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DEGREE OF APPROXIMATION OF CONJUGATE OF LIP (�; p)

FUNCTION BY (C; 1) (E; 1) MEANS OF CONJUGATE SERIES

OF A FOURIER SERIES

SHYAM LAL AND PREM NARAIN SINGH

Abstract: An estimate of degree of approximation of conjugates of Lip(�; p) functions by

(C,1) (E,1) product means of conjugate series of a Fourier Series is obtained.

1. De�nition and Notations
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then an in�nite series
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n=0 un with the partial sums Sn is said to be summable (E; 1)

to the de�nite number s. The (C; 1) transform of the (E; 1) transform E1
n
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(C; 1)(E; 1) transform of the partial sum Sn of the series
P
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n=0 un,thus if

(CE)1n =
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Where E1
n
denotes the (E; 1) transform of Sn, then the Series

P
1

n=0 un is said to be

summable by (C; 1)(E; 1) means or simply summable (C; 1)(E; 1) to s.

We de�ne k kp by

k f kp=

�Z 2�

0

[f(x)]pdx

�1=p
; p � 1

and let the degree of approximation Mn(f) be given by

Mn(f) =Min k f � Tn kp, where Tn is trigonametic polynomial of degree n.
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Let f : R! R be 2� periodic and Lip �, 0 < � � 1

so that jf(x+ t)� f(x)j = O(jtj�) for all x; t;

f 2 Lip(�; p); for a � x � b; ifh Z b

a

jf(x+ t)� f(x)jpdx
i1=p

= O(t�); 0 < � � 1; p � 1 (1.1)

de�nition 5.38 of Mc Fadden(1942)

If p!1 then Lip(�; p) coincides with Lip � class:

The function f has its Fourier series as following.

f(x) = a0 +

1X
n=1

(an cosn x+ bn sinn x)

The conjugate series of above Fourier series is given by:

1X
n=1

(an sinn x� bn cosn x) (1.2)

where an bn are Fourier coe�cients of f over [��, �].

Writing,

 x(t) = f(x+ t)� f(x� t) for all x; t:

f has also its conjugate function �f [8] given by

�f(x) = �
1

2�

Z �

0

 x(t) cot(
t

2
)dt

2. Main Theorem

For the function f 2 Lip � and Lip(�; p) the degree of approximation by Cesaro means

and by N�orlund means of Fourier series of f have been studied by Alexits [1], (Sahney)

and Goel [9], Chandra [2], Qureshi [4,5], Qureshi and Neha [6] and many others. But

till now no work seems to have been done in the direction of determining the degree

of approximation of conjugate of a function belonging to Lip(�; p) class by product

summability means of the form (C; 1) (E; 1). In an attempt to make advance study in

this direcation, in this paper the degree of approximation of conjugate function by

(C; 1) (E; 1) means of the conjugate series of a Fourier series of f 2 Lip(�; p) class has

been determined in the following form:
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Theorem. If f :R ! R is 2� periodic and Lip(�; p) function then the degree of

approximation of its conjugate function �f by the (C; 1)(E; 1) product means of conjugate

series of Fourier series of f satis�es, for n = 0; 1; 2; : : :,

Mn( �f) = Min k(CE)1n �
�fkP = O

 
1

(n+ 1)
��1=p

!

where (CE)1n = 1
n+k

Pn

k=0(
1
2k

P
1

i=0

�
k

i

�
Si) is (C; 1) (E; 1) means of series (1:2)

3. Proof of the Theorem

Following Lal(1997) the partial sums of conjugate series (1.2) can be written as

Sn(x) = �f(x) +
1

2�

Z �

0

 x(t)
cos(n+ 1=2)t

sin(t=2)
dt (n = 0; 1; 2; : : :)

So the (E; 1) means (see[3], of the series (1.2) are
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Then the (C; 1)(E; 1) product means of the series (1.2) are,
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sin(t=2)

cosn+1(t=2) sin(n+ 1)t=2
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dt
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Since here sin(t=2) � t=� and j sin �j � � it follows that

j(CE)1
n
(x) � �f(x)j �
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= O
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This completes the proof of theorem.

4. Corollary

Following corollary can be derived from our theorem

Corollary. If p!1, 0 < � < 1 then the degree of approximation of the function �f ,

conjugate to 2� periodic function f belonging to Lip � is given by

j(CE)1
n
� �f(x)j = O

� 1

(n+ 1)�

�
:

Remark. An independent proof of corollary can be derived along the same lines as

the theorem.
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