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ON HUA'S INEQUALITY IN REAL INNER PRODUCT SPACES

J. PE�CARI�C

Abstract. Generalization of results in [1] concerning the Hua's inequality in real inner product

spaces are given.

1. Introduction

The following generalizations of the Hua's inequality in real inner product spaces was

given in [1]:

Theorem 1.1. Let (X ; (; )) be a real inner product space and � > 0; � > 0: For all

x; y 2 X one has the inequality

(� � (x; y))2 + �kxk2 � ��2=(�+ kyk2): (1.1)

The equality holds in (1:1) i�

x = (�=(�+ kyk2))y:

Theorem 1.2. Let (X ; (; )) be an inner product space and xi 2 X(i = 1; 2; : : : ; n); y 2

X and � > 0. Then one has the inequality:
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kxik
2
� (�=(n+ �))kyk2: (1.2)

The equality holds in (1:2) i�

xi = (1=(n+ �))y; for all i = 1; 2; : : : ; n:

In this paper we shall give some new generalization of these results.

2. Results

First we shall prove the following result:
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Theorem 2.1. Let the conditions of Theorem 1:1: be satis�ed and let (x; y) < �; p; q >

1; 1=p+ 1=q = 1: Then one has the inequality

(� � (x; y))p + �p�1
kxkp � (�=(�+ kykq))p�1�p (2.1)

The equality holds in (2:1) i�

x = (�kykq�2=�+ kykq))y: (2.2)

Proof. Applying H�older's and Schwarz's inequality we have

(1 + ��1kykq)1=q [(� � (x; y))p + ��1�p
kxkp]1=p

� � � (x; y) + ��1kyk�kxk = � � (x; y) + kxk kyk � �

This inequality is equivalent to (2.1). From the conditions for equality in Holder's in-

equality we have

�p
kxkp = Ckykq; (� � (x; y))p = C (2.3)

while the equality in Schwarz's inequality gives

x = �y; (� > 0): (2.4)

From (2.4) and (2.3) we have

�p�pkykp = Ckykq;

that is

C = �p�pkykp�q: (2.5)

From (2.4), (2.3) and (2.5) we have

(� � (x; y))p = �p�pkykp�q

i.e.

� � �kyk2 = ��kyk1�q=p

= ��kyk2�q

where from we have

� = �kykq�2=(�+ kykq): (2.6)

Now, (2.4) and (2.6) gives (2.2).

Remark. For p = 2, we have Theorem 1.1.

The following theorem is also valid:

Theorem 2.2. Let x; y; �; � satisfy the conditions of Theorem 2:1 and let f be a

convex nondecreasing function on [0;1). Then

f(� � (x; y)) + ��1kykf(�kxk) � ((� + kyk)=�)f(��=(�+ kyk)) (2.7)
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If f is strictly convex, then the equality holds in (2:7) i�

x = (�=(kyk(�+ kyk)))y: (2.8)

Proof. By applying Jensen's and Schwarz's inequlity and the nondecreasing property

of f , we have

f(� � (x; y)) + ��1kykf(�kxk)

� (1 + kyk=�)f((� � (x; y) + kxk kyk)=(1 + kyk=�))

� ((� + kyk)=�)f(��=(�+ kyk))

The case of equality for Jensen's and Schwarz's inequality gives respectivity

� � (x; y) = �kxk and x = �y(� > 0);

where from we have

� = �=(kyk(�+ kyk));

and so we have (2.8).

Similarly we can prove the following result.

Theorem 2.3. Let the conditions of Theorem 1:2: be satis�ed. If f is a convex

nondecreasing function on [0;1), then

f(ky �

nX
i=1

xik) + ��1
nX

i=1

f(�kxik) � ((� + n)=�)f(�kyk=(�+ n)) (2.9)

If f is a strictly convex, then equality holds i�

xi = (1=(n+ �))y for all i = 1; 2; : : : ; n: (2.10)

Proof. By the triangle inequality we have
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Hence since f is nondecreasing on [0;1) we have
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(2.12)

Now Jensen's inequality for convex functions gives

��1
nX

i=1

f(�kxik) = (n=�)(1=n)

nX
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nX
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nX
i=1

xik) (2.13)
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Note that f(jtj) is also a convex function. So by (2.12) and (2.13) we have

f
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�
(�=n)





nX
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xi





�

� ((� + n)=�)f(j �kyk=(�+ n) j) = ((� + n)=�)f(� kyk=(�+ n)): (2.14)

Now we address the condition for equality in the event that f is strictly convex. Since

it is nondecreasing it must be strictly increasing on [0;1). The �rst inequality in (2.13)

becomes equality i�

kx1k = kx2k = � � � = kxnk (2.15)

While the second inequality in (2.14) becomes an equality i�





nX

i=1

xi




 = nkyk=(�+ n) (2.16)

The second inequality in (2.13) becomes an equality i�





nX

i=1

xi




 =
nX

i=1

kxik (2.17)

i.e. there exists �ij > 0 so that xi = �ijxj for all i; j"f1; 2; : : : ; ng with j 6= j. With

respect to (2.15) it is clear that �ij = 1. From (2.16) and (2.17) we have

nkxik = nkyk=(�+ n) i = 1; 2; : : : ; n (2.18)

Moreover equality in (2.11) is valid if

nX
i=1

xi = �y i.e. nxi = �y

which together with (2.18) gives (2.10).

Remark. For f(x) = x2, we have Theorem 1.2, while for f(x) = xp; p > 1 we obtain
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� (�=(�+ n))p�1kykp (2.19)

References

[1] S. S. Dragomir, G. S. Yang, On Hua's inequality in real inner product spaces, Tamkang J.

Math. 27 (1996), 227-232.

Faculty of Textile Technology, Pierottijeva 6, 10 000 Zagreb, Croatia.


