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AN INVERSE PROBLEM FOR THE SECOND-ORDER

INTEGRO-DIFFERENTIAL PENCIL

NATALIA PAVLOVNA BONDARENKO

Abstract. We consider the second-order (Sturm-Liouville) integro-differential pencil with

polynomial dependence on the spectral parameter in a boundary condition. The inverse

problem is solved, which consists in reconstruction of the convolution kernel and one of

the polynomials in the boundary condition by using the eigenvalues and the two other

polynomials. We prove uniqueness of solution, develop a constructive algorithm for solv-

ing the inverse problem, and obtain necessary and sufficient conditions for its solvability.

1. Introduction

This paper concerns the inverse problem theory for integro-differential operators. In-

verse problems of spectral analysis consist in reconstruction of operators by their spectral

characteristics. The basic results in the theory of inverse problems were obtained for differ-

ential operators (see the monographs [1, 2, 3, 4] and references therein).

Nowadays nonlocal operators, in particular, integro-differential operators attract much

attention of mathematicians. On the one hand, such operators are natural for modeling real-

world processes in physics, biology, engineering and other applications (see, e.g., [5]). On

the other hand, nonlocality of integro-differential operators is an insuperable obstacle for

classical methods of inverse problem theory.

First fragmentary results on inverse problems for integro-differential operators appeared

in [6, 7, 8]. Later on, a powerful method has been developed for recovering convolution per-

turbations of various differential operators (see [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]). This

method is based on the reduction of an inverse problem to a uniquely solvable nonlinear

equation of a special form. Recently the general theory of such nonlinear equations has been

constructed in [19]. Some other types of inverse problems for integro-differential operators

were investigated in [20, 21, 22, 23, 24, 25, 26].
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This paper deals with a new class of operators, namely, integro-differential pencils with

nonlinar dependence on the spectral parameter. We consider the boundary value problem

L = L(M , A1, A2, A3) for the Sturm-Liouville equation with an integral delay

−y ′′(x)+

∫x

0
M (x − t )y ′(t )d t =λy(x), x ∈ (0,π), (1)

with the boundary conditions, depending polynomially on the spectral parameter:

y(0)= 0, A1(λ)y ′(π)+ A2(λ)y(π)+ A3(λ)y ′(0) = 0. (2)

Here M (x) is a complex-valued function from the class L2,π := { f : (π−x) f (x) ∈ L2(0,π)},

A j (λ) =
n
∑

k=0

a j kλ
k , j = 1,3, (3)

where {a j k } j=1,3, k=0,n are complex numbers, a1n 6= 0. Without loss of generality, we assume

that a1n = 1. For simplicity, we also assume that a3n = 0. The case a3n 6= 0 requires some

technical modifications.

Investigation of inverse problems for differential Sturm-Liouville pencils with boundary

conditions, depending polynomially on the spectral parameter, leads to essential difficulties,

comparing with standard differential operators (see [27, 28] and references therein). Inverse

spectral problems for the integro-differential Strum-Liouville equation (1) without depen-

dence on the spectral parameter in the boundary conditions have been solved in [10, 11, 12].

In this paper, we develop the ideas of [10, 11] for the pencil (1)-(2). We describe the asymptotic

behavior of the spectrum, and solve the following inverse problem.

Inverse Problem 1. Given the spectrum Λ of the boundary value problem L and the polyno-

mials A j (λ), j = 1,2, construct the convolution kernel M (x) and the polynomial A3(λ).

We prove the uniqueness of solution, develop a constructive procedure for solving In-

verse Problem 1 and provide necessary and sufficient conditions for its solvability. We pro-

ceed with formulations of the main theorems.

