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INTEGRAL TRANSFORMS CONNECTED WITH DIFFERENTIAL

SYSTEMS WITH A SINGULARITY

MIKHAIL IGNATIEV

Abstract. We consider some integral transforms with the kernels expressed in terms of

solutions of the system of differential equations y ′ = (x−1 A + B)y , where A and B are

constant n×n, n > 2, matrices. We study analytical and asymptotical properties of such

transforms. We also study the transforms as operators acting in some functional spaces.

1. Introduction

Various dilates of classical integral transforms often appear in differential equations the-

ory. In recent paper [1], for instance, the following integral transform:

f → v( f , x,ρ)=

∫x

0
f (t )exp(iρt )d t

was considered in connection with the questions of asymptotical behavior of resolvent and

eigenvalues of higher order ordinary differential operators with distributional coefficients. On

the other hand, the kernels of such integral transforms themselves are usually connected with

certain differential equations. In particular, the kernel exp(iρt ) is a solution of the "simplest"

differential equation −i y ′ =ρy . Similarly, the kernels of more general transforms of the form:

f →

∫

f (t )exp
(

(a −b)ρ(t − s)+ (c −b)ρ(x − t )
)

d t

considered in the same work can be associated in a natural way with the model equation

y (n) = ρn y or with the system of the form y ′ = ρB y , where B is a diagonal matrix with (arbi-

trary) complex entries.

In the present paper, we consider some integral transforms connected with the following

system of differential equations:

y ′
= (x−1 A+B )y, (1)

where A and B are constant n ×n, n > 2, matrices. Such transforms can be considered as

generalizations of the Fourier–Hankel transform, see, for instance, [2], see also [3, 4] for some
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generalizations, in particular, connected with the higher-order operators with singularities.

The integral transforms we consider are certain functions with the values in an exterior alge-

bra ∧Cn =
⊕

∧m
C

n , their particular construction (which will be written below) is determined

by their role in spectral theory of the "perturbed system”

y ′
= (x−1 A+q(x))y +ρB y

(where ρ denote a spectral parameter), see, for instance, [5]; see also [6], where such construc-

tions appeared first. One can notice that, unlike the studies mentioned above, the kernels of

the considered transforms can not be written explicitly in terms of exponential functions,

moreover, they can not be expressed in terms of the “Bessel-type” special functions arising in

the case n = 2. This makes the analysis more complicated and technical. Contrary to the case

n = 2 (connected with the classical Hankel transform and its dilates) the general case n > 2

has not been studied yet.

2. Assumptions and notations. Formulations of the results

Assumption 1. Matrix A is off-diagonal. The eigenvalues {µ j }n
j=1

of matrix A are distinct and

such that µ j −µk ∉Z for j 6= k, moreover, Reµ1 < Reµ2 < ·· · <Reµn , Reµk 6= 0, k = 1,n.

Assumption 2. B = di ag (b1, . . . ,bn), the entries b1, . . . ,bn are nonzero distinct noncolinear

points on complex plane such that
n
∑

j=1
γ j b j = 0, where γ j ∈ {−1,0,1},

n
∑

j=1
γ2

j
> 0, is true if and

onle if γ j = 1, j = 1,n.

Under Assumption 1 system (1) has the fundamental matrix c(x)= (c1(x), . . . ,cn(x)), where

ck (x) = xµk ĉk (x),

detc(x) ≡ 1 and all ĉk (·) are entire functions, ĉk (0) = hk , hk is an eigenvector of the matrix A

corresponding to the eigenvalue µk . We define Ck (x,ρ) := ck (ρx), x ∈ (0,∞), ρ ∈C.

Let Σ be the following union of lines through the origin in C:

Σ=
⋃

(k , j ): j 6=k

{

z : Re(zb j ) =Re(zbk )
}

.

By virtue of Assumption 2 for any z ∈ C \Σ there exists the ordering R1, . . . ,Rn of the num-

bers b1, . . . ,bn such that Re(R1z) < Re(R2z) · · · < Re(Rn z). Let S be a sector {z = r exp(iγ),r ∈

(0,∞),γ ∈ (γ1,γ2)} lying in C \Σ. Then [7], [8] system (1) has the fundamental matrix e(x) =

(e1(x), . . . ,en(x)) which is analytic in S , continuous in S \ {0} and admits the asymptotics:

ek (x) = exRk (fk +x−1ηk (x)), ηk (x) =O(1), x →∞, x ∈S ,
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where (f1, . . . ,fn) = f is a permutation matrix such that (R1, . . . ,Rn) = (b1, . . . ,bn)f. We define

E (x,ρ) := e(ρx).

Everywhere below we assume that the following additional condition is satisfied.

Condition 1. For all k = 2,n the numbers

∆k := det(e1(x), . . . ,ek−1(x),ck (x), . . . ,cn(x))

are not equal to 0.

Under Condition 1 system (1) has the fundamental matrixψ(x)= (ψ1(x), . . . ,ψn(x)) which

is analytic in S , continuous in S \ {0} and admits the asymptotics:

ψk (xt )= exp(xt Rk)(fk +o(1)), t →∞, x ∈S , ψk (x) =O(xµk ), x → 0.

