SOME CLASSES OF $L^p(0 CONVERGENCE OF$ TRIGONOMETRIC SERIES

ŽIVORAD TOMOVSKI

Abstract. We study here $L^p(0 -convergence of complex trigonometric series, i.e.$ $the extension is made for the V. B. Stanojevic Theorem [3], by considering the class <math>(BV)_r^m$, $m = 1, 2, 3, \ldots, r = 0, 1, 2, 3, \ldots$ instead of $(BV)^m$, $m = 1, 2, 3, \ldots$ Applying the Wang-Telyakovskii class $(BV)_r^{\sigma}$, $r = 0, 1, 2, \ldots, \sigma \geq 1$ (see [11]), the extension of Uljanov's theorem [10] (case $r = 0, \sigma = 1$) for sine and cosine series with real coefficients is also given. For $\sigma = 1$, some corollaryes of the main results are obtained.

1. Introduction

Let $\{c_k : k = 0, \pm 1, \pm 2, ...\}$ be a sequence of complex numbers and the partial sums of the complex trigonometric series

$$\sum_{k=-\infty}^{\infty} c_k e^{ikt} \tag{1.1}$$

be denoted by $S_n^*(t) = \sum_{k=-n}^n c_k e^{ikt}, t \in \mathbf{T} = \mathbf{R}/2\pi \mathbf{z}$ (1.2). A sequence $\{c_k\}$ belongs to the class $(\mathbf{BV})^m$ (see [3]) if for some integer $m \ge 1$,

$$\sum_{|k|<\infty} |\Delta^m c_k| < \infty,$$

where $\Delta^m c_k = \Delta (\Delta^{m-1} c_k) = \Delta^{m-1} c_k - \Delta^{m-1} c_{k+1}$. For m = 1, the class $(BV)^1$ is the class of complex sequences with bounded variation. As an extension of the Uljanov's Theorem (see [10]), V. B. Stanojevic have obtained the following theorem for L^p , 0 -convergence of the series (1. 1).

Theorem A.([3]) If for some integer $m \ge 1$, $\{c_n\} \in (BV)^m$, then the point-wise limit f^* of the partial sums (1.2) exists in $T \setminus \{0\}$ and for any 0 .

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} |S_n^*(t) - f^*(t)|^p dt = 0$$

Received July 25, 2001;

²⁰⁰⁰ Mathematics Subject Classification. 26D15, 42A20, 42A32.

Key words and phrases. $L^p(0 -approximation, complex trigonometric series, Wang-Telyakovskii class, Uljanov's theroem.$

ŽIVORAD TOMOVSKI

On the other hand, Wang and Telyakovskii [11] have considered the following class of real sequences $\{a_n\}$. Namelly, a null-sequence $\{a_k\}$ belongs to the class $(\boldsymbol{BV})_r^{\sigma}$, $r = 0, 1, 2, \ldots, \sigma \ge 0$ if $\sum_{k=1}^{\infty} k^r \mid \Delta^{\sigma} a_k \mid < \infty$. If $\sigma = 1$, we denote $(\boldsymbol{BV})_r^{\sigma} = (\boldsymbol{BV})_r$ and if $\sigma = 1, r = 0$, then we denote $(\boldsymbol{BV})_r^{\sigma} = (\boldsymbol{BV})$.

Theorem B.([11]) Let $\rho \ge 0$, $\sigma \ge 0$. Then for all $\gamma > \sigma$ the following embedding relation holds,

 $(BV)^\sigma_{_{ heta}} \subset (BV)^\gamma_{_{ heta}}.$

$$\frac{a_o}{2} + \sum_{n=1}^{\infty} a_n \cos nx \qquad (C)$$
$$\sum_{n=1}^{\infty} a_n \sin nx \qquad (S)$$

be the cosine and sine trigonometric series, and S_n , $\overline{S_n}$ denote the partial sums of the series (C) and (S) respectively.

Wang and Telyakovskii [11] considering the complex form of trigonometric series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{inx}, \quad x \in (0, \pi]$$

have proved the following theorem.

Theorem C.([11]) If $\{a_k\} \in (\mathbf{BV})_r^{\sigma}$, $r = 0, 1, 2, ..., \sigma \ge 0$, then the series (C) and (S) have continuous derivatives of r-th order on $(0, \pi]$.

