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AN INVERSE SPECTRAL PROBLEM FOR

STURM–LIOUVILLE-TYPE INTEGRO-DIFFERENTIAL OPERATORS

WITH ROBIN BOUNDARY CONDITIONS

SERGEY BUTERIN

Abstract. The perturbation of the Sturm–Liouville differential operator on a finite inter-

val with Robin boundary conditions by a convolution operator is considered. The inverse

problem of recovering the convolution term along with one boundary condition from

the spectrum is studied, provided that the Sturm–Liouville potential as well as the other

boundary condition are known a priori. The uniqueness of solution for this inverse prob-

lem is established along with necessary and sufficient conditions for its solvability. The

proof is constructive and gives an algorithm for solving the inverse problem.

1. Introduction

Let {λn}n≥0 be the spectrum of the boundary value problem L = L(q, M ,h, H ) of the form

ℓy := −y ′′+q(x)y +
∫x

0
M (x − t )y(t )d t =λy, 0 < x <π, (1)

U (y) := y ′(0)−h y(0) = 0, V (y) := y ′(π)+H y(π) = 0, (2)

where λ is the spectral parameter, q(x), M (x) are complex-valued functions, q(x) ∈ L2(0,π),

(π− x)M (x)∈ L2(0,π) and h, H ∈ C. By the standard method involving Rouché’s theorem one

can prove the following assertion (for more details see Section 2 below).

Theorem 1. Eigenvalues λn , n ≥ 0, of the problem L have the form

λn =
(

n +
ω

n +1
+

̹n

n +1

)2
, {̹n }n≥0 ∈ l2. (3)

Moreover,

ω=
h +H

π
+

1

2π

∫π

0
q(x)d x. (4)

We study the following inverse problem.
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Inverse Problem 1. Given the spectrum {λn }n≥0, find the function M (x) along with the coeffi-

cient H , provided that q(x) and h are known a priori.

In this statement, by virtue of (3) and (4), one can alternatively consider the coefficient h

as unknown while H as given.

The greatest success in the inverse spectral theory has been achieved for the classical

Sturm–Liouville operator (see [1]-[6] and the references therein) and afterwards for higher-

order differential operators and other classes of differential operators and systems [5]-[8].

However, the classical methods of the inverse spectral theory (such as the transformation

operator method [2]-[5] and the method of spectral mappings [4]-[7]), which allow to obtain

global solutions of inverse problems for differential operators, are not applicable for integro-

differential operators as well as for other classes of nonlocal operators. At the same time,

integro-differential operators are often more adequate for modelling various processes in

physics, biology, economics and engineering [9].

Various aspects of inverse problems for some classes of integro-differential operators

were studied in [10]-[32] and other works. One of the first substantial studies in this direc-

tion was undertaken in [13], where it was established, in particular, that specification of the

spectrum of the boundary value problem for equation (1) with Dirichlet boundary conditions

uniquely determines the function M (x), provided that the potential q(x) is known a priori.

Moreover, developing Borg’s method [1] (see also [4, 34]) local solvability and stability of the

corresponding inverse problem were proved.

In [16] the global solvability of the inverse problem in [13] was established by another

approach based on reducing the inverse problem to solving the so-called main nonlinear in-

tegral equation with a singularity, which was solved globally. That main equation was equiva-

lent to finding the unknown function M (x) from a trace of the transformation operator kernel

for the sine-type solution of equation (1). In the case q(x) ≡ const , the main equation can

be presented in an explicit form [14]. Developing this approach allowed obtaining global so-

lutions of inverse problems also for integro-differential Dirac systems [22, 24], for integro-

differential operators with discontinuities [25, 26] and for the operators on a geometrical

graph [27], for integro-differential operators of fractional orders [30, 31], as well as the so-

called half inverse problems [21, 32], when the convolution kernel is to be recovered on a part

of its domain of definition from a part of the spectrum. For different classes of operators, the

corresponding main equations take different forms, which makes it necessary to provide the

proof of their solvability in all new cases. In order to make it more convenient, in [33] a gen-

eral approach has been developed for solving nonlinear equations of this type by introducing

some abstract equation and proving its global solvability. Moreover, in [33] stability of such

nonlinear equations was established, which has not been studied before even in simple cases.
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In the present paper, uniqueness of solution of Inverse Problem 1 is established along

with necessary and sufficient conditions for its solvability. Note that the case of Robin bound-

ary conditions (2) brings additional difficulties in the study of the inverse problem (see [20]).

The main results of the paper are contained in the following theorem.

Theorem 2. Let a complex-valued function q(x) ∈ L2(0,π) and a complex number h be given.