We define Ψ(x,ρ) :=ψ(ρx).

In the sequel we use the following notations:

• Am is the set of all ordered multi-indices α = (α1, . . . ,αm), α1 < α2 < ·· · < αm , α j ∈

{1,2, . . . ,n};

• for a sequence {u j } of vectors and a multi-index α = (α1, . . . ,αm) we define uα := uα1
∧

·· ·∧uαm
;

• for a numerical sequence {a j } and a multi-index α we define

aα :=
∑

j∈α

a j , aα :=
∏

j∈α

a j ;

• for a multi-index α the symbol α′ denotes the ordered multi-index that complements α

to (1,2, . . . ,n);

• for k = 1,n we denote

−→a k :=
k
∑

j=1

a j , ←−a k :=
n
∑

j=k

a j , −→a k :=
k

∏

j=1

a j , ←−a k :=
n
∏

j=k

a j .

We note that Assumptions 1,2 imply, in particular,
n
∑

k=1
µk =

n
∑

k=1
Rk = 0 and therefore for

any multi-index α one has Rα′ =−Rα and µα′ =−µα.

• the symbol V (m), where V is n ×n matrix, denotes the operator acting in ∧m
C

n so that

for any vectors u1, . . . ,um the following identity holds [6]:

V (m)(u1 ∧u2 ∧·· ·∧um)=
m
∑

j=1

u1 ∧u2 ∧·· ·∧u j−1 ∧V u j ∧u j+1 ∧·· ·∧um ;
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• if h ∈ ∧n
C

n then |h| is a number such that h = |h|e1 ∧ e2 ∧·· · ∧ en , {ek }n
k=1

is a standard

basis in C
n ;

• Tk (x,ρ) :=Ck (x,ρ)∧·· ·∧Cn(x,ρ).

• for h ∈ ∧m
C

n we set: ‖h‖ :=
∑

α∈Am

|hα|, where {hα} are the coefficients from the expan-

sion h =
∑

α∈Am

hαeα.

We use the same notation Lp (a,b) for all the spaces of the form Lp ((a,b),E ), where E is a

finite-dimensional space. The notation C [a,b] for the spaces of continuous functions will be

used in a similar way.

Suppose Y is a Banach space. We denote by C ([0,∞),Y) the set of continuous functions

[0,∞) → Y and we denote by BC ([0,∞),Y) the Banach space of bounded continuous functions

[0,∞) → Y with the standard sup norm.

Suppose Y is some number set (typically sector or ray in the complex plane) and Y is

some Banach space of functions on Y . Let Q be some Banach space. For a function F =

F (Q , x,ρ),Q ∈ Q, x ∈ [0,∞),ρ ∈ Y with values in some finite-dimensional space we write F ∈

L (Q,BC ([0,∞),Y)) iff:

• for any fixed Q ∈ Q, x ∈ [0,∞) the function F (Q , x, ·) belongs to the Banach space Y;

• for any fixed Q ∈ Q the function F (Q , ·, ·) ∈ BC ([0,∞),Y);

• the map Q ∋Q → F (Q , ·, ·) ∈ BC ([0,∞),Y) is a linear continuous operator.

We set Xp := L1(0,∞) ∩ Lp (0,∞) and denote by X
m

p the space of functions Q = Q(t ),

t ∈ (0,∞) such that for any t Q(t ) is a linear operator acting in ∧m
C

n ,
∣

∣(Q(·)eα)∧eβ′

∣

∣ ∈ Xp for

all α,β ∈Am and (Q(t )eα)∧eα′ ≡ 0 for all α ∈Am .

In the paper, we study the following integral transforms (k = 1,n):

Tk (Q , x,ρ)=

∫x

0

∑

α∈An−k+1

σα

∣

∣

(

Q(t )Tk (t ,ρ)
)

∧Cα′(t ,ρ)
∣

∣Cα(x,ρ)d t , (2)

where σα = |hα∧hα′ | and Q ∈X
n−k+1
p .

Our considerations will be concentrated mostly on properties of Tk (Q , x,ρ) as functions

of (complex) variable ρ. Also we are interested in how these functions depend on the param-

eters x ∈ (0,∞) and Q ∈ X
n−k+1
p . Our guiding line (and one of our key tools) is the following

result concerning the classical Laplace transform [9].
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Proposition 1. Suppose

F (ρ)=

∫∞

0
f (t )exp(−ρt )d t ,

where f ∈ Lp (0,∞). Let l be a ray {ρ = zτ,τ ∈ (0,∞)}, Rez > 0. Then F ∈ Lp′ (l ), p ′ = p/(p −1).

Moreover, the map f → F is a linear continuous operator from Lp (0,∞) to Lp′ (l ).

As for integral transforms (2), it is natural to consider them in certain sectors of the com-

plex ρ-plane rather then half-planes. Everywhere below the symbol S denotes some (arbi-

trary) open sector with the vertex at the origin lying in C\Σ.

Let W0(ξ) be the function defined as follows:

W0(ξ) = (1−|ξ|)ξ+|ξ|2 , |ξ| ≤ 1, W0(ξ) := (W0

(

ξ−1
)

)−1, |ξ| > 1.