The Wang-Telyakovskii class $(\boldsymbol{BV})_r^{\sigma}$, $r = 0, 1, 2, ..., \sigma \ge 0$, motivated me to consider a further class $(\boldsymbol{BV})_r^m$, r = 0, 1, 2, ..., m = 1, 2, 3, ..., of complex null-sequences $\{c_n\}$ such that

$$\sum_{|k|<\infty} k^r \mid \triangle^m c_k \mid < \infty$$

In this paper we shall extend the Theorem A, by considering the class $(\boldsymbol{BV})_r^m$, $r = 0, 1, 2, \ldots, m = 1, 2, 3, \ldots$ instead of $(BV)^m$. In addition we obtain the extension of corresponding Uljanov's theorem [10], by considering the Wang-Telyakovskii class $(\boldsymbol{BV})_r^{\sigma}$, $r = 0, 1, 2, \ldots, \sigma \geq 1$ instead of \boldsymbol{BV} .

2. Main results

For the proof of our new results, we need the following Lemma.

Lemma 1. If m = 1, 2, 3, ..., r = 0, 1, 2, 3, ... and <math>0 , then the following $estimate\ holds$

$$\int_{-\pi}^{\pi} \left| \frac{d^r}{dt^r} \left(\frac{e^{it}}{e^{it} - 1} \right)^m \right|^p dt = O_{r,p,m}(1),$$

where $O_{r,p,m}$ depends on r, p and m.

Proof. We denote $h(t) = \left(\frac{e^{it}}{e^{it}-1}\right)^m$. After some elementary calculations, this function can be written in the form

$$h(t) = \frac{e^{im\frac{t}{2}}}{(2i)^m \sin^m \frac{t}{2}}$$

Then, $h^{(r)}(t) = \frac{1}{(2i)^m} \sum_{k=0}^r \binom{r}{k} \left(\sin^{-m} \frac{t}{2}\right)^{(k)} \left(e^{im\frac{t}{2}}\right)^{(r-k)}$

The equality $(\sin^{-m} \frac{t}{2})^{(k)} = \frac{P_k(\cos \frac{t}{2})}{\sin^{m+k} \frac{t}{2}}$, where P_k is some cosine polynomial of degree k, can be proved by mathematical induction.

Really, for k = 1, we obtain $(\sin^{-m} \frac{t}{2})' = \frac{(\frac{-m}{2})\cos \frac{t}{2}}{\sin^{m+1}\frac{t}{2}} = \frac{P_1(\cos \frac{t}{2})}{\sin^{m+1}\frac{t}{2}}$. Suppose that the equality is true for some k and consider the k + 1-th derivate.

$$\left(\sin^{-m}\frac{t}{2}\right)^{k+1} = \frac{\left[P_k\left(\cos\frac{t}{2}\right)\right]'\sin^{m+k}\frac{t}{2} - P_k\left(\cos\frac{t}{2}\right)\left(\sin^{m+k}\frac{t}{2}\right)'}{\sin^{2m+2k}\frac{t}{2}}$$
$$= \frac{\tilde{P}_{k-1}\left(\cos\frac{t}{2}\right)\left(-\frac{1}{2}\sin^2\frac{t}{2}\right) - \frac{m+k}{2}P_k\left(\cos\frac{t}{2}\right)\cdot\cos\frac{t}{2}}{\sin^{m+k+1}\frac{t}{2}}$$
$$= \frac{-\frac{1}{2}\tilde{P}_{k-1}\left(\cos\frac{t}{2}\right) + \frac{1}{2}\tilde{P}_{k-1}\left(\cos\frac{t}{2}\right)\cos^2\frac{t}{2} - \frac{m+k}{2}\mathcal{Q}_{k+1}\left(\cos\frac{t}{2}\right)}{\sin^{m+k+1}\frac{t}{2}}$$
$$= \frac{R_{k+1}\left(\cos\frac{t}{2}\right) - \frac{m+k}{2}\mathcal{Q}_{k+1}\left(\cos\frac{t}{2}\right)}{\sin^{m+k+1}\frac{t}{2}} = \frac{T_{k+1}\left(\cos\frac{t}{2}\right)}{\sin^{m+k+1}\frac{t}{2}}.$$

Here \tilde{P}_{k-1} , R_{k+1} , Q_{k+1} , T_{k+1} are some cosine polynomials of degree k-1 and k+1respectivelly.

