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INVERSE PROBLEMS FOR STURM-LIOUVILLE DIFFERENTIAL

OPERATORS ON CLOSED SETS

V. YURKO

Abstract. Second-order differential operators on closed sets (time scales) are considered.

Properties of their spectral characteristics are obtained and inverse problems are studied,

which consists in recovering the operators from their spectral characteristics. We estab-

lish the uniqueness and develop constructive algorithms for the solution of the inverse

problems.

1. Introduction

We study inverse spectral problems for Sturm-Liouville differential operators on a closed

set of the real line (in literature it is sometimes called a time scale). Such problems often ap-

pear in natural sciences and engineering (see monograph [1]-[2] and the references therein).

Inverse spectral problems consist in constructing operators with given spectral characteris-

tics. For the classical Sturm-Liouville operators on an interval inverse problems have been

studied fairly completely; the main results can be found in [3]-[6]. However, differential op-

erators defined on closed sets are essentially more difficult for investigating, and nowadays

there is no inverse problem theory for this class of operators. We mention only one paper [7]

where an Ambarzumian-type theorem is proved for Sturm-Liouville differential operators on

closed sets. We note that the theory of equations on closed sets has been created in order to

unify continuous and discrete analysis, and it allows a simultaneous treatment of differential

and difference equations. Such unification is useful in many applied problems, for example

in string theory, in biology for studying insect population, in spectral problems for spatial

networks and others.

The statement and the study of inverse spectral problems essentially depend on the struc-

ture of the closed set. In this paper we will study inverse problems for an important subclass

of closed sets, namely, for the so-called Y1-structure (the definition see below). In Section 2

we present the main notions of the time scale theory and establish properties of spectral char-

acteristics of the Sturm-Liouville operator on a closed set. In Section 3 we study the inverse
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problem of recovering the operator from the given Weyl-type function. The main results of

the paper are Theorem 1 and Algorithm 1, where a global constructive procedure for solving

the inverse problems is provided, and the uniqueness of the solution is proved.

2. Differential equations on closed sets

Before presenting our main results, we recall some notions of the time scale theory; see

[1]-[2] for more details (we use a little bit different notations).

Let T be a closed subset of the real line; it is called sometimes the time scale. We define

the so-called jump functions σ and σ0 on T as follows:

σ(x) = inf{s ∈ T : s > x} for x 6= supT, and σ(sup T )= supT ,

σ0(x) = sup{s ∈ T : s < x} for x 6= infT, and σ0(infT )= infT.

A point x ∈ T is called left-dense, left-isolated, right-dense and right-isolated, if σ0(x) = x,

σ0(x) < x, σ(x) = x and σ(x) > x, respectively. If σ0(x) < x < σ(x), then x is called isolated;

if σ0(x) = x = σ(x), then x is called dense. A function f on T is called T-continuous, if it is

continuous at all right-dense points and has left-sided limits at all left-dense points in T . The

set of T-continuous functions is denoted by CT . Put T 0 := T \ {sup T }, if supT is left-isolated,

and T 0 := T, otherwise.

A function f on T is called delta-differentiable at x ∈ T 0, if for any ε > 0 there exist a

neighborhood U = (x −δ, x +δ)∩T such that

|( f (σ(x))− f (s))− f ∆(x)(σ(x)− s)| ≤ ε|σ(x)− s|

for all s ∈U . We will call f ∆(x) the delta-derivative of f at x.

Example 1. If x is a right-isolated point, then

f ∆(x) =
f (σ(x))− f (x)

σ(x)−x
.

In particular, if T = {x = hk : k ∈ Z}, then

f ∆(x) =
f (x +h)− f (x)

h
.

Example 2. If x ∈ T is a right-dense point, and f is a delta-differentiable at x, then

f ∆(x) = lim
s→x, s>x

f (x)− f (s)

x − s
.