Then for any sequence of complex numbers {λn}n≥0 of the form (3) there exists a unique (up to

values on a set of measure zero) function M (x), (π− x)M (x) ∈ L2(0,π), and a unique num-

ber H ∈ C such that {λn }n≥0 is the spectrum of the corresponding boundary value problem

L(q, M ,h, H ) of the form (1), (2).

The paper is organized as follows. In the next section, we study the transformation oper-

ator related to the cosine-type solution of equation (1) as well as the characteristic function

of the boundary value problem L, and derive the main nonlinear integral equation of the in-

verse problem. In Section 3, we study dependence of the transformation operator kernel on

the function M (x). In Section 4, we prove global solvability of the main equation. In Section 5,

we prove Theorem 2 and provide a constructive procedure for solving the inverse problem

(Algorithm 1).

2. Characteristic function and transformation operator

Let y =ϕ(x,λ) =ϕ(x,λ;h, q, M ) be a solution of equation (1) under the initial conditions

ϕ(0,λ) = 1, ϕ′(0,λ) = h. (5)

Here and below, in order to emphasize dependence of a function f (x1, . . . , xn) on some con-

stants or functions f1, . . . , fm , sometimes we write f (x1, . . . , xn ; f1, . . . , fm).

Thus, U (ϕ(x,λ)) = 0 and, by virtue of uniqueness of the solution ϕ(x,λ), eigenvalues of L

coincide with zeros with account of multiplicity of the entire function

∆(λ) :=V (ϕ(x,λ)), (6)

which is called the characteristic function of the problem L.

For obtaining an appropriate representation of the function ϕ(x,λ), we need the follow-

ing auxiliary assertion.

Lemma 1. The integral equation

G(x, t ,τ) = G0(x, t ,τ)+
1

2

(

∫t

τ

(

∫ t+s
2

s
q(ξ)G(ξ, s,τ)dξ+

∫x− t−s
2

s
q(ξ)G(ξ, s,τ)dξ

)

d s
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+
∫t−τ

0
M (s)d s

∫t−s

τ

(

∫
t−s+ξ

2

ξ
G(η,ξ,τ)dη+

∫x− t+s−ξ
2

ξ
G(η,ξ,τ)dη

)

dξ
)

,

0 ≤ τ≤ t ≤ x ≤π, (7)

with a continuous free term G0(x, t ,τ) has a unique solution G(x, t ,τ) = G(x, t ,τ; q, M ) being,

in turn, a continuous function too.

Proof. The method of successive approximations gives

G(x, t ,τ) =
∞
∑

k=0

Gk (x, t ,τ), (8)

where

Gk+1(x, t ,τ)=
1

2

(

∫t

τ

(

∫ t+s
2

s
q(ξ)Gk (ξ, s,τ)dξ+

∫x− t−s
2

s
q(ξ)Gk (ξ, s,τ)dξ

)

d s

+
∫t−τ

0
M (s)d s

∫t−s

τ

(

∫
t−s+ξ

2

ξ
Gk (η,ξ,τ)dη+

∫x− t+s−ξ
2

ξ
Gk (η,ξ,τ)dη

)

dξ
)

, k≥0. (9)

Put

G0 := max
0≤τ≤t≤x≤π

|G0(x, t ,τ)|, A :=
∫π

0
|q(s)|d s +

1

2

∫π

0
(π− s)|M (s)|d s

and let us show that

|Gk (x, t ,τ)| ≤G0
(At )k

k !
, 0 ≤ τ≤ t ≤ x ≤π, k ≥ 0. (10)

Indeed, for k = 0 estimate (10) is obvious. Supposing that it holds for k = j with some j ≥ 0,

let us prove it for k = j +1. According to (9) and (10) for k = j , we get

|G j+1(x, t ,τ)| ≤ G0
A j

2 j !

(

∫t

τ

(

∫ t+s
2

s
|q(ξ)|dξ+

∫x− t−s
2

s
|q(ξ)|dξ

)

s j d s

+
∫t−τ

0
|M (s)|d s

∫t−s

τ

(

∫
t−s+ξ

2

ξ
dη+

∫x− t+s−ξ
2

ξ
dη

)

ξ j dξ
)

≤ G0
(At ) j+1

( j +1)!
.

Hence, the series in (8) converges uniformly for 0 ≤ τ ≤ t ≤ x ≤ π to the solution of equa-

tion (7).