Thus
$$h^{(r)}(t) = \frac{1}{(2i)^m} \sum_{k=0}^r {\binom{r}{k}} {\left(\frac{im}{2}\right)^{r-k}} {\left(e^{im\frac{t}{2}}\right)} \frac{P_k\left(\cos\frac{t}{2}\right)}{\sin^{m+k}\frac{t}{2}}.$$

We note that $|P_k(\cos \frac{t}{2})| = O_{k,m}(1)$.

Hence, $|h^{(r)}(t)| \leq \frac{1}{2^m} \sum_{k=0}^r O_{k,m}(1) \cdot {r \choose k} \left(\frac{m}{2}\right)^{r-k} \cdot \frac{1}{|\sin^{m+k} \frac{t}{2}|}$ Applying the well-known inequality

$$\left(\sum \alpha_i\right)^{\lambda} \le \left(\sum \alpha_i^{\lambda}\right), \text{ where } \alpha_i \ge 0, \ 0 < \lambda \le 1,$$
 (2.1)

we obtain

$$|h^{(r)}(t)|^{p} \leq \frac{1}{2^{mp}} \sum_{k=0}^{r} O_{k,m,p}(1) {\binom{r}{k}}^{p} {\left(\frac{m}{2}\right)}^{(r-k)p} \frac{1}{\left|\sin^{(m+k)p} \frac{t}{2}\right|}$$

Finally, for 0 , we get

$$\int_{-\pi}^{\pi} |h^{(r)}(t)|^p dt \le \frac{1}{2^{mp-2}} \sum_{k=0}^r O_{k,m,p}(1) {r \choose k}^p \left(\frac{m}{2}\right)^{(r-k)p} \int_0^{\pi/2} \frac{dt}{\sin^{(m+k)p} \frac{t}{2}} \\ \le \frac{1}{2^{mp-2}} \sum_{k=0}^r O_{k,m,p}(1) {r \choose k}^p \left(\frac{m}{2}\right)^{(r-k)p} \pi^{(m+k)p} \int_0^{\pi/2} \frac{dt}{t^{(m+k)p}} = O_{r,p,m}(1).$$

Theorem 1. Let $\{c_n\} \in (BV)_r^m$, for some integer $m \ge 1$ and $r = 0, 1, 2, 3, \ldots$. Then the point-wise limit $f^{*(r)}$ of the r-th derivate of the sums (1.2) exists in $\mathbf{T} \setminus \{0\}$ and for any 0 ,

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} |S_n^{*(r)}(t) - f^{*(r)}(t)|^p dt = 0.$$
(2.2)

Proof. We consider the identity, obtained by V. B. Stanojevic in [3].

$$\begin{split} S_n^*(t) &= \left(\frac{e^{it}}{e^{it}-1}\right)^m \sum_{|k| \le n} (\Delta^m c_k) e^{ikt} \\ &- \left(\frac{e^{it}}{e^{it}-1}\right)^m \sum_{j=0}^{m-1} \left(\frac{e^{it}-1}{e^{it}}\right)^j (\Delta^{m-1-j} c_{-n+j}) e^{i(-n+j)t} \\ &+ \left(\frac{e^{it}}{e^{it}-1}\right)^m \sum_{j=0}^{m-1} \left(\frac{e^{it}-1}{e^{it}}\right)^j (\Delta^{m-1-j} c_{n+j+1}) e^{i(n+j+1)t} \\ &+ \sum_{j=-n}^{-n+m-1} c_j e^{ijt} - \sum_{j=n+1}^{n+m} c_j e^{ijt}. \end{split}$$

For the r - th derivate of the partial sums of S_n^* , we have:

$$S_{n}^{*(r)}(t) = \sum_{v=0}^{r} {r \choose v} \frac{d^{v}}{dt^{v}} \left(\frac{e^{it}}{e^{it}-1}\right)^{m} i^{r-v} \sum_{|k| \le n} k^{r-v} (\Delta^{m}c_{k}) e^{ikt}$$
$$-\sum_{v=0}^{r} {r \choose v} \frac{d^{v}}{dt^{v}} \left(\frac{e^{it}}{e^{it}-1}\right)^{m} \sum_{j=0}^{m-1} \sum_{q=0}^{j} (-1)^{q} {j \choose q} (j-q-n)^{r-v} i^{r-v}$$
$$e^{it(j-q-n)} (\Delta^{m-1-j}c_{-n+j}) + \sum_{v=0}^{r} {r \choose v} \frac{d^{v}}{dt^{v}} \left(\frac{e^{it}}{e^{it}-1}\right)^{m} \sum_{j=0}^{m-1} \sum_{q=0}^{j} (-1)^{q} {j \choose q}$$

