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ON HUA’S INEQUALITY IN REAL INNER PRODUCT SPACES

J. PECARIC

Abstract. Generalization of results in [1] concerning the Hua’s inequality in real inner product

spaces are given.

1. Introduction

The following generalizations of the Hua’s inequality in real inner product spaces was

given in [1]:

Theorem 1.1. Let (X;(,)) be a real inner product space and o« > 0,3 > 0. For all

z,y € X one has the inequality
(6 = (z,9))* + allz]]* > ad®/(a + [y [*).
The equality holds in (1.1) iff

v = (0/(a+lyl")y-

Theorem 1.2. Let (X; (,)) be an inner product space and x; € X (i =1,2,...

X and a > 0. Then one has the inequality:

n
y- Zmz
i=1

The equality holds in (1.2) iff

+a Z l:l* > (a/ (n + o)) [lyl*.

;= (1/(n+a))y, forali=1,2,...,n.

In this paper we shall give some new generalization of these results.

2. Results

First we shall prove the following result:
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Theorem 2.1. Let the conditions of Theorem 1.1. be satisfied and let (z,y) < d,p,q >
1,1/p+ 1/q = 1. Then one has the inequality

(0 = (z,9))? + P HallP > (af (e + |lyl|))P~ 6" (2.1)
The equality holds in (2.1) iff
z = (8llyl1*=*/a+ [lyll1*))y.- (2.2)
Proof. Applying Hoélder’s and Schwarz’s inequality we have
(L+a™ gD [(8 = (z,))" + o™ a?||2||P]"/?
>0~ (z,y) + o yllallzl = 6 — (z,y) + |zl [lyll > 6

This inequality is equivalent to (2.1). From the conditions for equality in Holder’s in-
equality we have

a||z[|” = Cllyl|, (0 = (z,y))" =C (2.3)
while the equality in Schwarz’s inequality gives
z=2xy, (A>0). (2.4)

From (2.4) and (2.3) we have
a” N[lyllP = Cllyl|*,

that is
C = a?X|ly|]P-. (2.5)

From (2.4), (2.3) and (2.5) we have
(0 — (,9))" = N |ly|IP~1
ie.
6 = Alyll* = allyll*~»
= a[|y[*~

where from we have
A =6llyll?/ (e + llyllY). (2.6)

Now, (2.4) and (2.6) gives (2.2).

Remark. For p = 2, we have Theorem 1.1.
The following theorem is also valid:

Theorem 2.2. Let x,y,d,a satisfy the conditions of Theorem 2.1 and let f be a
convex nondecreasing function on [0,00). Then

F6 = (2,)) +a gl fallzll) > (o + [yl /) f(ad/(a + [lyl]) (2.7)
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If f is strictly convez, then the equality holds in (2.7) iff

z = (6/(llyll(e+ [lyl)))y-
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(2.8)

Proof. By applying Jensen’s and Schwarz’s inequlity and the nondecreasing property

of f, we have

F6 = (@,y)) + o lyl| f(ll=]l)
> (L+ lyll/e) f((0 = (z, ) + =l lyll)/ (1 +[lyll/a))
> ((a+lyl)/c) f(ad/(a+ llyl))

The case of equality for Jensen’s and Schwarz’s inequality gives respectivity

0 — (z,y) = allz]| and z = Ay(X > 0),

where from we have
=6/([lyll(c + [ly[])),

and so we have (2.8).
Similarly we can prove the following result.

Theorem 2.3. Let the conditions of Theorem 1.2. be satisfied. If f is a convex

nondecreasing function on [0,00), then

fllly = Zwill) +a! Z flallzill) = (@ +n)/a) f(allyl|/ (e +n))

If f is a strictly convex, then equality holds iff
=(1/(n+a))y forali=1,2,...,n

Proof. By the triangle inequality we have

> [iwil - | Zmz

Hence since f is nondecreasing on [0, 00) we have

(lo-35el) 2 (- 3o

Now Jensen’s inequality for convex functions gives

a”! Z flallzil]) = (n/a)(1/n) Z flallz:l])

>

)

> (n/a)f((a/n) lewzll (n/a)f a/nllzrzll)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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Note that f(|t]) is also a convex function. So by (2.12) and (2.13) we have
f(Hy—imi )+a*1if<a||mi||>
i=1 i=1
> £l = | S |) + st ((afm]| 3 i)
i=1 i=1

z ((a+n)/)f( ellyll/(a+n) |) = (@ +n)/a)f(a lyll/(a+n)).  (2.14)

Now we address the condition for equality in the event that f is strictly convex. Since
it is nondecreasing it must be strictly increasing on [0, 00). The first inequality in (2.13)
becomes equality iff

1] = [l = - - - = ||| (2.15)
While the second inequality in (2.14) becomes an equality iff

n
|>
i=1

The second inequality in (2.13) becomes an equality iff

R T (217
i=1 i=1

i.e. there exists \;; > 0 so that &; = Ajjz; for all i,je{1,2,...,n} with j # j. With
respect to (2.15) it is clear that A;; = 1. From (2.16) and (2.17) we have

nllzill = nllyll/(a+n) i=1,2,....n (2.18)

= nllyll/(a+n) (2.16)

Moreover equality in (2.11) is valid if

n
Zmi =y ie nz; =y

i=1

which together with (2.18) gives (2.10).

Remark. For f(z) = 2, we have Theorem 1.2, while for f(z) = z¥, p > 1 we obtain

n p n
[y =32 ] + 0t S el = (/e my ol .19
i=1 =1
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