For the uniqueness it is sufficient to show that G0(x, t ,τ) ≡ 0 implies G(x, t ,τ) ≡ 0. In-

deed, assuming the zero free term, we determine Gk (x, t ,τ) by formulae (9) with G0(x, t ,τ) :=
G(x, t ,τ). Then Gk (x, t ,τ) =G(x, t ,τ) for all k ≥ 0 and, according to (10), we get G(x, t ,τ) ≡ 0. ���

Note that in equation (7) the variable τ is, actually, a parameter. In other words, the

assertion of Lemma 1 remains true, if τ ∈ [0,π) is fixed.

The following lemma gives the transformation operator for the function ϕ(x,λ).
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Lemma 2. Put ρ2 =λ. The following representation holds:

ϕ(x,λ) = cosρx +
∫x

0
K (x, t )cosρ(x − t )d t , 0 ≤ x ≤π, (11)

where the function

K (x, t )= K (x, t ;h, q, M )=G(x, t ,0) (12)

is the solution of equation (7) for τ= 0 and with the free term

G0(x, t ,0) =h +
1

2

(

∫x− t
2

0
q(s)d s +

∫ t
2

0
q(s)d s +

∫t

0
(x − s)M (s)d s

)

. (13)

The function K (x, t ) is continuous in the triangle 0 ≤ t ≤ x ≤ π, K (x, ·) ∈ W 1
2 [0, x] for all x ∈

(0,π] and K ( · , t )∈W 1
2 [t ,π] for all t ∈ [0,π). Moreover,

K (x,0) = h +
1

2

∫x

0
q(t )d t . (14)

Proof. By substitution it is easy to check that the Cauchy problem (1), (5) for the function

y =ϕ(x,λ) is equivalent to the integral equation

ϕ(x,λ) = cosρx +h
sinρx

ρ
+

∫x

0

sinρ(x − t )

ρ

(

q(t )ϕ(t ,λ)+
∫t

0
M (t − s)ϕ(s,λ)d s

)

d t . (15)

Substituting (11) into equation (15), we arrive at

∫x

0
K (x, t )cosρ(x − t )d t = h

∫x

0
cosρ(x − t )d t +

4
∑

ν=1

Kν(x,λ), (16)

K1(x,λ) =
∫x

0
q(t )cosρt d t

∫x−t

0
cosρs d s,

K2(x,λ) =
∫x

0
d t

∫t

0
M (t − s)cosρs d s

∫x−t

0
cosρξdξ,

K3(x,λ) =
∫x

0
q(t )d t

∫t

0
K (t , s)cosρ(t − s)d s

∫x−t

0
cosρξdξ,

K4(x,λ) =
∫x

0
d t

∫t

0
M (t − s)d s

∫s

0
K (s,ξ)cosρ(s −ξ)dξ

∫x−t

0
cosρηdη.

Using the relation 2cosρt cosρs = cosρ(t +s)+cosρ(t −s) and changing the variables and the

order of integration, we get

K1(x,λ) =
1

2

∫x

0

(

∫x− t
2

0
q(s)d s +

∫ t
2

0
q(s)d s

)

cosρ(x − t )d t ,

K2(x,λ) =
1

2

∫x

0
cosρ(x − t )d t

∫t

0
(x − s)M (s)d s,

K3(x,λ) =
1

2

∫x

0
cosρ(x − t )d t

∫t

0

(

∫ t+s
2

s
q(ξ)K (ξ, s)dξ+

∫x− t−s
2

s
q(ξ)K (ξ, s)dξ

)

d s,
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K4(x,λ) =
1

2

∫x

0
cosρ(x − t )d t

∫t

0
M (s)d s

∫t−s

0

(

∫
t−s+ξ

2

ξ
K (η,ξ)dη+

∫x− t+s−ξ
2

ξ
K (η,ξ)dη

)

dξ.

By virtue of these four relations, equality (16) holds for all λ ∈ C if and only if the function

K (x, t ) satisfies the integral equation

K (x, t ) = h +
1

2

(

∫x− t
2

0
q(s)d s +

∫ t
2

0
q(s)d s +

∫t

0
(x − s)M (s)d s

+
∫t

0

(

∫ t+s
2

s
q(ξ)K (ξ, s)dξ+

∫x− t−s
2

s
q(ξ)K (ξ, s)dξ

)

d s

+
∫t

0
M (s)d s

∫t−s

0

(

∫
t−s+ξ

2

ξ
K (η,ξ)dη+

∫x− t+s−ξ
2

ξ
K (η,ξ)dη

)

dξ
)

, 0 ≤ t ≤ x ≤π, (17)

which, in turn, in accordance with (12) and (13), is equivalent to equation (7) for τ= 0.