$$\times (j - q + n + 1)^{r - v} i^{r - v} e^{it(i - q + n + 1)} (\Delta^{m - 1 - j} c_{n + j + 1})$$

+
$$\sum_{j = -n}^{-n + m - 1} c_j j^r i^r e^{ijt} - \sum_{j = n + 1}^{n + m} c_j j^r i^r e^{ijt}.$$

Hence, $\lim_{n\to\infty} S_n^{*(r)}(t) = f^{*(r)}(t)$ exists in $\mathbf{T} \setminus \{0\}$. Then, we shall prove that $S_n^{*(r)}$ converges to $f^{*(r)}$ in $L^p(\mathbf{T})$ -metric, for any 0 $\frac{1}{m+r}$ For $t \neq 0$, we consider

$$\begin{split} S_n^{*(r)}(t) &- f^{*(r)}(t) \\ = \sum_{v=0}^r {r \choose v} \frac{d^v}{dt^v} \Big(\frac{e^{it}}{e^{it}-1}\Big)^m i^{r-v} \sum_{|k| < \infty} k^{r-v} (\Delta^m c_k) e^{ikt} \\ &- \sum_{v=0}^r {r \choose v} \frac{d^v}{dt^v} \Big(\frac{e^{it}}{e^{it}-1}\Big)^m i^{r-v} \sum_{|k| \le n} k^{r-v} (\Delta^m c_k) e^{ikt} \\ &+ \sum_{v=0}^r {r \choose v} \frac{d^v}{dt^v} \Big(\frac{e^{it}}{e^{it}-1}\Big)^m \sum_{j=0}^{m-1} \sum_{q=0}^j (-1)^q {j \choose q} (j-q-n)^{r-v} i^{r-v} e^{it(j-q-n)} (\Delta^{m-1-j} c_{-n+j}) \\ &- \sum_{v=0}^r {r \choose v} \frac{d^v}{dt^v} \Big(\frac{e^{it}}{e^{it}-1}\Big)^m \sum_{j=0}^{m-1} \sum_{q=0}^j (-1)^q {j \choose q} (j-q+n+1)^{r-v} i^{r-v} e^{it(j-q+n+1)} \\ &(\Delta^{m-1-j} c_{n+j+1}) - \sum_{j=-n}^{-n+m-1} c_j j^r i^r e^{ijt} + \sum_{j=n+1}^{n+m} c_j j^r i^r e^{ijt}. \end{split}$$

By inequality (2.1), we obtain

$$\begin{split} &|S_{n}^{*(r)}(t) - f^{*(r)}(t)|^{p} \\ \leq \left(\sum_{v=0}^{r} {r \choose v}^{p} \left| \frac{d^{v}}{dt^{v}} \left(\frac{e^{it}}{e^{it} - 1} \right)^{m} \right|^{p} \right) \left(\sum_{|k| \ge n+1} k^{r} |\Delta^{m} c_{k}| \right)^{p} \\ &+ \left(\sum_{v=0}^{r} {r \choose v}^{p} \left| \frac{d^{v}}{dt^{v}} \left(\frac{e^{it}}{e^{it} - 1} \right)^{m} \right|^{p} \right) \left(\sum_{j=0}^{m-1} \sum_{q=0}^{j} {j \choose q} (j - q - n)^{r} |\Delta^{m-1-j} c_{-n+j}| \right)^{p} \\ &+ \left(\sum_{v=0}^{r} {r \choose v}^{p} \left| \frac{d^{v}}{dt^{v}} \left(\frac{e^{it}}{e^{it} - 1} \right)^{m} \right|^{p} \right) \left(\sum_{j=0}^{m-1} \sum_{q=0}^{j} {j \choose q} (j - q + n + 1)^{r} |\Delta^{m-1-j} c_{n+j+1}| \right)^{p} \\ &+ \left(\sum_{j=-n}^{-n+m-1} j^{r} |c_{j}| \right)^{p} + \left(\sum_{j=n+1}^{n+m} j^{r} |c_{j}| \right)^{p} . \end{split}$$