Theorem 1. The spectrum of the problem L is a countable set of eigenvalues, which can be

represented in the form Λ= {λk }k∈N∪ {λ̃ j }n
j=1

, where

λk =
(

k −
1
2 +̹k

)2
, k ∈N, {̹k } ∈ l2. (4)

Theorem 2. Let Λ= {λk }k∈N∪ {λ̃ j }n
j=1

be an arbitrary sequence of complex numbers, satisfying

the asymptotic relation (4), and let A j (λ), j = 1,2, be polynomials of degree n with arbitrary

complex coefficients {a j k } j=1,2, k=0,n−1∪{a2n} and a1n = 1. Then there exist the unique complex-

valued function M (x) ∈ L2,π and the unique polynomial A3(λ) =
∑n−1

k=0
a3kλ

k , such that the

spectrum of the boundary value problem L = L(M , A1, A2, A3) coincides with Λ.
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The paper is organized as follows. In Section 2, some preliminaries are provided and

Theorem 1 is proved. We obtain a special representation for the characteristic function (see

Lemma 1), which allows us to derive asymptotic formulas for the eigenvalues and then is used

for solving the inverse problem. In Section 3, the characteristic function is constructed by its

zeros as an infinite product and the nonlinear main equation (26) is derived. Finally, we prove

Theorem 2 and provide a constructive algorithm for solving Inverse Problem 1. One can apply

our approach to other classes of integro-differential pencils with nonlinear dependence on

the spectral parameter in boundary conditions or/and in an equation.

2. Preliminaries and Eigenvalue Asymptotics

The goal of this section is to prove Theorem 1. We start with some preliminaries. Let

λ= ρ2. We will use the following notations:

( f ∗ g )(x) =

∫x

0
f (x − t )g (t )d t ,

f ∗1 := f , f ∗(ν+1) := f ∗ν
∗ f , ν≥ 1,

gk (x) =
xk

k !
, k ≥ 0.

Clearly, the functions gk (x) have the following properties:

g ′
k+1 = gk , gk ∗ g0 = gk+1, k ≥ 0. (5)

Let S(x,λ) be the solution of equation (1), satisfying the initial conditions S(0,λ) = 0,

S ′(0,λ) = 1. According to the results of [10], the solution S(x,λ) can be represented in the

form

S(x,λ)=
sinρx

ρ
+

∫x

0
P(x, t )

sinρ(x − t )

ρ
d t , (6)

where

P(x, t ) =
∞
∑

ν=1

gν(x − t )N∗ν(t ), (7)

and N (t ), t ∈ (0,π), is the solution of the integral equation

M (x)= 2N (x)−

∫x

0
N∗2(t )d t . (8)

Note that equation (8) is a special case of (26). By Proposition 4, equation (8) has a unique

solution N (t ) in L2(0,T ) for every T ∈ (0,π). One can easily show that N ∈ L2,π.

The spectrum of L is purely discrete and consists of complex eigenvalues, which coincide

with the zeros of the entire characteristic function

∆(λ) := A1(λ)S ′(π,λ)+ A2(λ)S(π,λ)+ A3(λ). (9)
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The relation (6) implies

S(π,λ)=
sinρπ

ρ
+

∫π

0
w (t )

sinρ(π− t )

ρ
d t , (10)

S ′(π,λ) = cosρπ+

∫π

0
v(t )cosρ(π− t )d t , (11)

where w (t ) := P(π, t ), v(t ) :=P(π, t )+
∫t

0 Px (π, s)d s. Using (7), we derive the relations

w (t )=
∞
∑

ν=1

gν(π− t )N∗ν(t ), v(t )=
∞
∑

ν=1

gν(π− t )N∗ν(t )+
∞
∑

ν=1

∫t

0
gν−1(π− s)N∗ν(s)d s. (12)

Since N ∈ L2,π, we have w, v ∈ L2(0,π). Applying integration by parts, we transform (10) into

the relation

S(π,λ)=

∫π

0
(g0 +w ∗ g0)(t )cosρ(π− t )d t . (13)

The following Lemma 1 provides an important represenation for the characteristic func-

tion ∆(λ), which will be used for solving the inverse problem.