The rest properties of K (x, t ) immediately follow from the form of equation (17). ���

Using (6) and Lemma 2, by simple calculations we arrive at the following lemma, which

gives a fundamental representation of the characteristic function.

Lemma 3. The characteristic function of the problem L has the form

∆(λ)=−ρ sinρπ+ωπcosρπ+
∫π

0
w (x)cosρx d x, w (x)∈ L2(0,π). (18)

Here ω is determined by (4) and

w (π−x)=K1(π, x;h, q, M )+K2(π, x;h, q, M )+HK (π, x;h, q, M ), 0 < x <π, (19)

where

K1(x, t ;h, q, M )=
∂

∂x
K (x, t ;h, q, M ), K2(x, t ;h, q, M )=

∂

∂t
K (x, t ;h, q, M ). (20)

Using representation (18), by the known method (see, e.g., [2] involving Rouché’s the-

orem, the proof of Theorem 1 can be accomplished. Moreover, with the help of (18)) and

Hadamard’s factorization theorem, by the standard approach (see, e.g., [4]) one can prove the

following lemma.

Lemma 4. The characteristic function is determined uniquely by its zeros. Moreover, the fol-

lowing representation holds:

∆(λ)=π(λ0 −λ)
∞
∏

n=1

λn −λ

n2
. (21)

Relation (19) can be considered as a nonlinear equation with respect to the function

M (x), which we call the main nonlinear equation or shortly main equation of the inverse

problem.

The central place in solving the inverse problem is occupied by the following theorem,

which gives global solvability of the nonlinear equation (19).
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Theorem 3. For any complex-valued functions q(x), w (x) ∈ L2(0,π) and complex numbers h

and H , equation (19) has a unique solution M (x), (π−x)M (x) ∈ L2(0,π).

In the next section we study dependence of the transformation operator kernel K (x, t )

on the function M (x). Based on the obtained properties, in Section 4 we give the proof of

Theorem 3.

3. Further properties of the transformation operator kernel

In the present section we reveal some important properties of the kernel K (x, t ), which

allow us to prove the global solvability of the main nonlinear equation (19). First, we note that

for each fixed δ ∈ (0,π] the linear integral equation (7) can be restricted to the set

Dδ :=
{

(x, t ,τ) : 0 ≤ x ≤π, 0 ≤ τ≤ t ≤min{δ, x}
}

.

In other words, for (x, t ,τ) ∈ Dδ the right-hand side of equation (7) depends on values of the

unknown function G(x, t ,τ) only on the subset Dδ. Moreover, it is obvious, that on Dδ the

solution of the restricted equation coincides with the solution of the initial one. Therefore,

the function G(x, t ,τ) for (x, t ,τ) ∈ Dδ depends on values of the function M (s) only on the

interval (0,δ). In particular, due to (12) or (17), we make the following observation.

Observation 1. The kernel K (x, t )= K (x, t ;h, q, M ) on the trapezium

Dδ :=
{

(x, t ) : 0≤ x ≤π, 0≤ t ≤ min{δ, x}
}

depends on values of M (s) only for s ∈ (0,δ).

Denote

‖ f ‖δ := ‖ f ‖L2(0,δ) =

√

∫δ

0
| f (x)|2 d x, Bδ,r := { f ∈ L2(0,δ) : ‖ f ‖δ ≤ r }. (22)

The following lemma gives estimates for the kernel K (x, t )= K (x, t ;h, q, M ) on the trapez-

ium Dδ for small δ> 0.

Lemma 5. For any R > 0 there existδR =δR (h, q)∈ (0,π], CR =CR (h, q)> 0 and ĈR = ĈR (h, q)>
0, all depending only on h, q(x) and R , such that for any δ ∈ (0,δR ] and for all M (x), M̃(x) ∈
Bδ,R the following estimates hold:

|K (x, t )| ≤CR , |K̂ (x, t )| ≤ ĈR

p
δ‖M̂‖δ, (x, t ) ∈ Dδ, (23)

where K̂ (x, t )= K (x, t ;h, q, M )−K (x, t ;h, q, M̃) and M̂ (x)= M (x)− M̃ (x).



214 SERGEY BUTERIN

Proof. Put

CR := 2|h|+π
3
2 R +2

∫π

0
|q(x)|d x, δR :=

1

CR
, K := max

(x,t )∈Dδ

|K (x, t )|, K̂ := max
(x,t )∈Dδ

|K̂ (x, t )|.

Then, by virtue of (17), we have 2K ≤ CR +CRδK , which yields K ≤ (2−CRδ)−1CR ≤ CR for

δ ∈ (0,δR ]. Thus, the first estimate in (23) is established.