Applying the Lemma 1, we obtain

$$\begin{split} &\int_{-\pi}^{\pi} |S_{n}^{*(r)}(t) - f^{*(r)}(t)|^{p} dt \\ &\leq O_{r,p,m}(1) \left(\sum_{|k| \geq n+1} k^{r} |\Delta^{m} c_{k}| \right)^{p} \\ &+ O_{r,p,m}(1) \left(\sum_{j=0}^{m-1} \sum_{q=0}^{j} {j \choose q} (j-q-n)^{r} |\Delta^{m-1-i} c_{-n+j}| \right)^{p} \\ &+ O_{r,p,m}(1) \left(\sum_{j=0}^{m-1} \sum_{q=0}^{j} {j \choose q} (j-q+n+1)^{r} |\Delta^{m-1-j} c_{n+j+1}| \right)^{p} \\ &+ \left(\sum_{j=-n}^{-n+m-1} j^{r} |c_{j}| \right)^{p} + \left(\sum_{j=n+1}^{n+m} j^{r} |c_{j}| \right)^{p} . \end{split}$$

The second and thirth sums on the right-hand side of the last inequality are finite sums of o(1) terms as $n \to \infty$.

Since $j^{r}|c_{j}| \leq \sum_{l=j}^{\infty} l^{r}|\Delta c_{l}| = o(1), \ j \to \infty$ the last two terms are trivially o(1). Hence, $\int_{-\pi}^{\pi} |S_{n}^{*(r)}(t) - f^{*(r)}(t)|^{p} dt \leq O_{r,p,m}(1)(\sum_{|k| \geq n+1} k^{r}|\Delta^{m}c_{k}|)^{p} = o(1), \ n \to \infty.$

Theorem 2. Let $\{a_n\} \in (\mathbf{BV})_r^{\sigma}$, where $\sigma \geq 1$ and $r = 1, 2, 3, \ldots$ Then the pointwise limits $f^{(r)}$ and $\overline{f}^{(r)}$ of the r - th derivatives of the sums S_n and \overline{S}_n exist in $(0, \pi]$ and for any 0 , the following limits hold:

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} |f^{(r)}(t) - S_n^{(r)}(t)|^p dt = 0$$
(2.3)

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} |\bar{f}^{(r)}(t) - \bar{S}^{(r)}_{n}(t)|^{p} dt = 0$$
(2.4)

Proof. Let *m* is integer such that $m \geq \sigma$. Then by Theorem B, we obtain $\{a_n\} \in (\mathbf{BV})_r^m$, and by Theorem C, the point-wise limits $f^{(r)}$ and $\overline{f}^{(r)}$ of the r-th derivatives of the sums S_n and \overline{S}_n exist in $(0, \pi]$. Applying the same technique for series (C) and (S) as in the proof of Theorem 1, we obtain (2.3) and (2.4).

3. Some Corollaryes for $\sigma = 1$

A null sequence $\{a_n\}$ belongs to the class $H_{q\alpha r}$, $0 < q \leq 1$, $\alpha \geq 0, r \in \{0, 1, 2, \dots, [\alpha]\}$ if there exists a monotonically decreasing sequence $\{A_k\}$ such that $\sum_{k=1}^{\infty} k^{\alpha} A_k < \infty$ and $\frac{1}{n^{q(\alpha-r)+q}} \sum_{k=1}^{n} \frac{|\Delta a_k|^q}{A_k^q} = O(1).$

Corollary 3.1. Let $\{a_n\} \in H_{q\alpha r}, \ 0 < q \leq 1, \ \alpha \geq 0, \ r \in \{0, 1, 2, \dots, [\alpha]\}$. Then the point-wise limits $f^{(r)}$ and $\overline{f}^{(r)}$ of the r-th derivatives of the sums S_n and \overline{S}_n exist in $(0, \pi]$ and for any 0 , the limits (2.3) and (2.4) hold.

