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RAMANUJAN'S REMARKABLE SUMMATION FORMULA AS

A 2-PARAMETER GENERALIZATION OF THE QUINTUPLE

PRODUCT IDENTITY

S. BHARGAVA, CHANDRASHEKAR ADIGA AND M. S. MAHADEVA NAIKA

Abstract. It is well known that `Ramanujan's remarkable summation formula' uni�es and gen-

eralizes the q-binomial theorem and the triple product identity and has numerous applications.

In this note we will demonstrate how, after a suitable transformation of the series side, it can

be looked upon as a 2-parameter generalization of the quintuple product identity also.

1. Introduction

One of the famous identities of Ramanujan is his 1	1 summation:

If j�qj < jzj < 1
j�qj and jqj < 1, then
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where

(a)0 := (a; q)0 = 1;

(a)1 := (a; q)1 :=

1Y
0

(1� aqn);

and

(a)n :=
(a)1

(aqn)1
:

This appears as Entry 17 of Chapter 16 of his Second Notebook [4, p. 196]. A number

of proofs and good many applications of (1.1) have been discovered since the time of G.

H. Hardy [3, pp. 222, 223] who brought it to light. In one of his books B. C. Berndt [1,

p. 32] has referred to 11 papers dedicated to proofs, 8 papers containing varied type of

applications and several generalizations and multidimensional analogues of (1.1). One
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of the striking aspects of (1.1) is that it is a common generalization of the well known

Jacobi's triple product identity and Euler-Cauchy q-binomial theorem.

The following identity, known as the quintuple product identity,
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for jqj < 1, and x 6= 0 has been discovered many times in the past. One may see, for

instance, Berndt's work [1] for an account of several proofs and applications.

The purpose of this note is to bring out another feature of the remarkable formula

(1.1). Aided by Rogers - Fine identity [2, p. 15], we will infact show how (1.1), after

suitably transforming its series side, can be regarded as a 2-parameter generalization of

the quintuple product identity (1.2).

2. Main Result

Theorem 2.1. If jqj < 1 and j�qj1=2 < jxj < 1
j�qj1=2

, then
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Proof. On replacing q by q1=2 and z by �x2q�1=2 the remarkable formula (1.1) can

be written as
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Denoting the �rst sum on the right side of (2.2) by F (�; �; x) and applying Rogers-Fine

identity [2, p. 15], namely
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(with jqj < 1 and j� j < 1) we have the transform
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Similarly, the second sum on the right side of (2.2) can be transformed as
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Using (2.4) and (2.5) in (2.2), we have (2.1).

Remark.

(i) Putting � = 0, and � = x, in (2.1), we obtain

(x2)1

�
q

x2

�
1
(q)1�

q

x

�
1
(xq)1

=

1X
�1

(�1)n(1 + xqn)q
3n2�n

2 x3n

=

1X
�1

(�1)nq
3n2+n

2 (x3n+1 + x3nq�n);

which is same as the quintuple product identity (1.2).

(ii) The identity (2.1) contains other elegant special cases also namely the case � = x or

� = 0.
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