Notice that W0(ξ) is continuous in ξ ∈C, never vanishes for nonzero ξ and admits the estimate:

M1|ξ| ≤ |W0(ξ)| ≤ M2|ξ|

for all ξ ∈ C. Moreover, we have W0(ξ) = 1 if |ξ| = 1 and the asymptotics W0(ξ) = ξ(1+ o(1))

hold as ξ→ 0 and ξ→∞.

We introduce the following weight functions:

Wk (ξ) :=

{

W0 (ξµk ) exp(Rkξ), |ξ| ≤ 1

exp(Rkξ), |ξ| > 1.

From the definition and the above-mentioned properties of W0(·) it follows that the weight

functions Wk (·),k = 1,n are all continuous in S \ {0}, never vanish and admit the asymptotics

Wk (ξ) = ξµk (1+o(1)) as ξ→ 0.

Theorem 1. Tk (Q , x,ρ) is analytic with respect to ρ ∈ S and the following representation

holds:

Tk (Q , x,ρ)=
←−
W k (ρx)ωk (Q , x,ρ),

where ωk ∈ L

(

X
n−k+1

p ,BC
(

[0,∞),C0(S )
))

. Moreover, for any ray {ρ = zt , t ∈ [0,∞)}, where

z ∈S \{0}, the restriction ωk |l ∈L (X n−k+1
p ,BC ([0,∞),H (l ))), H (l ) :=C0(l )∩L2(l ). Here and

below the symbol C0(S ) denotes the Banach space of continuous vanishing at infinity functions

on S with the standard sup norm, the symbol C0(l ) is treated in analogous way.

Theorem 2. Suppose that Q(·) is absolutely continuous, Q(0) = 0 and both Q(·), Q ′(·) are from

X
n−k+1
p . Then the following representation holds:

ρTk (Q , x,ρ)=
∑

α∈An−k+1

χα

∣

∣(Q̂(x)Tk (x,ρ))∧Eα′(x,ρ)
∣

∣Eα(x,ρ)+
←−
W k (ρx)ω̃k (Q , x,ρ),



258 MIKHAIL IGNATIEV

where Q̂(x) is the operator acting in ∧n−k+1
C

n which is off-diagonal with respect to the basis

{eα}α∈An−k+1
and such that [B (n−k+1),Q̂(x)] =Q(x) for all x ∈ [0,∞); ω̃k (Q , ·, ·) ∈ BC ([0,∞),C0(S )).

Moreover, the following asymptotics holds for any fixed x > 0 as ρ→∞, ρ ∈S :

Tk (Q , x,ρ)= ρ−1
∑

α,β∈An−k+1

Tkβexp(ρxRβ)Q̂αβ(x)fα+o
(

ρ−1 exp(ρx
←−
R k )

)

.

Here the constants {Tkα} are such that:

Tk (x,ρ) =
∑

α∈An−k+1

TkαEα(x,ρ)

and Q̂αβ(x) =χα

∣

∣(Q̂(x)fβ)∧ fα′

∣

∣, χα := |fα∧ fα′ |.

3. Auxiliary propositions

In the sequel we write f ∈ PC±(S ), where f = f (x,ρ) is a function defined on [0,∞)×S

iff:

• f is continuous and bounded on the set
(

[0,∞)×S

)

∩ {(x,ρ) : ±(|ρ|x −1) > 0};

• f can be extended up to the function continuous on the set
(

[0,∞)×S

)

∩{(x,ρ) : ±(|ρ|x−

1) ≥ 0}

We write f ∈ PC (S ) if f ∈ PC+(S ) and f ∈ PC−(S ) at the same time. We write f ∈ PC0(S )

if, in addition,

lim
ρ→∞

sup
x∈[0,∞)

‖ f (x,ρ)‖= 0.

Similarly we define the classes PC±(l ), PC (l ), PC0(l ), where l is a ray {ρ = zt , t ∈ [0,∞)} We

notice that f ∈ BC
(

[0,∞)×S

)

together with f ∈ PC0(S ) imply f ∈ BC
(

[0,∞),C0(S )
)

.

If l is a ray l = {ρ = zt , t ∈ [0,∞)}, where z ∈ S \ {0} and R is a positive number then we

denote l+(R)= l ∩ {ρ : |ρ| > R} and l−(R)= l ∩ {ρ : |ρ| ≤ R}.

Everywhere below the symbols θ±(·) denote the Heaviside step functions:

θ+(ξ) =

{

0,ξ≤ 0

1,ξ> 0,

θ−(ξ) =

{

1,ξ≤ 0

0,ξ> 0
= 1−θ+(ξ).
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Lemma 3.1. Suppose that a function F (x,ρ), (x,ρ)∈ [0,∞)× l is such that:

1. F ∈ PC (l ) ;

2. for each fixed x ∈ [0,∞) F (x, ·) ∈ L2(l ) and sup
x∈[0,∞)

‖F (x, ·)‖L2(l) <∞;

3. for any T ∈ (0,∞) sup
x∈[0,T ]

‖F (x, ·)‖L2(l+(R)) → 0 as R →∞.