Proof. By Theorem 2 (case $\sigma = 1$), it suffices to show that $H_{q\alpha r}$ is a subclass of $(BV)_r$

Applying first Abel's transformation, then inequality (2.1), we obtain:

$$\begin{split} \sum_{k=1}^{n} k^{r} |\Delta a_{k}| &= \sum_{k=1}^{n-1} k^{\alpha+1} (\Delta A_{k}) \left(\frac{1}{k^{\alpha+1}} \sum_{j=1}^{k} j^{r} \frac{|\Delta a_{j}|}{A_{j}} \right) + n^{\alpha+1} A_{n} \left(\frac{1}{n^{\alpha+1}} \sum_{j=1}^{n} j^{r} \frac{|\Delta a_{j}|}{A_{j}} \right) \\ &\leq \sum_{k=1}^{n-1} k^{\alpha+1} (\Delta A_{k}) \left(\frac{1}{k^{\alpha-r+1}} \sum_{j=1}^{k} \frac{|\Delta a_{j}|}{A_{j}} \right) + n^{\alpha+1} A_{n} \left(\frac{1}{n^{\alpha-r+1}} \sum_{j=1}^{n} \frac{|\Delta a_{j}|}{A_{j}} \right) \\ &\leq \sum_{k=1}^{n-1} k^{\alpha+1} (\Delta A_{k}) \left(\frac{1}{k^{q(\alpha-r)+q}} \sum_{j=1}^{k} \frac{|\Delta a_{j}|^{q}}{A_{j}^{q}} \right)^{1/q} \\ &+ n^{\alpha+1} A_{n} \left(\frac{1}{n^{q(\alpha-r)+q}} \sum_{j=1}^{n} \frac{|\Delta a_{j}|^{q}}{A_{j}^{q}} \right)^{1/q} \\ &= O_{q}(1) \left[\sum_{k=1}^{n-1} k^{\alpha+1} (\Delta A_{k}) + n^{\alpha+1} A_{n} \right] \\ &= O_{q}(1) \left\{ \sum_{k=1}^{n} [k^{\alpha+1} - (k-1)^{\alpha+1}] A_{k} - n^{\alpha+1} A_{n} + n^{\alpha+1} A_{n} \right\} \\ &= O_{q} \left(\sum_{k=1}^{n} k^{\alpha} A_{k} \right). \end{split}$$

Letting $n \to \infty$, we obtain $\{a_n\} \in (BV)_r$.

Next, we shall define some known classes of real sequences introduced in [5], [6], [7], [8], [9].

A null-sequence $\{a_k\}$ belongs to the class S_r , r = 0, 1, 2, ... (see [6]) if there exists a monotonically decreasing sequence $\{A_k\}$ such that $\sum_{k=0}^{\infty} k^r A_k < \infty$ and $|\Delta a_k| \leq A_k$, for all k.

When r = 0, we obtain the Sidon-Telyakovskii class S (see [4]). It is obvious that $S_r \subset (\mathbf{BV})_r$.

A null sequence $\{a_k\}$ belongs to the class S_{qr} , q > 1, r = 0, 1, 2, ... (see [5]), if there exists a monotonically decreasing sequence $\{A_k\}$ such that $\sum_{k=1}^{\infty} k^r A_k < \infty$ and $\frac{1}{n} \sum_{k=1}^{n} \frac{|\Delta a_k|^q}{A_k^q} = O(1).$

In [5], we proved that $S_{qr} \subset (\mathbf{BV})_r$. Denote by I_m the dyadic interval $\lfloor 2^{m-1}, 2^m \rfloor$, for $m \geq 1$.

ŽIVORAD TOMOVSKI

A null sequence $\{a_k\}$ belongs to the class F_{qr} , q > 1, r = 0, 1, 2, ... if

$$\sum_{m=1}^{\infty} 2^{m(1+r)} \left(\frac{1}{2^m} \sum_{k \in I_m} |\Delta a_k|^q \right)^{1/q} < \infty \qquad (\text{see [7]})$$

It is obvious that for r = 0, we obtain the Fomin's class F_q (see [7]).

