ON HUA'S INEQUALITY IN REAL INNER PRODUCT SPACES

J. PEČARIĆ

Abstract. Generalization of results in [1] concerning the Hua's inequality in real inner product spaces are given.

1. Introduction

The following generalizations of the Hua's inequality in real inner product spaces was given in [1]:

Theorem 1.1. Let (X; (,)) be a real inner product space and $\alpha > 0, \beta > 0$. For all $x, y \in X$ one has the inequality

$$(\delta - (x, y))^2 + \alpha ||x||^2 \ge \alpha \delta^2 / (\alpha + ||y||^2).$$
(1.1)

The equality holds in (1.1) iff

$$x = (\delta/(\alpha + ||y||^2))y.$$

Theorem 1.2. Let (X; (,)) be an inner product space and $x_i \in X (i = 1, 2, ..., n), y \in X$ and $\alpha > 0$. Then one has the inequality:

$$\left\| y - \sum_{i=1}^{n} x_i \right\|^2 + \alpha \sum_{i=1}^{n} \|x_i\|^2 \ge (\alpha/(n+\alpha)) \|y\|^2.$$
(1.2)

The equality holds in (1.2) iff

$$x_i = (1/(n+\alpha))y,$$
 for all $i = 1, 2, ..., n$.

In this paper we shall give some new generalization of these results.

2. Results

First we shall prove the following result:

Received July 19, 1991.

2000 Mathematics Subject Classification. 26D15. Key words and phrases. Hua's inequality, inner product spaces. J. PEČARIĆ

Theorem 2.1. Let the conditions of Theorem 1.1. be satisfied and let $(x, y) < \delta, p, q > 1, 1/p + 1/q = 1$. Then one has the inequality

$$(\delta - (x, y))^p + \alpha^{p-1} ||x||^p \ge (\alpha/(\alpha + ||y||^q))^{p-1} \delta^p$$
(2.1)

The equality holds in (2.1) iff

$$x = (\delta \|y\|^{q-2} / \alpha + \|y\|^q))y.$$
(2.2)

Proof. Applying Hölder's and Schwarz's inequality we have

$$(1 + \alpha^{-1} ||y||^{q})^{1/q} [(\delta - (x, y))^{p} + \alpha^{-1} \alpha^{p} ||x||^{p}]^{1/p}$$

$$\geq \delta - (x, y) + \alpha^{-1} ||y|| \alpha ||x|| = \delta - (x, y) + ||x|| ||y|| \geq \delta$$

This inequality is equivalent to (2.1). From the conditions for equality in Holder's inequality we have

$$\alpha^{p} \|x\|^{p} = C \|y\|^{q}, \ (\delta - (x, y))^{p} = C$$
(2.3)

while the equality in Schwarz's inequality gives

$$x = \lambda y, \quad (\lambda > 0). \tag{2.4}$$

From (2.4) and (2.3) we have

$$\alpha^p \lambda^p \|y\|^p = C \|y\|^q,$$

that is

$$C = \alpha^p \lambda^p ||y||^{p-q}. \tag{2.5}$$

From (2.4), (2.3) and (2.5) we have

$$(\delta - (x, y))^p = \alpha^p \lambda^p ||y||^{p-q}$$

i.e.

$$\delta - \lambda \|y\|^2 = \alpha \lambda \|y\|^{1-q/p}$$
$$= \alpha \lambda \|y\|^{2-q}$$

where from we have

$$\lambda = \delta \|y\|^{q-2} / (\alpha + \|y\|^q).$$
(2.6)

Now, (2.4) and (2.6) gives (2.2).

Remark. For p = 2, we have Theorem 1.1. The following theorem is also valid:

Theorem 2.2. Let x, y, δ, α satisfy the conditions of Theorem 2.1 and let f be a convex nondecreasing function on $[0, \infty)$. Then

$$f(\delta - (x, y)) + \alpha^{-1} \|y\| f(\alpha \|x\|) \ge ((\alpha + \|y\|)/\alpha) f(\alpha \delta/(\alpha + \|y\|))$$
(2.7)

266

If f is strictly convex, then the equality holds in (2.7) iff

$$x = (\delta / (\|y\|(\alpha + \|y\|)))y.$$
(2.8)

Proof. By applying Jensen's and Schwarz's inequlity and the nondecreasing property of f, we have

$$f(\delta - (x, y)) + \alpha^{-1} ||y|| f(\alpha ||x||)$$

$$\geq (1 + ||y||/\alpha) f((\delta - (x, y) + ||x|| ||y||)/(1 + ||y||/\alpha))$$

$$\geq ((\alpha + ||y||)/\alpha) f(\alpha \delta/(\alpha + ||y||))$$

The case of equality for Jensen's and Schwarz's inequality gives respectivity

$$\delta-(x,y)=\alpha\|x\|\quad\text{and }x=\lambda y(\lambda>0),$$

where from we have

$$\lambda = \delta / (\|y\|(\alpha + \|y\|)),$$

and so we have (2.8).