Lemma 1. The following relation holds

∆(λ)=λn

(

cosρπ+

n
∑

j=1

cn− j

λ j
+

∫π

0
r (t )cosρ(π− t )d t

)

, (14)

where

c j =

j
∑

k=0

(−1)k
(

a1, j−k(g2k +v ∗ g2k )+a2, j−k (g2k+1 +w ∗ g2k+1)
)

(π)+a3 j , j = 0,n −1, (15)

r (t ) = v(t )+a2n(g0 +w ∗ g0)(t )

+

n
∑

k=1

(−1)k (a1,n−k (g2k−1 +v ∗ g2k−1)+a2,n−k (g2k +w ∗ g2k))(t ), r ∈ L2(0,π). (16)

Proof. Substituting (11), (13) and (3) into (9), we derive

∆(λ) = A1(λ)cosρπ+

∫π

0
(A1(λ)v(t )+ A2(λ)(g0 +w ∗ g0)(t ))cosρ(π− t )d t + A3(λ)

= λn
(

cosρπ+

n
∑

k=1

a1,n−k cosρπ

λk
+

n
∑

k=1

a3,n−k

λk

+

n
∑

k=0

1

λk

∫π

0
(a1,n−k v +a2,n−k(g0 +w ∗ g0))(t )cosρ(π− t )d t

)

. (17)

Using the relations (5), integration by parts and induction, we prove that

cosρπ

λk
=

k
∑

j=1

(−1)k− j g2(k− j )(π)

λ j
+ (−1)k

∫π

0
g2k−1(t )cosρ(π− t )d t , (18)

1

λk

∫π

0
u(t )cosρ(π−t )d t =

k
∑

j=1

(−1)k− j (u∗g2(k− j ))(π)

λ j
+(−1)k

∫π

0
(u∗g2k−1)(t )cosρ(π−t )d t ,(19)
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for any function u ∈ L2(0,π) and k ∈N.

Using (18), we obtain

n
∑

k=1

a1,n−k cosρπ

λk
=

n
∑

j=1

1

λ j

n− j
∑

k=0

a1,n− j−k(−1)k g2k (π)

+

n
∑

k=1

a1,n−k(−1)k

∫π

0
g2k−1(t )cosρ(π− t )d t . (20)

Similarly using (19) and (5), we derive

n
∑

k=1

1

λk

∫π

0
(a1,n−k v(t )+a2,n−k (g0 +w ∗ g0)(t ))cosρ(π− t )d t

=

n
∑

j=1

1

λ j

n− j
∑

k=0

(−1)k (a1,n− j−k v ∗ g2k +a2,n− j−k(g2k+1 +w ∗ g2k+1))(π)

+

n
∑

k=1

(−1)k

∫π

0
(a1,n−k v ∗ g2k−1+a2,n−k (g2k +w ∗ g2k))(t )cosρ(π− t )d t . (21)

Substituting (20) and (21) into (17), we arrive at the relation (14) with the coefficients

{c j }n−1
j=0

and r (t ), defined by (15) and (16), respectively. Since v and w belong to L2(0,π), the

relation (16) implies r ∈ L2(0,π). ���

Proof of Theorem 1. In view of (14), the function ∆(λ) is asymptotically close to the entire

function ∆0(λ) = λn cosρπ as |λ| → ∞. Using the standard technique (see, for example, [4,

Theorem 1.1.3]), based on Rouché‘s theorem, we show that the spectrum of L has the form

Λ= {λk }k∈N{λ̃ j }n
j=1

, where the numbers {λk } satisfy (4). ���

3. Solution of Inverse Problem

This section is devoted to the proof of Theorem 2 and constructive solution of Inverse

Problem 1. First we need two auxiliary lemmas.