In particular, if x ∈ T is a dense point, and f is a delta-differentiable at x, then f is differen-

tiable at x, and f ∆(x) = f ′(x).
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Consider the Sturm-Liouville equation on T :

−y∆∆(x)+q(x)y(σ(x)) =λy(σ(x)), x ∈ T. (1)

Hereλ is the spectral parameter, q(x)∈CT is a complex-valued function. A function y is called

a solution of Eq. (1), if y ∈ C 2
T and satisfies Eq. (1). The statement and the study of inverse

spectral problems essentially depend on the structure of the time scale T. It is necessary to

choose and describe subclasses of time scales for which the inverse problem theory can be

constructed adequately. In this paper we consider one of such subclasses, namely, the so-

called Y 1–structure. More precisely, we consider the time scale of the form

T =

N
⋃

k=1

[ak ,bk ], N ≥ 2, bk−1 < ak ≤ bk < ak+1, a1 < b1, aN < bN , ak = bk , k = 2, N −1.

For Y 1–structure one has

y∆(bk )=
y(ak+1)− y(bk )

ak+1−bk

, k = 1, N −1, y∆(x) = y ′(x), x ∈ [a1,b1]∪ [aN ,bN ]. (2)

In particular, this yields y∆(b1) = y ′(b1), and consequently,

y(a2) = y(b1)+ (a2 −b1)y ′(b1). (3)

Using (1) and (2) we obtain

−y ′′(x) = q(x)y(x)=λy(x), x ∈ [a1,b1]∪ [aN ,bN ], (4)

y∆∆(bk ) =
1

ak+1−bk

(

y(ak+2)− y(bk+1)

ak+2−bk+1
−

y(ak+1)− y(bk )

ak+1−bk

)

= (q(bk )−λ)y(ak+1), k = 1, N −2,

y∆∆(bN−1) =
1

aN −bN−1

(

y ′(aN )−
y(aN )− y(bN−1)

aN −bN−1

)

= (q(bN−1)−λ)y(aN ).

Therefore

y(ak+2) = y(bk+1)+
ak+2 −bk+1

ak+1−bk

(

y(ak+1)− y(bk )
)

+(ak+1 −bk )(ak+2 −bk+1)(q(bk )−λ)y(ak+1), k = 1, N −2, (5)

y ′(aN ) =
y(aN )− y(bN−1)

aN −bN−1
+ (aN −bN−1)(q(bN−1)−λ)y(aN ). (6)

Let λ= ρ2. It follows from (3) and (5)-(6) that

y(aN ) =α11(ρ)y(b1)+α12(ρ)y ′(b1),

y ′(aN ) =α21(ρ)y(b1)+α22(ρ)y ′(b1),







(7)
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where α j k (ρ) are polynomials with respect to ρ of degree 2(N + j − 3), and they depend on

q(b1), . . . , q(bN+ j−3). Moreover,

α j k (ρ)= (iρ)2(N+ j−3)α0
j k [1], |ρ|→∞, (8)

where [1] = 1+O(ρ−1),

α0
12 = (a2 −b1)α0

11, α0
21 = (aN −bN−1)α0

11, α0
22 = (a2 −b1)(aN −bN−1)α0

11,

α0
11 = (a2 −b1)(aN −bN−1)

N−2
∏

k=2

(ak+1 −bk )2

(α0
11 = 1 for N = 2, and α0

11 = (a2−b1)(a3−b2) for N = 3). Without loss of generality we assume

that a1 = 0.

Denote by L0 the boundary value problem for Eq. (1) on T with the boundary conditions

y(0) = y(bN ) = 0. Let S(x,λ) and C (x,λ) be solutions of Eq. (1) on T satisfying the initial con-

ditions

C (0,λ) = S∆(0,λ) = 1, S(0,λ)=C∆(0,λ) = 0.

For each fixed x, the functions S(x,λ) and C (x,λ) are entire in λ of order 1/2. Denote

∆0(λ) := S(bN ,λ).

The eigenvalues {λn0}n≥1 of the boundary value problem L0 coincide with the zeros of the

entire function ∆0(λ). The function ∆0(λ) is called the characteristic function for L0.

Let Φ(x,λ) be the solution of Eq. (1) on T satisfying the boundary conditions

Φ(0,λ) = 1, Φ(bN ,λ) = 0. (9)

Put M (λ) :=Φ
∆(0,λ). The function M (λ) is called the Weyl-type function or simply Weyl func-

tion. Clearly,

Φ(x,λ) = C (x,λ)+M (λ)S(x,λ), (10)

M (λ) = −∆1(λ)/∆0(λ), (11)

where ∆1(λ) := C (bN ,λ) is the characteristic function for the boundary value problem L1 for

Eq. (1) on T with the boundary conditions y∆(0) = y(bN ) = 0. The zeros {λn1}n≥1 of ∆1(λ)

coincide with the eigenvalues of L1.