Then F ∈ BC ([0,∞),L2(l )).

Proof. Take an arbitrary x0 > 0 and suppose that x1 → x0. Denote as ρ± the points from l such

that |ρ−| =min{x−1
0 , x−1

1 }, |ρ+| = max{x−1
0 , x−1

1 }.

First, given ε> 0, we find R > 0 such that sup
x∈[0,T ]

‖F (x, ·)‖L2(l+(R)) < ε/4. For definiteness we

assume |ρ+| < R . Continuity properties of F guarantee that

‖F (x1, ·)−F (x0, ·)‖L2(l−(R)∩l+(|ρ+|)) <
ε

4
, ‖F (x1, ·)−F (x0, ·)‖L2(l−(|ρ−|)) <

ε

4

for all x1 sufficiently close to x0. Finally, since |ρ+−ρ−| → 0 as x1 → x0 and F is bounded we

can assert that the estimate

‖F (x1, ·)−F (x0, ·)‖L2(l−(|ρ+|)∩l+(|ρ−|)) <
ε

4

is also true for all x1 sufficiently close to x0.

Now consider the case x0 = 0. We can take the same R as above and (assuming that

x1 < R−1) split as follows:

‖F (x1, ·)−F (x0, ·)‖L2(l) ≤‖F (x1, ·)−F (x0, ·)‖L2(l+(R)) +‖F (x1, ·)−F (x0, ·)‖L2(l−(R)) .

The first term is less than ε/4 because of our choice of R . The second term becomes less that

3ε/4 for all x1 sufficiently close to x0 because of continuity properties of F . ���

The following extension is obvious.

Lemma 3.2. Suppose that F = F ( f , x,ρ) is such that F ( f , ·, ·) ∈ BC ([0,∞),L2(l )) for any fixed

f ∈ Xp and F ∈L (BC ([0,∞),L2(l ))). Suppose also that g = g (x,ρ) is a function from PC (l ). Set

F ( f , x,ρ) := g (x,ρ)F ( f , x,ρ). Then for any fixed f ∈ Xp F ( f , ·, ·) ∈ BC ([0,∞),L2(l )); moreover,

F ∈L (Xp ,BC ([0,∞),L2(l ))).

Lemma 3.3. Consider the integral transform:

F ( f , x,ρ)=

∫x

0
f (t )exp

(

(λ1(x − t )+λ2t )ρ
)

d t ,

where λ2 6=λ1 are such that Re(λ1ρ)≤ 0, Re(λ2ρ)≤ 0 for all ρ ∈S . Then:
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1. for any fixed f ∈ Xp F ( f , x,ρ) is continuous and bounded w.r.t. (x,ρ)∈ [0,∞)×S ;

2. sup
x∈[0,∞)

‖F ( f , x,ρ)‖→ 0 as ρ→∞, ρ ∈S ;

3. for any ray l = [0, z ·∞), z ∈S \ {0} F ( f , ·, ·) ∈ BC ([0,∞),L2(l ));

4. for any ray l = [0, z ·∞), z ∈S \ {0} the map Xp ∋ f → F ( f , ·, ·) ∈ BC ([0,∞),L2(l )∩C0(l )) is

continuous.

Proof.

1. is obvious.

2. is obvious for smooth compactly supported f , in general case we use the standard argu-

ments based on the passing to the limit procedure.

3. and 4. For any fixed ray l one can write λkρ = |ρ|(i sk − ck ) with some fixed ck , sk , where

ck ≥ 0. We are to consider two different cases: c1 6= c2 (actually one can assume c2 > c1) and

c1 = c2, s1 6= s2.

1) Case c2 > c1.

|F ( f , x,ρ)| ≤

∫τ2x

τ1x
| f (ξ−τ1x)|exp(−c |ρ|ξ)dξ=FL( fx ,c |ρ|),

where c = c2 −c1, τk = ck /c ,

fx (ξ) := θ+((ξ−τ1x)(τ2x −ξ))| f (ξ−τ1x)|,

and FL denote the classical Laplace transform. From Proposition 1 it follows that:

‖F ( f , x, ·)‖L2(l) ≤ M‖ fx‖L2(0,∞) ≤ M‖ f ‖L2(0,∞).

Furthermore, the Hölder inequality yields:

|F ( f , x,ρ)| ≤

{
∫τ2x

τ1x
| f (ξ−τ1x)|p dξ

}1/p {
∫τ2x

τ1x
exp(−cp ′

|ρ|ξ)dξ

}1−1/p

≤ M |ρ|−1+1/p ,

where M do not depend on x. Therefore we have

sup
x∈[0,∞)

‖F ( f , x, ·)‖L2(l+(R)) ≤ MR−1.

2) Case c1 = c2, s2 > s1.