Further, subtracting the integral equation for the function K (x, t ;h, q, M̃) (i.e. equation

(17) with M̃ (x) instead of M (x)) termwise from equation (17), we get

K̂ (x, t ) =
1

2

(

∫t

0
(x − s)M̂ (s)d s +

∫t

0

(

∫ t+s
2

s
q(ξ)K̂ (ξ, s)dξ+

∫x− t−s
2

s
q(ξ)K̂ (ξ, s)dξ

)

d s

+
∫t

0
M̂ (s)d s

∫t−s

0

(

∫
t−s+ξ

2

ξ
K (η,ξ)dη+

∫x− t+s−ξ
2

ξ
K (η,ξ)dη

)

dξ
)

+
∫t

0
M̃ (s)d s

∫t−s

0

(

∫
t−s+ξ

2

ξ
K̂ (η,ξ)dη+

∫x− t+s−ξ
2

ξ
K̂ (η,ξ)dη

)

dξ
)

,

whence we get 2K̂ ≤ δCR K̂ +ĈR

p
δ‖M̂‖δ, where ĈR =π(1+πCR ). This yields

K̂ ≤ (2−CRδ)−1ĈR

p
δ‖M̂‖δ ≤ ĈR

p
δ‖M̂‖δ for δ ∈ (0,δR ], and we arrive at the second estimate

in (23). ���

In what follows, for any fixed δ ∈ (0,π] we use the following designations

M1(x) =







M (x), x ∈ (0,δ),

0, x ∈ (δ,σ),
M2(x) =







0, x ∈ (0,δ),

M (x), x ∈ (δ,σ),
(24)

where σ=min{2δ,π}.

Lemma 6. For each δ ∈ (0,π/2] the following representation holds:

K (x, t ;h, q, M )= K (x, t ;h, q, M1)+
∫t

δ
G(x, t ,τ;h, q, M1)M2(τ)dτ, (x, t ) ∈ D2δ, (25)

where the function G(x, t ,τ) = G(x, t ,τ;h, q, M1) is a solution of equation (7) for (x, t ,τ) ∈ D2δ

with M1(x) instead of M (x) and with the free term G0(x, t ,τ) =G0(x, t ,τ;h, q, M1) of the form

G0(x, t ,τ)=
x −τ

2
+

1

2

∫t−τ

0

(

∫ t−τ+s
2

s
K (ξ, s;h, q, M1)dξ+

∫x− t+τ−s
2

s
K (ξ, s;h, q, M1)dξ

)

d s. (26)

Proof. After the direct substitution one can see that the right-hand side of (25) is a solution of

integral equation (17) for (x, t ) ∈ D2δ if and only if for (x, t )∈ D2δ the following relation holds:

∫t

0
G(x, t ,τ;h, q, M1)M2(τ)dτ=

∫t

0
G0(x, t ,τ)M2(τ)dτ+

1

2

2
∑

k=1

(Qk (x, t )+Mk (x, t )), (27)
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where the function G0(x, t ,τ) is determined by formula (26) and

Q1(x, t ) =
∫t

0
d s

∫ t+s
2

s
q(ξ)dξ

∫s

0
G(ξ, s,τ;h, q, M1)M2(τ)dτ

=
∫t

0
M2(τ)dτ

∫t

τ
d s

∫ t+s
2

s
q(ξ)G(ξ, s,τ;h, q, M1)dξ,

Q2(x, t ) =
∫t

0
d s

∫x− t−s
2

s
q(ξ)dξ

∫s

0
G(ξ, s,τ;h, q, M1)M2(τ)dτ

=
∫t

0
M2(τ)dτ

∫t

τ
d s

∫x− t−s
2

s
q(ξ)G(ξ, s,τ;h, q, M1)dξ,

M1(x, t ) =
∫t

0
M (s)d s

∫t−s

0
dξ

∫
t−s+ξ

2

ξ
dη

∫ξ

0
G(η,ξ,τ;h, q, M1)M2(τ)dτ, (28)

M2(x, t ) =
∫t

0
M (s)d s

∫t−s

0
dξ

∫x− t+s−ξ
2

ξ
dη

∫ξ

0
G(η,ξ,τ;h, q, M1)M2(τ)dτ.

Changing the order of integration in (28) and taking into account that M (x) = M1(x)+M2(x)

for x ∈ (0,2δ), we get

M1(x, t ) =
∫t

0
(M1(s)+M2(s))d s

∫t−s

0
M2(τ)dτ

∫t−s

τ
dξ

∫
t−s+ξ

2

ξ
G(η,ξ,τ;h, q, M1)dη

=
∫t

0
M2(τ)dτ

∫t−τ

0
(M1(s)+M2(s))d s

∫t−s

τ
dξ

∫
t−s+ξ

2

ξ
G(η,ξ,τ;h, q, M1)dη. (29)

Since M2(x) = 0 on (0,δ) and t ∈ [0,2δ], we have

∫t

0
M2(τ)dτ

∫t−τ

0
M2(s)d s

∫t−s

τ
dξ

∫
t−s+ξ

2

ξ
G(η,ξ,τ;h, q, M1)dη= 0.