But, in [7] we verified the embedding relation $F_{qr} \subset (\mathbf{BV})_r$. On the other hand, in [8], [9] we defined an equivalent form of the Sheng's class $S'_{q\alpha r}$, q > 1, $\alpha \ge 0$, $r \in \{0, 1, 2, \ldots, [\alpha]\}$ (see [2]) as follows: a null sequence $\{a_k\}$ belongs to the class $S_{q\alpha r}$, q > 1, $\alpha \ge 0$, $r \in \{0, 1, 2, \ldots, [\alpha]\}$ if there exists a monotonically decreasing sequence $\{A_k\}$ such that $\sum_{k=1}^{\infty} k^{\alpha} A_k < \infty$ and $\frac{1}{n^{q(\alpha - r) + 1}} \sum_{k=1}^{n} \frac{|\Delta a_k|^q}{A_k^q} = O(1)$.

The following embedding relation holds $S_{q\alpha r} \subset (BV)_r$. (see [8]).

However, we can to formulate the following corollaryes of the Theorem 2.

Corollary 3.2. Let $\{a_n\} \in S_r$, r = 0, 1, 2, ... Then the point-wise limits $f^{(r)}$ and $\overline{f}^{(r)}$ of the r-th derivatives of the sums S_n and \overline{S}_n exist in $(0, \pi]$ and for any 0 , the limits (2.3) and (2.4) hold.

Corollary 3.3. Let $\{a_n\} \in S_{qr}$, q > 1, $r = 0, 1, 2, \ldots$ Then the point-wise limits $f^{(r)}$ and $\overline{f}^{(r)}$ of the r-th derivatives of the sums S_n and \overline{S}_n exist in $(0, \pi]$ and for any 0 , the limits (2.3) and (2.4) hold.

Corollary 3.4. Let $\{a_n\} \in F_{qr}$, q > 1, $r = 0, 1, 2, \ldots$ Then the point-wise limits $f^{(r)}$ and $\bar{f}^{(r)}$ of the r-th derivatives of the sums S_n and \bar{S}_n exist in $(0, \pi]$ and for any 0 , the limits (2.3) and (2, 4) hold.

Corollary 3.5. Let $S_{q\alpha r}$, q > 1, $\alpha \ge 0$, $r \in \{0, 1, 2, ..., [\alpha]\}$. Then the point-wise limits $f^{(r)}$ and $\bar{f}^{(r)}$ of the r-th derivatives of the sums S_n and \bar{S}_n exist in $(0, \pi]$ and for any 0 , the limits (2.3) and (2.4) hold.

References

- [1] G. A. Fomin, A class of trigonometric series, Mat. Zametki 23 (1978), 117-124. (Russian)
- S. Sheng, The extension of the theorems of C. V. Stanojevic and V. B. Stanojevic, Proc. Amer. Math. Soc. 110 (1990), 895-904.
- [3] V. B. Stanojevic, On a theorem of P. L. Uljanov, Proc. Amer. Math. Soc. 90 (1984), 370-372.
- [4] S. A. Telyakovskii, On a sufficient condition of Sidon for the integrability of trigonometric series, Mat. Zametki 14 (1973), 742-748 (Russian).
- [5] Ž. Tomovski, An extension of the Garrett-Stanojevic class, Approximation Theory & Applications 16 (2000), 46-51, A corrected version is available in the RGMIA Research Report Collection, 3, Article 3, 2000. URL: http://rgmia.vu.edu.au/v3n4.html
- [6] Ž. Tomovski, An extension of the Sidon-Fomin type inequality and its applications, Math. Ineq & Applications 4 (2001), 231-238 (Zagreb).

- [7] Ž. Tomovski, On a Bojanic-Stanojevic type inequality and its applications. Journal of Inequalities in Pure and Applied Mathematics, 1 (2000), Article 13 (electronic journal: http://jipam.vu.edu.au).
- [8] Ž. Tomovski, Some classes of L¹-convergence of Fourier series, Journal of Computational Analysis and Applications 4(2002), 79-89, Memphis-USA.
- [9] Ž. Tomovski, *Remarks on some classes of Fourier coefficients*, Analysis Mathematica (Szeged-Moscow), (accepted).
- [10] P. L. Uljanov, Application of A-integration on a class of trigonometric series, Mat. Sb. 35 (1954), 469-490 (Russian).
- [11] K. Wang, S. A. Telyakovskii, Differential properties of sums of trigonometric series of a certain class, Moscow University Mathematics (Mechanics) Bulletin 1 (1999), 24-29 (Russian).

Faculty of Mathematical and Natural Sciences, P. O. Box 162, 1000 Skopje, MACEDONIA E-mail: tomovski@iunona.pmf.ukim.edu.mk