Now we need to study the asymptotical behavior of the solutions Φ(x,λ) and S(x,λ).

For this purpose we extent the function q(x) on the whole segment [a1,bN ] such that q(x) ∈

C [a1,bN ] and arbitrary in the rest. Consider the Sturm-Liouville equation

−y ′′(x)+q(x)y(x) =λy(x), x ∈ [0,bN ]. (12)
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It is known (see, for example, [5]) that there exists a fundamental system of solutions of Eq. (12)

{Y1(x,ρ),Y2(x,ρ)}, x ∈ [0,bN ], Imρ ≥ 0, |ρ| > ρ0, having the following asymptotical behavior

for each fixed x ∈ [0,bN ] as |ρ|→∞:

Y (ν)
1 (x,ρ)= (iρ)νexp(iρx)[1], Y (ν)

2 (x,ρ)= (−iρ)νexp(−iρx)[1], ν= 0,1. (13)

The function Φ(x,λ) is the solution of Eq. (4) satisfying the boundary conditions (9) and the

jump conditions

Φ(aN ,λ) = α11(ρ)Φ(b1,λ)+α12(ρ)Φ′(b1,λ),

Φ
′(aN ,λ) = α21(ρ)Φ(b1,λ)+α22(ρ)Φ′(b1,λ).







(14)

Using the fundamental system of solutions {Y1(x,ρ),Y2(x,ρ)}, one has

Φ(x,λ) = A1(ρ)Y1(x,ρ)+ A2(ρ)Y2(x,ρ), x ∈ [0,b1],

Φ(x,λ) = B1(ρ)Y1(x,ρ)+B2(ρ)Y2(x,ρ), x ∈ [aN ,bN ].







(15)

Substituting (15) into (9) and (14) and using (13), we obtain the following linear algebraic

system with respect to Ak (ρ) and Bk (ρ):

A1(ρ)[1]+ A2(ρ)[1] = 1, B1(ρ)exp(iρbN )[1]+B2(ρ)exp(−iρbN )[1] = 0,

B1(ρ)exp(iρaN )[1]+B2(ρ)exp(−iρaN )[1]

= α11(ρ)
(

A1(ρ)exp(iρb1)[1]+ A2(ρ)exp(−iρb1)[1]
)

+α12(ρ)
(

A1(ρ)(iρ)exp(iρb1)[1]+ A2(ρ)(−iρ)exp(−iρb1)[1]
)

,

B1(ρ)(iρ)exp(iρaN )[1]+B2(ρ)(−iρ)exp(−iρaN )[1]

= α21(ρ)
(

A1(ρ)exp(iρb1)[1]+ A2(ρ)exp(−iρb1)[1]
)

+α22(ρ)
(

A1(ρ)(iρ)exp(iρb1)[1]+ A2(ρ)(−iρ)exp(−iρb1)[1]
)

.

Taking (8) into account we deduce that the determinant D(ρ) of this system has the form

D(ρ) = (iρ)α22(ρ)
(

exp(iρ(bN −aN ))[1]−exp(−iρ(bN −aN ))[1]
)

×

(

exp(iρ(b1−a1))[1]−exp(−iρ(b1 −a1))[1]
)

, |ρ|→∞, Imρ ≥ 0. (16)

Denote Ωδ := {ρ : argρ ∈ [δ,π−δ]}. Solving this algebraic system by Cramer’s rule and using

(16), we get for |ρ|→∞, ρ ∈Ωδ:

A1(ρ)= [1], A2(ρ) = exp(2iρb1)[1],

B1(ρ) = exp(−iρ(aN −b1))O(ρ2N−4)[1], B2(ρ)= exp(−iρ(aN −b1))exp(2iρbN )O(ρ2N−4)[1].
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In particular this yields for each fixed x ∈ [0,b1):

Φ
(ν)(x,λ) = (iρ)νexp(iρx)[1], ν= 0,1, |ρ|→∞, ρ ∈Ωδ. (17)

Similarly, we obtain

S(ν)(x,λ) =−
(−iρ)ν

2iρ
exp(−iρx)[1], ν= 0,1, |ρ|→∞, ρ ∈Ωδ, (18)

for each fixed x ∈ (0,b1].