F ( f , x,ρ)= exp(−c1|ρ|x)F0( f , x,ρ),

F0( f , x,ρ)=

∫x

0
f (t )exp(i |ρ|(s1(x − t )+ s2t ))d t =F ( fx , s|ρ|),

where F denote the classical Fourier transform and

fx (ξ) := θ+((ξ−τ1x)(τ2x −ξ)) f (ξ−τ1x),

τk := sk/s, s = s2−s1. We note that the map x → fx is continuous from [0,∞) to L2(−∞,∞),

moreover, ‖ fx‖L2(−∞,∞) ≤ ‖ f ‖L2(0,∞). ���
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Lemma 3.4. Suppose that G (x, t ,ρ) is some linear operator acting (for any fixed x, t ,ρ) from

L (∧m
C

n) to ∧m
C

n such that:

1. G (x, xτ,ρ) is continuous in [0,∞)× [0,1]×S ;

2. ‖G (x, xτ,ρ)‖≤ M, where the constant M does not depend on (x,τ,ρ)∈ [0,∞)× [0,1]×S .

Then for each of the functions:

F−(Q , x,ρ) = θ−(|ρx|−1)

∫x

0
G (x, t ,ρ)Q(t )d t ,

F+(Q , x,ρ) = θ+(|ρx|−1)

∫

|ρ|−1

0
G (x, t ,ρ)Q(t )d t ,

the following assertions are true:

1. for any fixed Q ∈X
m
p F±(Q , ·, ·) ∈ PC0(S ) ;

2. for any fixed Q ∈ X
m
p F±(Q , ·, ·) ∈ BC ([0,∞),L2(l )), where l is a ray l = {ρ = zt , t ∈ [0,∞)}

with arbitrary fixed z ∈S \ {0};

3. F± ∈ L (X m
p ,BC ([0,∞),L2(l ))), i.e., the map X

m
p ∋ Q → F±(Q , ·, ·) ∈ BC ([0,∞),L2(l )) is a

linear continuous operator.

Proof. 1) One has:

‖F−(Q , x,ρ)‖≤ Mθ−(|ρx|−1)

∫x

0
‖Q(t )‖d t ≤ M

∫|ρ|−1

0
‖Q(t )‖d t ,

in particular one has F−(Q ,0,ρ) ≡ 0 and

lim
ρ→∞

sup
x∈(0,∞)

‖F−(Q , x,ρ)‖= 0.

Furthermore, since for x > 0
∫

∞

0
θ−(|ρx|−1)d |ρ| = x−1

the Cauchy-Bunyakowsky-Schwartz inequality yields:

‖F−(Q , x, ·)‖L2(l) ≤ M x−1/2

∫x

0
‖Q(t )‖d t ,

that implies for Q ∈X
m
p :

‖F−(Q , x, ·)‖L2(l) ≤ M
(

‖Q‖L2(0,1) +‖Q‖L1(1,∞)

)

.

Furthermore, using again the Cauchy-Bunyakowsky-Schwartz and the Hölder inequality we

obtain:

‖F−(Q , x, ·)‖L2(l+(R)) ≤ Mθ−(R x −1)(1−R x)1/2x−1/2

∫x

0
‖Q(t )‖d t ≤
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Mθ−(R x −1)(1−R x)1/2x1/2−1/p
‖Q‖Lp (0,∞).

This yields:

sup
x∈[0,T ]

‖F−(Q , x, ·)‖L2(l+(R)) ≤ M sup
x∈[0,R−1]

(1−R x)1/2x1/2−1/p
= MR1/p−1/2 sup

t∈[0,1]
(1− t )1/2t 1/2−1/p .

Since p > 2 we see that

lim
R→∞

sup
x∈[0,T ]

‖F−(Q , x, ·)‖L2(l+(R)) = 0.

By virtue of Lemma 3.1 this completes the proof in what concerns F−.

2) Proceeding as above we obtain F+(Q ,0,ρ)≡ 0 and:

‖F+(Q , x,ρ)‖≤ Mθ+(|ρx|−1)

∫

|ρ|−1

0
‖Q(t )‖d t ,

that yields

lim
ρ→∞

sup
x∈(0,∞)

‖F+(Q , x,ρ)‖= 0.

Then, for x > 0 one has:

‖F+(Q , x, ·)‖L2(l) ≤ M

{

∫

∞

0
θ+(|ρx|−1)

(

∫

|ρ|−1

0
‖Q(t )‖d t

)2

d |ρ|

}1/2

≤ M

∫∞

0
‖Q(t )‖

{

∫t−1

0
d |ρ|

}1/2

= M

∫∞

0
t−1/2

‖Q(t )‖d t

≤ M (‖Q‖Lp (0,1) +‖Q‖L1(1,∞)).