Lemma 2. The specification of the spectrum {λk }k∈N∪{λ̃ j }n
j=1

uniquely determines the charac-

teristic function ∆(λ) by the formula

∆(λ) = Rn(λ)
∞
∏

k=1

λk −λ
(

k −
1
2

)2
, Rn(λ) :=

n
∏

j=1

(λ− λ̃ j ). (22)

Proof. Similar to the proof of [4, Theorem 1.1.4]. ���

In view of the relation (14), we have c j =
∆

( j )(0)
j !

for j = 0,n −1, and, consequently, the

function

g (λ) :=λ−n

(

∆(λ)−
n−1
∑

j=0

∆
( j )(0)

j !
λ j

)

(23)
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is entire in the λ-plane and has the form

g (λ) = cosρπ+

∫π

0
r (t )cosρ(π− t )d t , (24)

where the function r ∈ L2(0,π) was defined by (16).

Lemma 3. Let {λk }k∈N∪ {λ̃ j }n
j=1

be arbitrary complex numbers, satisfying (4), and let ∆(λ) be

the function, constructed by these numbers via (22). Then ∆(λ) has the form (14) with some

complex numbers {c j }n−1
j=0

and some function v ∈ L2(0,π).

Proof. One can prove similarly to [10, Lemma 3.3], that any function d (λ) in the form

d (λ) =
∞
∏

k=1

λk −λ
(

k −
1
2

)2

can be represented as follows:

d (λ) = cosρπ+

∫π

0
q(t )cosρ(π− t )d t ,

where q is some function from L2(0,π). Consequently, the relations (22) and (23) yield

g (λ) = cosρπ+

∫π

0
q(t )cosρ(π− t )d t +O

(

|λ|−1 exp(|Imρ|π)
)

, |λ|→∞.

Clearly, the function (g (ρ2)− cosρπ) is entire and even with respect to ρ, it satisfies the es-

timate g (ρ2) = O(exp(|Imρ|π)) and is square integrable on the real axis. Therefore, by Paley-

Wiener theorem, there exists a function r ∈ L2(0,π), such that (24) holds. The relations (23)

and (24) imply (14) with c j =
∆

( j )(0)
j ! , j = 0,n −1. ���

Further, using (12) and (16), we will derive the main equation with respect to the function

N (t ). Define

p(t )= r (t )−a2n +

n
∑

k=1

(−1)k+1(a1,n−k g2k−1(t )+a2,n−k g2k (t )). (25)

Then the relation (16) yields

p(t )= v(t )+a2n(w ∗ g0)(t )+
n
∑

k=1

(−1)k (a1,n−k v ∗ g2k−1+a2,n−k w ∗ g2k)(t ).

Substituting (12) into the latter formula, we arrive at the nonlinear integral equation

f (t ) =
∞
∑

ν=1

(

ψν(t )N∗ν(t )+

∫t

0
Ψν(t , s)N∗ν(s)d s

)

, (26)

where
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f (t )=
p(t )

π− t
, ψν(t )= 1

νgν−1(π− t ), (27)

Ψν(t , s) =
1

π− t

(

gν−1(π− s)+a2n gν(π− s)+
n
∑

k=1

(−1)k (a1,n−k g2k−1(t − s)gν(π− s)

+a1,n−k g2k (t − s)gν−1(π− s)+a2,n−k g2k (t − s)gν(π− s)
)

, ν ∈N. (28)

We call the relation (26) the main equation of Inverse Problem 1. The main equation

plays a crucial role in the proof of Theorem 2 and in the constructive solution of the inverse

problem. Theorem 3 establishes the unique solvability of (26).

Theorem 3. For any function f ∈ L2,π and the functions ψν(t ), Ψν(t , s), ν ∈N, defined by (27)

and (28), the main equation (26) has a unique solution N ∈ L2,π.

The proof of Theorem 3 is based on the following proposition, which is a special case of

[19, Theorem 3] (see also [9, Theorem 4]).