3. Solution of the inverse problem

Let the numbers q(b2), . . . , q(bN−1) be known a priori. The inverse problem is formulate

as follows.

Inverse problem 1. Given M (λ), construct q on T.

In order to solve this inverse problem we will use the ideas of the method of spectral

mappings [6]. Let us prove the uniqueness theorem for the solution of Inverse problem 1. For

this purpose together with L0 we consider a boundary value problem L̃0 of the same form but

with another potential q̃. We agree that if a certain symbol θ denotes an object related to L0,

then θ̃ will denote an analogous object related to L̃0.

Theorem 1. If M (λ)= M̃(λ), then q = q̃ on T. Thus, the specification of the Weyl function M (λ)

uniquely determines the potential q.

Proof. For x ∈ (0,b1), we consider the functions

Q1(x,λ) =Φ(x,λ)S̃ ′(x,λ)− Φ̃
′(x,λ)S(x,λ), Q2(x,λ) = Φ̃(x,λ)S(x,λ)−Φ(x,λ)S̃(x,λ).

It follows from (17)-(18) that for each fixed x ∈ (0,b1),

Q1(x,λ) = 1+O(ρ−1), Q2(x,λ) =O(ρ−1), |ρ|→∞, ρ ∈Ωδ. (19)

On the other hand, using (10) and the assumption of the theorem, we get

Q1(x,λ) =C (x,λ)S̃ ′(x,λ)−C̃ ′(x,λ)S(x,λ), Q2(x,λ) = C̃ (x,λ)S(x,λ)−C (x,λ)S̃(x,λ),

and consequently, for each fixed x ∈ (0,b1), the functions Q1(x,λ) and Q2(x,λ) are entire in λ

of order 1/2. Together with (19) this yields Q1(x,λ) ≡ 1 and Q2(x,λ) ≡ 0. Since Φ(x,λ)S ′(x,λ)−

Φ
′(x,λ)S(x,λ) ≡ 1, it follows that

Q1(x,λ)Φ̃(x,λ)+Q2(x,λ)Φ̃′(x,λ) = Φ(x,λ),
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Q1(x,λ)S̃(x,λ)+Q2(x,λ)S̃ ′(x,λ) = S(x,λ).

Therefore,

Φ(x,λ) ≡ Φ̃(x,λ), (20)

and consequently, q(x) = q̃(x) for x ∈ [0,b1]. Using the method of spectral mappings [6] we

also obtain an algorithm for constructing the potential q(x) for x ∈ [0,b1].

Denote

Φ1(x,λ) :=
Φ(x,λ)

Φ(aN ,λ)
, M1(λ) :=Φ

′
1(aN ,λ)=

Φ
′(aN ,λ)

Φ(aN ,λ)
. (21)

Since Φ1(aN ,λ) = 1, Φ1(bN ,λ) = 0, it follows that the function M1(λ) is the Weyl function

for Eq. (4) on the segment [aN ,bN ]. Taking (14), (20) and (21) into account we infer M1(λ) =

M̃1(λ). The specification of the Weyl function M1(λ) uniquely determines the potential q(x)

for x ∈ [aN ,bN ]. This means that Theorem 1 is proved, and the solution of Inverse problem 1

can be found by the following algorithm.

Algorithm 1. Let the function M (λ) be given.

1) Construct q(x) and Φ(x,λ) for x ∈ [a1,b1] using (17)-(19) and the method of spectral map-

pings.

2) Find Φ(aN ,λ) and Φ
′(aN ,λ) via (14).

3) Calculate M1(λ) by (21).

4) Construct q(x) and Φ(x,λ) for x ∈ [aN ,bN ] by the method of spectral mappings.

Remark. The inverse problem of recovering the potential q(x) from the given two spectra

{λn j }n≥1, j = 0,1, can be reduced to the solution of Inverse problem 1. Indeed, using

Hadamard’s factorization theorem one can uniquely reconstruct the characteristic functions

∆ j (λ), j = 0,1, and then calculate M (λ) by (11).
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