Thus, under the second integral in (29) the summand M2(s) disappears, i.e.

M1(x, t )=
∫t

0
M2(τ)dτ

∫t−τ

0
M1(s)d s

∫t−s

τ
dξ

∫
t−s+ξ

2

ξ
G(η,ξ,τ;h, q, M1)dη.

Analogously we obtain

M2(x, t )=
∫t

0
M2(τ)dτ

∫t−τ

0
M1(s)d s

∫t−s

τ
dξ

∫x− t+s−ξ
2

ξ
G(η,ξ,τ;h, q, M1)dη.

Thus, if the function G(x, t ,τ;h, q, M1) obeys the conditions of the lemma, then equality (27)

is fulfilled. Hence, both the sides of (25) satisfy one and the same equation (17) for (x, t )∈ D2δ,

having a unique solution, which finishes the proof. ���



216 SERGEY BUTERIN

4. Solution of the main equation. Proof of Theorem 3

Let us represent the main equation (19) in the form

2w (π−x)= (π−x)M (x)+P M (x), 0 < x <π, (30)

where

P =
3

∑

ν=1

Pν,

P1M (x)= 2K1(π, x;h, q, M ),

P2M (x)= 2K2(π, x;h, q, M )− (π−x)M (x),

P3M (x)= 2HK (π, x;h, q, M ).



















(31)

Our plan is to use Theorem 1 from [33], which states, in particular, that for any function

f (x) ∈ L2(0,b) the equation

f (x) = u(x)+Du(x), 0 < x < b,

has a unique solution u(x) ∈ L2(0,b), if D is an operator of the class Eb,1. For convenience of

the reader, we provide here the definition of Eb,1.

Definition 1. The operator D : L2(0,b) → L2(0,b) belongs to the class Eb,1, if the following four

conditions are fulfilled:

(i) For each u(x) ∈ L2(0,b) and for each number γ ∈ (0,b) the image function Du(x) on the

interval (0,γ) does not depend on values of u(x) on (γ,b);

(ii) For all R > 0 and r > 0 there exists δ ∈ (0,b] such that D : Bδ,R → Bδ,r ;

(iii) For all R > 0 and α> 0 there exists δ ∈ (0,b] such that

‖Du −Dũ‖δ ≤α‖u − ũ‖δ

for any functions u(x), ũ(x) ∈ Bδ,R ;

(iv) For all δ ∈ (0,b/2] and u(x)∈ L2(0,2δ) the following representation holds:

Du(x)=Du1(x)+
∫x

δ
Qδ(x, t ;u1)u2(t )d t , 0 < x < 2δ, (32)

where the kernel Qδ(x, t ;u1) belongs to L2((δ,2δ)2) and does not depend on u2(x), while

u1(x) =







u(x), x ∈ (0,δ),

0, x ∈ (δ,2δ),
u2(x) =







0, x ∈ (0,δ),

u(x), x ∈ (δ,2δ).
(33)

We note that in conditions (ii)–(iv), one and the same symbol D denotes natural exten-

sions of the operator D to the spaces L2(0,γ), γ ∈ (0,b), which, by virtue of (i), are determined

uniquely.
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Let us show that the operator P determined in (31) belongs to Eπ,1. Since the class Eπ,1 is,

obviously, closed with respect to the sum of operators, it is sufficient to prove that Pν ∈ Eπ,1,

ν= 1,3. For this purpose, using (17), (20) and (31), we calculate:

P1M (x) = q
(

π−
x

2

)

+
∫x

0
M (s)d s +

∫x

0
q
( s −x

2
+π

)

K
( s −x

2
+π, s

)

d s

+
∫x

0
M (s)d s

∫x−s

0
K

(ξ−x − s

2
+π,ξ

)

dξ, 0 < x <π,

P2M (x) =
1

2

(

q
(x

2

)

−q
(

π−
x

2

))

+
∫π

x
q(s)K (s, x)d s +

1

2

∫x

0
q
(x + s

2

)