Furthermore, one has:

‖F+(Q , x, ·)‖L2(l+(R)) ≤ M

{
∫

∞

R
θ+(r x −1)

(
∫

∞

0
θ−(r t −1)‖Q(t )‖d t

)2

dr

}1/2

≤

≤ M

∫R−1
+

0
‖Q(t )‖

{

∫t−1

R+

dr

}1/2

d t

≤ M

∫R−1
+

0
‖Q(t )‖(t−1

−R+)1/2 d t

≤ M‖Q‖Lp(0,R−1
+ )

{

∫R−1
+

0
(t−1

−R+)p′/2 d t

}1/p′

= M‖Q‖Lp(0,R−1
+ )R

1/p−1/2
+

{
∫1

0
(τ−1

−1)p′/2 dτ

}1/p′

≤ MR
1/p−1/2
+ ‖Q‖Lp (0,∞),
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where R+ = R+(R , x) := max{R , x−1} (we take into account that p > 2 > p ′ and therefore the

integrals converge; we use the same symbol M for denoting possibly different constants that

do not depend on x,R ,Q). Since sup
x∈[0,∞)

(R+(R , x))1/p−1/2 =R1/p−1/2 → 0 as R →∞ we obtain

lim
R→∞

sup
x∈[0,∞)

‖F+(Q , x, ·)‖L2(l+(R)) = 0

for any T ∈ (0,∞). Applying Lemma 3.1 completes the proof. ���

Lemma 3.5. Suppose that G (x, t ,ρ) is some linear operator acting (for any fixed x, t ,ρ) from

L (∧m
C

n) to ∧m
C

n such that:

1. G (x, t ,ρ) is continuous in {(x, t ,ρ) : ρ ∈S , |ρ|−1 ≤ t ≤ x <∞};

2. ‖G (x, t ,ρ)‖≤ M, where the constant M does not depend on (x, t ,ρ).

Then for the function:

F (Q , x,ρ)= θ+(|ρx|−1)

∫x

|ρ|−1
(ρt )−1

G (x, t ,ρ)Q(t )d t

the assertions of Lemma 3.4 are true.

Proof. Proceeding as above we note first:

‖F (Q , x,ρ)‖ ≤ Mθ+(|ρx|−1)

∫x

|ρ|−1
|ρt |−1

‖Q(t )‖d t

≤ M |ρ|−1/2

∫

∞

0
t−1/2

‖Q(t )‖d t

≤ M |ρ|−1/2(‖Q‖Lp (0,1) +‖Q‖L1(1,∞)).

In particular, this implies:

lim
ρ→∞

sup
x∈(0,∞)

‖F (Q , x,ρ)‖= 0.

Furthermore, one has:

‖F (Q , x, ·)‖L2(l) ≤ M

{
∫

∞

x−1

(
∫x

|ρ|−1
|ρt |−1

‖Q(t )‖d t

)2

d |ρ|

}1/2

≤ M

∫x

0

{
∫

∞

t−1
|ρt |−2

‖Q(t )‖2 d |ρ|

}1/2

d t = M

∫x

0
t−1/2

‖Q(t )‖d t

≤ M (‖Q‖Lp (0,1) +‖Q‖L1(1,∞))

and, moreover, for arbitrary R > 0:

‖F (Q , x, ·)‖L2(l+(R)) ≤ M

{
∫

∞

R
θ+(r x −1)

(
∫x

0
θ+(r t −1)(r t )−1

‖Q(t )‖d t

)2

dr

}1/2
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≤ M

∫x

0
t−1

‖Q(t )‖

{
∫

∞

R
r−2θ+(r x −1)θ+(r t −1)dr

}1/2

d t

= M

∫x

0
t−1(R+(R , t ))−1/2

‖Q(t )‖d t ,

where (as in proof of the previous lemma) R+(R , t )=max{R , t−1}. Thus, we obtain:

‖F (Q , x, ·)‖L2(l+(R)) ≤ M

∫R−1

0
t−1/2

‖Q(t )‖d t +MR−1/2
∫x

R−1
t−1

‖Q(t )‖d t

≤ M

∫R−1

0
t−1/2

‖Q(t )‖d t +MR−1/2
‖Q‖Lp (0,∞)

{
∫

∞

R−1
t−p′

d t

}1/p′

≤ M

∫R−1

0
t−1/2

‖Q(t )‖d t +MR1/p−1/2
‖Q‖Lp (0,∞).

Since p > 2 and (as a sequence) t−1/2‖Q(t )‖ ∈ L1(0,∞) we can conclude now that

lim
R→∞

sup
x∈[0,∞)

‖F (Q , x, ·)‖L2(l+(R)) = 0.

In view of Lemma 3.1 this completes the proof. ���

4. Proofs of the theorems

Proof of Theorem 1. 1) First we observe that

T̂k (Q , x,ρ) := (ρx)−
←−
µk Tk (Q , x,ρ)

=

∫1

0

∑

α∈An−k+1

σα

∣

∣

(

Q(xτ)T̂k (ρxτ)
)

∧ ĉα′(ρxτ)
∣

∣ ĉα(ρx) xτ
←−µ k−µαdτ,

where T̂k (x) := ĉk (x)∧ ·· ·∧ ĉn(x). Since all ĉk (·) are entire functions and Re(←−µ k −µα) ≥ 0 for

any α ∈ An−k+1 we can conclude that T̂k (Q , ·, ·) ∈ C
(

[0,∞)×S

)

. Moreover, the arguments

show that Tk (Q , x, ·) is analytic in S .

Further, we have

ωk (Q , x,ρ)= (ρx)
←−
µ k

(

←−
W k (ρx)

)−1
T̂k (Q , x,ρ).