Similarly we can prove the following result.

Theorem 2.3. Let the conditions of Theorem 1.2. be satisfied. If f is a convex nondecreasing function on $[0, \infty)$, then

$$f(\|y - \sum_{i=1}^{n} x_i\|) + \alpha^{-1} \sum_{i=1}^{n} f(\alpha \|x_i\|) \ge ((\alpha + n)/\alpha) f(\alpha \|y\|/(\alpha + n))$$
(2.9)

If f is a strictly convex, then equality holds iff

$$x_i = (1/(n+\alpha))y$$
 for all $i = 1, 2, ..., n.$ (2.10)

Proof. By the triangle inequality we have

$$\left\|y - \sum_{i=1}^{n} x_i\right\| \ge \left\|\|y\| - \left\|\sum_{i=1}^{n} x_i\right\|\right\|$$
 (2.11)

Hence since f is nondecreasing on $[0, \infty)$ we have

$$f\left(\left\|y - \sum_{i=1}^{n} x_{i}\right\|\right) \ge f\left(\left\|y\| - \left\|\sum_{i=1}^{n} x_{i}\right\|\right)\right)$$
(2.12)

Now Jensen's inequality for convex functions gives

$$\alpha^{-1} \sum_{i=1}^{n} f(\alpha ||x_i||) = (n/\alpha)(1/n) \sum_{i=1}^{n} f(\alpha ||x_i||)$$

$$\geq (n/\alpha) f((\alpha/n) \sum_{i=1}^{n} ||x_i||) \geq (n/\alpha) f((\alpha/n) ||\sum_{i=1}^{n} x_i||)$$
(2.13)

J. PEČARIĆ

Note that f(|t|) is also a convex function. So by (2.12) and (2.13) we have

$$f\left(\left\|y - \sum_{i=1}^{n} x_{i}\right\|\right) + \alpha^{-1} \sum_{i=1}^{n} f(\alpha \|x_{i}\|)$$

$$\geq f\left(\left\|y\| - \left\|\sum_{i=1}^{n} x_{i}\right\|\right\right) + (n/\alpha) f\left((\alpha/n)\right\|\sum_{i=1}^{n} x_{i}\right\|\right)$$

$$\geq ((\alpha + n)/\alpha) f(\|\alpha\|y\|/(\alpha + n)\|) = ((\alpha + n)/\alpha) f(\alpha\|y\|/(\alpha + n)). \quad (2.14)$$

Now we address the condition for equality in the event that f is strictly convex. Since it is nondecreasing it must be strictly increasing on $[0, \infty)$. The first inequality in (2.13) becomes equality iff

$$|x_1|| = ||x_2|| = \dots = ||x_n||$$
(2.15)

 $||x_1|| = ||x_2|| = \cdots = ||x_n||$ While the second inequality in (2.14) becomes an equality iff

$$\left\|\sum_{i=1}^{n} x_{i}\right\| = n \|y\|/(\alpha + n)$$
(2.16)

The second inequality in (2.13) becomes an equality iff

$$\left\|\sum_{i=1}^{n} x_{i}\right\| = \sum_{i=1}^{n} \|x_{i}\|$$
(2.17)

i.e. there exists $\lambda_{ij} > 0$ so that $x_i = \lambda_{ij} x_j$ for all $i, j \in \{1, 2, ..., n\}$ with $j \neq j$. With respect to (2.15) it is clear that $\lambda_{ij} = 1$. From (2.16) and (2.17) we have

$$n||x_i|| = n||y||/(\alpha + n) \quad i = 1, 2, \dots, n$$
(2.18)

Moreover equality in (2.11) is valid if

$$\sum_{i=1}^{n} x_i = \lambda y \quad \text{i.e.} \ nx_i = \lambda y$$

which together with (2.18) gives (2.10).

Remark. For $f(x) = x^2$, we have Theorem 1.2, while for $f(x) = x^p$, p > 1 we obtain

$$\left\| y - \sum_{i=1}^{n} x_i \right\|^p + \alpha^{p-1} \sum_{i=1}^{n} \|x_i\|^p \ge (\alpha/(\alpha+n))^{p-1} \|y\|^p$$
(2.19)

References

 S. S. Dragomir, G. S. Yang, On Hua's inequality in real inner product spaces, Tamkang J. Math. 27 (1996), 227-232.

Faculty of Textile Technology, Pierottijeva 6, 10 000 Zagreb, Croatia.