag{2.11}
\end{equation*}
$$

Hence since f is nondecreasing on $[0, \infty)$ we have

$$
\begin{equation*}
f\left(\left\|y-\sum_{i=1}^{n} x_{i}\right\|\right) \geq f\left(\mid\|y\|-\left\|\sum_{i=1}^{n} x_{i}\right\| \|\right) \tag{2.12}
\end{equation*}
$$

Now Jensen's inequality for convex functions gives

$$
\begin{align*}
& \alpha^{-1} \sum_{i=1}^{n} f\left(\alpha\left\|x_{i}\right\|\right)=(n / \alpha)(1 / n) \sum_{i=1}^{n} f\left(\alpha\left\|x_{i}\right\|\right) \\
\geq & (n / \alpha) f\left((\alpha / n) \sum_{i=1}^{n}\left\|x_{i}\right\|\right) \geq(n / \alpha) f\left((\alpha / n)\left\|\sum_{i=1}^{n} x_{i}\right\|\right) \tag{2.13}
\end{align*}
$$

Note that $f(|t|)$ is also a convex function. So by (2.12) and (2.13) we have

$$
\begin{align*}
& f\left(\left\|y-\sum_{i=1}^{n} x_{i}\right\|\right)+\alpha^{-1} \sum_{i=1}^{n} f\left(\alpha\left\|x_{i}\right\|\right) \\
\geq & f\left(\mid\|y\|-\left\|\sum_{i=1}^{n} x_{i}\right\| \|\right)+(n / \alpha) f\left((\alpha / n)\left\|\sum_{i=1}^{n} x_{i}\right\|\right) \\
\geq & ((\alpha+n) / \alpha) f(|\alpha\|y\| /(\alpha+n)|)=((\alpha+n) / \alpha) f(\alpha\|y\| /(\alpha+n)) \tag{2.14}
\end{align*}
$$

Now we address the condition for equality in the event that f is strictly convex. Since it is nondecreasing it must be strictly increasing on $[0, \infty)$. The first inequality in (2.13) becomes equality iff

$$
\begin{equation*}
\left\|x_{1}\right\|=\left\|x_{2}\right\|=\cdots=\left\|x_{n}\right\| \tag{2.15}
\end{equation*}
$$

While the second inequality in (2.14) becomes an equality iff

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} x_{i}\right\|=n\|y\| /(\alpha+n) \tag{2.16}
\end{equation*}
$$

The second inequality in (2.13) becomes an equality iff

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} x_{i}\right\|=\sum_{i=1}^{n}\left\|x_{i}\right\| \tag{2.17}
\end{equation*}
$$

i.e. there exists $\lambda_{i j}>0$ so that $x_{i}=\lambda_{i j} x_{j}$ for all $i, j \varepsilon\{1,2, \ldots, n\}$ with $j \neq j$. With respect to (2.15) it is clear that $\lambda_{i j}=1$. From (2.16) and (2.17) we have

$$
\begin{equation*}
n\left\|x_{i}\right\|=n\|y\| /(\alpha+n) \quad i=1,2, \ldots, n \tag{2.18}
\end{equation*}
$$

Moreover equality in (2.11) is valid if

$$
\sum_{i=1}^{n} x_{i}=\lambda y \quad \text { i.e. } n x_{i}=\lambda y
$$

which together with (2.18) gives (2.10).
Remark. For $f(x)=x^{2}$, we have Theorem 1.2, while for $f(x)=x^{p}, p>1$ we obtain

$$
\begin{equation*}
\left\|y-\sum_{i=1}^{n} x_{i}\right\|^{p}+\alpha^{p-1} \sum_{i=1}^{n}\left\|x_{i}\right\|^{p} \geq(\alpha /(\alpha+n))^{p-1}\|y\|^{p} \tag{2.19}
\end{equation*}
$$

References

[1] S. S. Dragomir, G. S. Yang, On Hua's inequality in real inner product spaces, Tamkang J. Math. 27 (1996), 227-232.

Faculty of Textile Technology, Pierottijeva 6, 10000 Zagreb, Croatia.