By virtue of the properties of the weight functions Wk (·) the fraction ξ
←−µ k (

←−
W k (ξ))−1 is contin-

uous in S . Therefore ωk (Q , ·, ·) ∈C
(

[0,∞)×S

)

.

Now we note that

∑

α∈Am

σα

∣

∣ f ∧Cα′(t ,ρ)
∣

∣Cα(x,ρ)=: Gm(x, t ,ρ) f
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define some linear operator acting in ∧m
C

n and the operator admits also the following repre-

sentations:

Gm(x, t ,ρ) f =
∑

α∈Am

χα

∣

∣ f ∧Eα′(t ,ρ)
∣

∣Eα(x,ρ). (3)

Using the fundamental matrix Ψ(x,ρ) one can obtain another representation for the operator

Gm(x, t ,ρ):

Gm(x, t ,ρ) f =
∑

α∈Am

χα

∣

∣ f ∧Ψα′(t ,ρ)
∣

∣Ψα(x,ρ). (4)

In the sequel for a matrix function V = V (x,ρ) we denote Ṽ (x,ρ) :=V (x,ρ)(W (ρx))−1, where

W (ξ) := di ag (W1(ξ), . . . ,Wn (ξ)). For instance, we set Ψ̃(x,ρ) :=Ψ(x,ρ)(W (ρx))−1 that means,

in particular, Ψk (x,ρ) = Wk (ρx)Ψ̃k (x,ρ) and Ψα(x,ρ) = W α(ρx)Ψ̃α(x,ρ) for any arbitrary

multi-index α. Using (4) we can write:

ωk (Q , x,ρ)=
∑

α∈An−k+1

χα

∫x

0

∣

∣

∣

∣

∣

←−
W k (ρt )
←−
W k (ρx)

·W α(ρx)W α′

(ρt ) ·
(

Q(t )T̃k (t ,ρ)
)

∧Ψ̃α′ (t ,ρ)

∣

∣

∣

∣

∣

Ψ̃α(x,ρ)d t .

Since Ψ̃(x,ρ) and T̃k (x,ρ) are continuous and bounded on [0,∞)×S this yields:

‖ωk (Q , x,ρ)‖≤ M

∫x

0
‖Q(t )‖d t (5)

with some absolute constant M . Therefore (in particular) ωk ∈L

(

X
n−k+1
p ,BC ([0,∞)×S )

)

.

2) We split as follows:

ωk (Q , x,ρ) = ω(0)
k

(Q , x,ρ)+ω(1)
k

(Q , x,ρ)+ω(2)
k

(Q , x,ρ),

where:

ω(1)
k

(Q , x,ρ) = θ−(|ρx|−1)

∫x

0
Gn−k+1(x, t ,ρ)

(

Q(t )T̃k(t ,ρ)
)

d t ,

ω(2)
k

(Q , x,ρ) = θ+(|ρx|−1)

∫|ρ|−1

0
Gn−k+1(x, t ,ρ)

(

Q(t )T̃k (t ,ρ)
)

d t ,

Gn−k+1(x, t ,ρ) :=

←−
W k (ρt )
←−
W k (ρx)

Gn−k+1(x, t ,ρ),

and

ω(0)
k

(Q , x,ρ) =
∑

α∈An−k+1

θ+(|ρx|−1)χα exp(−ρx
←−
R k )

∫x

|ρ|−1

∣

∣

(

Q(t )Tk(t ,ρ)
)

∧Eα′(t ,ρ)
∣

∣Eα(x,ρ)d t .

Using representation (4) we obtain the estimate

‖Gn−k+1(x, xτ,ρ)‖≤ M

for all (x,τ,ρ) ∈ [0,∞)× [0,1]×S . Thus, from Lemma 3.4 it follows that ω(ν)
k

(Q , ·, ·) ∈ PC0(S )

and ω(ν)
k

∈L

(

X
n−k+1
p ,BC ([0,∞),L2(l ))

)

, ν= 1,2.
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Now we consider in details ω(0)
k

. Using the expansion

Tk (t ,ρ)=
∑

β∈An−k+1

TkβEβ(t ,ρ)

we obtain:

ω(0)
k

(Q , x,ρ)=
∑

α,β∈An−k+1

Γαβhαβ(Q , x,ρ),

where Γαβ are also some absolute constants and:

hαβ(Q , x,ρ)= θ+(|ρx|−1)exp(−ρx
←−
R k )

∫x

|ρ|−1

∣

∣

(

Q(t )Eβ(t ,ρ)
)

∧Eα′(t ,ρ)
∣

∣Eα(x,ρ)d t .

Then we write:

hαβ(Q , x,ρ)= h(0)
αβ

(Q , x,ρ)+h(1)
αβ

(Q , x,ρ),

where:

h(1)
αβ

(Q , x,ρ) = θ+(|ρx|−1)

∫x

|ρ|−1
(ρt )−1Hαβ(x, t ,ρ)Q(t )d t ,

Hαβ(x, t ,ρ)Q(t ) = exp(ρx(Rα−
←−
R k )

+ρt (Rβ−Rα))ρt ·
∣

∣

(

Q(t )Ẽβ(t ,ρ)
)

∧ Ẽα′(t ,ρ)−
(

Q(t )fβ
)

∧ fα′

∣

∣ Ẽα(x,ρ),

h(0)
αβ

(Q , x,ρ) = θ+(|ρx|−1)

∫x

|ρ|−1
exp(ρx(Rα−

←−
R k )+ρt (Rβ−Rα))

∣

∣

(

Q(t )fβ
)

∧ fα′

∣

∣ Ẽα(x,ρ)d t

= (h̃(0)
αβ

(Q , x,ρ)+ ĥ(0)
αβ

(Q , x,ρ))θ+(|ρx|−1)Ẽα(x,ρ).