K
(x + s

2
, s

)

d s

−
1

2

∫x

0
q
( s −x

2
+π

)

K
( s −x

2
+π, s

)

d s +
∫x

0
M (s)

(

∫π−s

x−s
K (ξ, x − s)dξ

+
1

2

∫x−s

0
K

(ξ+x − s

2
,ξ

)

dξ−
1

2

∫x−s

0
K

(ξ−x − s

2
+π,ξ

)

dξ
)

d s, 0 < x <π,

where K (x, t ) = K (x, t ;h, q, M ) is the solution of equation (17). Using these representations

and (17) along with Observation 1, Lemma 5 and Lemma 6, one can check that for the op-

erators Pν, ν = 1,3, all conditions (i)–(iv) of Definition 1 for b = π are fulfilled. Note that

condition (iv) for the operators P1 and P2 can be checked easier by using representations

(34) and (35) below. Thus, P ∈ Eπ,1 and, consequently, (π− x)−1
P ∈ Eb,1 for all b ∈ (0,π).

Hence, equation (30) has a unique solution M (x), which belongs to L2(0,b) for any b ∈ (0,π).

It remains to prove that (π−x)M (x) ∈ L2(0,π).

Fix δ ∈ (0,π/2]. By virtue of (25) and (7) along with (26), for x ∈ (δ,2δ) we have

K1(π, x;h, q, M ) = K1(π, x;h, q, M1)+
∫x

δ
G1(π, x, t ;h, q, M1)M2(t )d t , (34)

K2(π, x;h, q, M ) = K1(π, x;h, q, M1)+
π−x

2
M2(x)+

∫x

δ
G2(π, x, t ;h, q, M1)M2(t )d t , (35)

where

G1(x, t ,τ;h, q, M1) =
∂

∂x
G(x, t ,τ;h, q, M1), G2(x, t ,τ;h, q, M1) =

∂

∂t
G(x, t ,τ;h, q, M1). (36)

Using (25), (34) and (35) for δ=π/2, one can restrict the main equation (19) to the subinterval

(π/2,π) in the form

g (x) = (π−x)M2(x)+
∫x

π
2

R(x, t )M2(t )d t ,
π

2
< x <π, (37)

where

g (x) = 2
(

w (π−x)−K1(π, x;h, q, M1)−K2(π, x;h, q, M1)−HK (π, x;h, q, M1)
)

,

R(x, t ) = 2
(

G1(π, x, t ;h, q, M1)+G2(π, x, t ;h, q, M1)+HG(π, x, t ;h, q, M1)
)

. (38)

Further, putting

N (x) := (π−x)M2(x), Q(x, t ) :=
R(x, t )−1

π− t
, φ(x) :=

∫x

π
2

Q(x, t )N (t )d t , (39)
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we rewrite (37) in the form

g (x) = N (x)+
∫x

π
2

N (t )d t

π− t
+φ(x),

π

2
< x <π. (40)

Using (7), (26), (36), (38) and (39), we obtain

Q(x, t ) =
1

π− t

(

∫π−x

0
K (x − t + s, x − t )d s +

1

2

∫x−t

0

(

K
(x − t + s

2
, s

)

+K
(

π+
s −x − t

2
, s

))

d s

+
∫π

x
q(s)G(s, x, t )d s +

∫x

x+t
2

q(s)G(s,2s −x, t )d s +
∫π

π− x−t
2

q(s)G(s,2(s −π)+x, t )d s

+
∫x−t

0
M1(s)

(

∫π

x
G(ξ− s, x − s, t )dξ+

1

2

∫x−s

t

(

G
( x − s +ξ

2
,ξ, t

)

+G
(

π+
ξ−x − s

2
,ξ, t

))

dξ
)

+H+
H

π− t

(

∫x−t

0

(

∫ x−t+s
2

s
K (ξ, s)dξ+

∫π− x+t−s
2

s
K (ξ, s)dξ

)

d s

+
∫x

t

(

∫π− x−s
2

s
q(ξ)G(ξ, s, t )dξ+

∫ x+s
2

s
q(ξ)G(ξ, s, t )dξ

)

d s

+
∫x−t

0
M1(s)

∫x−s

t

(

∫
x−s+ξ

2

ξ
G(η,ξ, t )dη+

∫π− x+s−ξ
2

ξ
G(η,ξ, t )dη

)

dξ
)

,

where K (x, t )= K (x, t ;h, q, M1) and G(x, t ,τ) =G(x, t ,τ;h, q, M1). By virtue of boundedness of

these two functions, we get

|Q(x, t )| ≤C
(

1+
1

π− t

∫π

t
|q(s)|d s

)

=: f (t ) ∈ L2

(π

2
,π

)

,
π

2
< t < x <π, (41)

(see, e.g., Lemma 2.1 in [35]). This, in particular, implies Q(x, t ) ∈ L2((π/2,π)2) and hence,

according to the analogue of Lemma 2.5 in [14] (or Lemma 5.2 in [26]) for η < 0, we get (π−
x)N (x)∈ L2(π/2,π). Let us show that N (x)∈ L2(π/2,π). For this purpose, we use the following

assertion, which follows from (39) and (41).