Proposition 4. Let f be any function from L2(0,T ), and let ψν(t ) and Ψν(t , s) for ν ∈ N be

square integrable functions on (0,T ) and S := {(t , s) : 0 < s < t < T }, respectively, such that

ψ1(t )≡ 1 and

‖ψν‖L2(0,T ) ≤Cν, ‖Ψν‖L2(S ) ≤Cν, ν ∈N,

where C > 0 is a constant. Then equation (26) has a unique solution N (t ) in L2(0,T ).

Proof of Theorem 3. Obviously, the functions ψν(t ) and Ψν(t , s), defined by (27) and (28),

satisfy the conditions of Proposition 4 for every T ∈ (0,π). Thus, the main equation (26) has

a unique solution N ∈ L2(0,T ) for every T ∈ (0,π). One can prove that N ∈ L2,π, using the

approach of [10, 9]. ���

Proof of Theorem 2. Let Λ= {λk }k∈N∪ {λ̃ j }n
j=1

be complex numbers, such that (4) holds, and

let A j (λ), j = 1,2, be polynomials in the form (3) with a1n = 1. Define the function ∆(λ) by the

formula (22). By virtue of Lemma 3, the function ∆(λ) can be represented in the form (14) with

some (uniquely determined) coefficients {c j }n−1
j=0

and some function r ∈ L2(0,π). Define the

function p(t ) by (25), and then f (t ), ψν(t ), Ψν(t , s), ν ∈N, by (27), (28). Since r ∈ L2(0,π), we

have p ∈ L2(0,π) and f ∈ L2,π. According to Theorem 3, the main equation (26) has a unique

solution N ∈ L2,π. Let M (x) be the function, defined by (8). Clearly, M ∈ L2,π. We also find the

coefficients {a3 j }n−1
j=0

of the polynomial A3(λ) from (15):

a3 j = c j −

j
∑

k=0

(−1)k
(

a1, j−k(g2k +v ∗ g2k )+a2, j−k(g2k+1 +w ∗ g2k+1)
)

(π), j = 0,n −1. (29)

Consider the boundary value problem L = L(M , A1, A2, A3), where M (x) and A3(λ) were

defined in this proof and A1(λ), A2(λ) are the initially given polynomials. Let us prove that the



230 NATALIA PAVLOVNA BONDARENKO

spectrum of L coincides with Λ. Indeed, by virtue of Lemma 1, the characteristic function of

L has the form (14) with the coefficients {c j }n−1
j=0

and the function r ∈ L2(0,π), defined by (15)

and (16), respectively. Consequently, this characteristic function coincides with the defined

above ∆(λ), having the zeros {λk }k∈N∪ {λ̃ j }n
j=1

. In view of the uniqueness of the main equa-

tion solution and the uniqueness at the other steps of this proof, the problem L is uniquely

specified by its spectrum Λ and the polynomials A j (λ), j = 1,2. ���

The proof of Theorem 2 leads to the following algorithm for solving Inverse Problem 1.

Algorithm 1. Let the complex numbers Λ= {λk }k∈N∪ {λ̃ j }n
j=1

, satisfying (4), and the polyno-

mials A j (λ), j = 1,2, in the form (3) with a1n = 1, be given.

1. Construct the characteristic function ∆(λ) by its zeros, using (22).

2. Find the coefficients c j =
∆

( j )(0)
j ! , j = 0,n −1.

3. Construct the function g (λ) by (23).

4. Find r (t ), inverting the Fourier transform (24):

r (t )=
1

π
(g (0)−1)+

2

π

(

(−1)k g (k)−1
)

cos k t , t ∈ (0,π).

5. Construct p(t ) by (25), then construct f (t ), ψν(t ), Ψν(t , s), ν ∈ N, 0 < s < t < π, by (27)

and (28).

6. Solving the main equation (26), obtain N (t ), t ∈ (0,π).

7. Find M (x), x ∈ (0,π), using (8).

8. Find {a3 j }n−1
j=0

by (29).

Thus, the kernel M (x) and the coefficients of A3(λ) are determined.
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