Here

h̃(0)
αβ

(Q , x,ρ) =

∫x

0
exp(ρx(Rα−

←−
R k )+ρt (Rβ−Rα))

∣

∣

(

Q(t )fβ
)

∧ fα′

∣

∣ d t ,

ĥ(0)
αβ

(Q , x,ρ) =

∫

|ρ|−1

0
exp(ρx(Rα−

←−
R k )+ρt (Rβ−Rα))

∣

∣

(

Q(t )fβ
)

∧ fα′

∣

∣ d t

and we take into account that Ẽα(x,ρ)= exp(−ρxRα)Eα(x,ρ) if |ρ|x > 1.

From the asymptotics of Ek (x,ρ) it follows the estimate:

∥

∥

(

Q(t )Ẽβ(t ,ρ)
)

∧ Ẽα′(t ,ρ)−
(

Q(t )fβ
)

∧ fα′

∥

∥≤
M

|ρ|t
‖Q(t )‖ (6)

with some absolute constant M .

Consider the expression ρx(Rα−
←−
R k )+ρt (Rβ−Rα). We rewrite it as ρ(x − t )(Rα−

←−
R k )+

ρt (Rβ−
←−
R k ) and notice that Re

(

ρ(x − t )(Rα−
←−
R k )+ρt (Rβ−

←−
R k )

)

≤ 0 for all (x, t ,ρ) such that

t ∈ [0, x], ρ ∈ S . By virtue of Lemma 3.5 and estimate (6) we have h(1)
αβ

(Q , ·, ·) ∈ PC0(S ),

h(1)
αβ

∈ L

(

X
n−k+1
p ,BC ([0,∞),L2(l ))

)

, while Lemma 3.4 guarantees that the same is true for
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ĥ(0)
αβ

. Moreover, we see that if α 6=β then Rα−
←−
R k 6= Rβ−

←−
R k . Therefore, one can apply Lemma

3.3 and conclude that h̃(0)
αβ

(Q , ·, ·) ∈ PC0(S ), h̃(0)
αβ

∈L

(

X
n−k+1
p ,BC ([0,∞),L2(l ))

)

provided that

α 6= β. Now we recall that (Qfα)∧ fα′ = 0 for any α ∈ An−k+1 and therefore h̃(0)
αβ

= 0 if α = β.

Thus, we conclude that hαβ(Q , ·, ·) ∈ PC0(S ), hαβ ∈L

(

X
n−k+1
p ,BC ([0,∞),L2(l ))

)

for any pair

of multi-indices α,β from An−k+1, therefore (in view of Lemma 3.2) the same is true for ω(0)
k

and for ωk . From (5) it follows now that ωk ∈ L

(

X
n−k+1
p ,BC ([0,∞),C0(S ))

)

. Together with

other results of the first part this completes the proof. ���

Proof of Theorem 2. From the identity:

ρ(Q(t )Tk(t ,ρ))∧Eα′(t ,ρ)=
d

d t

(

(Q̂(t )Tk (t ,ρ))∧Eα′(t ,ρ)
)

−ρ(Q̃(t )Tk (t ,ρ))∧Eα′(t ,ρ),

where α ∈An−k+1 is arbitrary and

Q̃(t ) := Q̂ ′(t )+ t−1[Q̂(t ), A(n−k+1)]

it follows the relation:

ρ

∫x

x0

Gn−k+1(x, t ,ρ)
(

Q(t )Tk (t ,ρ)
)

d t =

Gn−k+1(x, t ,ρ)
(

Q̂(t )Tk (t ,ρ)
)∣

∣

x

x0
−

∫x

x0

Gn−k+1(x, t ,ρ)
(

Q̃(t )Tk (t ,ρ)
)

d t .

Under the conditions of the theorem Gn−k+1(x, t ,ρ)
(

Q(t )Tk(t ,ρ)
)

, Gn−k+1(x, t ,ρ)
(

Q̃(t )Tk (t ,ρ)
)

remain bounded as t → 0 (while x,ρ are fixed) and Q̂(0) = 0. Therefore, by passing to the limit

as x0 → 0 we obtain:

ρTk (Q , x,ρ)=Gn−k+1(x, x,ρ)
(

Q̂(x)Tk (x,ρ)
)

−Tk (Q̃ , x,ρ).

In order to observe the desired representation it is sufficient to use the representations for

Gn−k+1(x, t ,ρ), Tk (t ,ρ) and Theorem 1. The asymptotics of Eα(x,ρ) yield the asymptotics for

Tk (Q , x,ρ). ���
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