Lemma 7. Fix θ ∈ [1/3,1]. If (π−x)θN (x)∈ L2(π/2,π), then (π−x)θ−1/3φ(x) ∈ L2(π/2,π).

Applying Lemma 7 along with Lemma 2.4 in [14] (or Lemma 5.1 in [26]) subsequently

three times, we finally refine that N (x) ∈ L2(π/2,π), which finishes the proof of Theorem 3.

6. Solution of the inverse problem

Before proceeding directly to the proof of Theorem 2, we provide one more auxiliary as-

sertion.

Lemma 8. Let arbitrary complex numbers λn , n ≥ 0, of the form (3) be given. Then the function

∆(λ), determined by formula (21), has the form (18) with some function w (x)∈ L2(0,π).
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Proof. Let us obtain the assertion of the lemma as a corollary from Lemma 3.3 in [14], which

implies that the function ∆1(λ) := (λ0 −λ)−1
∆(λ) has the form

∆1(λ) =
sinρπ

ρ
−ωπ

cosρπ

ρ2
+

∫π

0
w1(x)

cosρx

ρ2
d x, w1(x) ∈ L2(0,π),

∫π

0
w1(x)d x =ωπ.

Thus, we have

∆(λ) =−ρ sinρπ+ωπcosρπ−
∫π

0
w1(x)cosρx d x+λ0

(sinρπ

ρ
−ωπ

cosρπ

ρ2
+

∫π

0
w1(x)

cosρx

ρ2
d x

)

.

Since
sinρx

ρ
=

∫x

0
cosρt d t ,

cosρx

ρ2
=

1

ρ2
−

∫x

0
(x − t )cosρt d t ,

we arrive at representation (18), where

w (x)=−w1(x)+λ0

(

1+ (π−x)ωπ−
∫π

x
(t −x)w1(t )d t

)

∈ L2(0,π),

which finishes the proof. ���

Now we are in position to give the proof of Theorem 2.

Proof of Theorem 2. Let a complex-valued function q(x) ∈ L2(0,π) and a complex number

h be given along with some sequence of complex numbers {λn}n≥0 of the form (3). Then we

find the number H from the relation (4), where ω is determined by the formula

ω=
1

2
lim

n→∞
(λn −n2). (42)

According to Lemma 8, the function∆(λ), constructed by formula (21), has the form (18) with

some function w (x)∈ L2(0,π). By virtue of Theorem 3, the main equation (19) with these w (x),

q(x), h and H has a unique solution M (x), (π−x)M (x)∈ L2(0,π). Consider the corresponding

boundary value problem L = L(q, M ,h, H ). Let ∆̃(λ) be its characteristic function. Then, by

virtue of Lemma 3, it has the form

∆̃(λ) = −ρ sinρπ+ωπcosρπ+
∫π

0
w̃(x)cosρx d x, w̃(x) ∈ L2(0,π), (43)

where

w̃(π−x) = K1(π, x;h, q, M )+K2(π, x;h, q, M )+HK (π, x;h, q, M ), 0 < x <π. (44)

Comparing (44) with (19), we get w̃(x) = w (x) a.e. on (0,π) and, hence, ∆̃(λ) ≡∆(λ). Thus, the

spectrum of the constructed boundary value problem L coincides with the sequence {λn}n≥0.

Uniqueness of M (x) follows from uniqueness of solution of the main equation (19). ���

This proof is constructive and gives the following algorithm for solving Inverse Problem 1.

Algorithm 1. Let the spectrum {λn }n≥0 of some boundary value problem L(q, M ,h, H ) along

with the function q(x) and the number h be given.
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(i) Find the number ω by (42) and the number H by the formula

H =ωπ−h −
1

2

∫π

0
q(x)d x;

(ii) In accordance with (18), calculate the function w (x) by the formula

w (x)=
2

π

∞
∑

n=0

(∆(n2)− (−1)nωπ)cos nx,

where the function ∆(λ) is determined by (21);

(iii) Find the function M (x) from the main equation (19).
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