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RAMANUJAN’S REMARKABLE SUMMATION FORMULA AS
A 2-PARAMETER GENERALIZATION OF THE QUINTUPLE
PRODUCT IDENTITY

S. BHARGAVA, CHANDRASHEKAR ADIGA AND M. S. MAHADEVA NAIKA

Abstract. It is well known that ‘Ramanujan’s remarkable summation formula’ unifies and gen-
eralizes the g-binomial theorem and the triple product identity and has numerous applications.
In this note we will demonstrate how, after a suitable transformation of the series side, it can
be looked upon as a 2-parameter generalization of the quintuple product identity also.

1. Introduction

One of the famous identities of Ramanujan is his 1%, summation:
If |Bq| < |2| < |al—q‘ and |g| < 1, then
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where
(a)o == (a;q)o = 1,
(@)oo = (a;0)00 == [[(1 — ag™),
and
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This appears as Entry 17 of Chapter 16 of his Second Notebook [4, p. 196]. A number
of proofs and good many applications of (1.1) have been discovered since the time of G.
H. Hardy [3, pp. 222, 223] who brought it to light. In one of his books B. C. Berndt [1,

p. 32] has referred to 11 papers dedicated to proofs, 8 papers containing varied type of
applications and several generalizations and multidimensional analogues of (1.1). One
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of the striking aspects of (1.1) is that it is a common generalization of the well known
Jacobi’s triple product identity and Euler-Cauchy ¢-binomial theorem.
The following identity, known as the quintuple product identity,
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for |¢| < 1, and = # 0 has been discovered many times in the past. One may see, for

instance, Berndt’s work [1] for an account of several proofs and applications.

The purpose of this note is to bring out another feature of the remarkable formula
(1.1). Aided by Rogers - Fine identity [2, p. 15], we will infact show how (1.1), after
suitably transforming its series side, can be regarded as a 2-parameter generalization of
the quintuple product identity (1.2).

2. Main Result

Theorem 2.1. If |g| < 1 and |Bq|'/? < |z| < then
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Proof. On replacing ¢ by ¢'/? and z by —z2¢~"/2

be written as
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the remarkable formula (1.1) can

(2.2)
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Denoting the first sum on the right side of (2.2) by F(«, 3, x) and applying Rogers-Fine
identity [2, p. 15], namely

) (a)n(%)nbnv'”q”t”(l —arg®™)
- Z B)n(Mntt ’

- (a)nT
20



RAMANUJAN’S REMARKABLE SUMMATION FORMULA 287

(with |¢| < 1 and |7] < 1) we have the transform

2 2 .
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F(a,B,r) = 20: R (2.3)
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Similarly, the second sum on the right side of (2.2) can be transformed as
it (o)
s ). @) (- )
=_ 21: (aq)n(%>n ) (2.5)

Using (2.4) and (2.5) in (2.2), we have (2.1).

Remark.

(i) Putting @ =0, and f =z, in (2.1), we obtain

which is same as the quintuple product identity (1.2).
(ii) The identity (2.1) contains other elegant special cases also namely the case f = x or
a=0.
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