THE FORMULA FOR THE REGULARIZED TRACE OF THE STURM-LIOUVILLE OPERATOR WITH A LOGARITHMIC POTENTIAL

KHABIR KABIROVICH ISHKIN AND LEISAN GABDULLOVNA VALIULLINA

Abstract

We have obtained a regularized trace formula for the Sturm-Liouville operator on a semi-axis with a logarithmic potential.

1. Introduction

Let the function q be defined on $(0,+\infty)$, real-valued, summable on any finite interval $(0, b), b>0$, and

$$
\lim _{x \rightarrow+\infty} q(x)=+\infty .
$$

Further, let L be the operator generated in $L^{2}(,+\infty)$ by the differential expression $l y:=-y^{\prime \prime}+$ $q y$ and the boundary condition $y(0)=0[1, \mathrm{Ch} . \mathrm{V}, \S 18]$. According to the well-known A.M. Molchanov theorem [2], operator L has a discrete spectrum. In the paper [3] an asymptotic equation for the spectrum of the operator L whose potential can grow arbitrarily slowly was obtained. This equation allows us to calculate the first few (up to a summable remainder) terms of the asymptotic series for the eigenvalues in the case

$$
q=\underbrace{\log \ldots \log }_{m} x, m \in \mathbb{N}, a=\text { const }> \begin{cases}e^{m-2}, & m \geq 2, \\ 0, & m=1 .\end{cases}
$$

In particular, when $q=\log (x+a)$

$$
\begin{align*}
\lambda_{k} & =s_{k}+O\left(k^{-1}(\log k)^{-3 / 2}\right), \tag{1}\\
s_{k} & =\log (2 \sqrt{\pi} k)-k^{-1}\left(\frac{a}{\pi} \sqrt{\log k}+k_{0}-1 / 4+\frac{c_{0}}{\sqrt{\log k}}\right), \tag{2}
\end{align*}
$$

where $c_{0}=\frac{a}{2 \pi}(1+\log (2 \sqrt{\pi} / a))$. A parameter k_{0} is some positive integer (regularization defect) that ensures the convergence of the series

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\lambda_{k}-s_{k}\right) . \tag{3}
\end{equation*}
$$

The purpose of this paper is to find the value of k_{0} and to calculate the sum of the series (3), wich is called the regularized trace of the operator L_{a} with the potential $q=\log (x+a)$.

The first L operator with the potential $q(x)=\log ^{+} x:=\max \{\log x, 0\}$ was considered in [4] as an example of Feynman-Kac theory application [5, § X.11] (in combination with Karamata's Tauberian theorem [6, Ch. XII, § 7]) to the problem of finding the asymptotics of the function

$$
\begin{equation*}
N(\lambda):=\sum_{\lambda_{k}<\lambda} 1 . \tag{4}
\end{equation*}
$$

This result was summarized by K. Kh. Boymatov [7] on Sturm-Liouville operators with a matrix potential that allows growth of order $\underbrace{\log \ldots \log }_{m} x(m \in \mathbb{N})$.

Regularized traces of the form (3) in the case of power growth potentials are well studied (see [8] and references therein). From the formulas (1) - (2) it is clear that for any n operator L_{a}^{-n} is not a trace-class operator, therefore the classical method of zeta-functions [9, 10] is not applicable in this situation. On the other hand, due to the exponential growth of the function (4) θ-function of the operator L_{a}

$$
\begin{equation*}
\Theta_{a}(t):=\sum_{k=1}^{\infty} e^{-t \lambda_{k}} \tag{5}
\end{equation*}
$$

is determined only on the half-plane $\Re t>c$ with some positive c. Therefore, the parabolic equation method [11] using asymptotics $\Theta_{a}(t)$ as $t \rightarrow+0$ seems inapplicable in this case. However, formulas (1) - (2) allow us to construct an analytic continuation of the function Θ_{a} on the half-plane $\Re t>0$. Using this fact, it is possible to find the sum of a series (3).

2. Asymptotics of the function Θ_{a}

By virtue of formulas (1) - (2) and (5) the function Θ_{a} holomorphic in the half-plane $\Re t>1$.

Theorem 1. The function Θ_{a} admits a meromorphic (with a single pole at $t=1$) continuation to the half-plane $\Re t>0$ and as $t \rightarrow+0$ the following asymptotic decomposition

$$
\begin{equation*}
\Theta_{a}(t) \sim-\frac{a}{2 \sqrt{\pi}} t^{-1 / 2}-\left(k_{0}+1 / 4\right)+\theta_{0} t^{1 / 2}+\theta_{1} t+O\left(t^{3 / 2}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
\theta_{0}= & \frac{a(\log a-1)}{2 \sqrt{\pi}}, \\
\theta_{1}= & \lambda_{1}+\sigma(2)+\frac{a}{\pi} \int_{1}^{\infty}\{x\}\left((\log x)^{1 / 2} x^{-1}\right)^{\prime} d x \\
& +\left(k_{0}-\frac{1}{4}\right)(\gamma-1)-\left(k_{0}+\frac{5}{4}\right) \log 2 \sqrt{\pi}+\frac{1}{2} \log 2 \pi
\end{aligned}
$$

$$
+\frac{a}{2 \pi}\left(1+\log \frac{2 \sqrt{\pi}}{a}\right) \int_{1}^{\infty}\{x\}\left((\log x)^{-1 / 2} x^{-1}\right)^{\prime} d x
$$

γ-Euler's constant.

Proof. We transform the decomposition (1) - (2) to a form, wich is more convenient for finding the asymptotics of the function Θ_{a} :

$$
\begin{equation*}
\lambda_{k}=\log k+c_{1}+c_{2}(\log k)^{1 / 2} k^{-1}+c_{3} k^{-1}+c_{0}(\log k)^{-1 / 2} k^{-1}+r_{k} \tag{7}
\end{equation*}
$$

where $\quad c_{1}=\log 2 \sqrt{\pi}, \quad c_{2}=\frac{a}{\pi}, \quad c_{3}=k_{0}-\frac{1}{4}, \quad c_{0}=\frac{a}{2 \pi}(1+\log (2 \sqrt{\pi} / a))$,

$$
\begin{equation*}
r_{k}=O\left(k^{-1}(\log k)^{-3 / 2}\right), \quad k \rightarrow \infty \tag{8}
\end{equation*}
$$

Then

$$
\begin{align*}
\Theta_{a}(t) & =\sum_{k=1}^{\infty} e^{-t \lambda_{k}}=e^{-t \lambda_{1}}+e^{-t c_{1}} \sum_{k=2}^{\infty} e^{-t\left(\log k+c_{2}(\log k)^{1 / 2}+c_{3} k^{-1}+c_{0}(\log k)^{1 / 2} k^{-1}+r_{k}\right)} \\
& =e^{-t \lambda_{1}}+e^{-t c_{1}} \sum_{k=2}^{\infty} k^{-t} e^{-c_{2} t(\log k)^{1 / 2} k^{-1}} e^{-c_{3} t k^{-1}} e^{-c_{0} t(\log k)^{-1 / 2} k^{-1}} e^{-t r_{k}} \tag{9}
\end{align*}
$$

Putting each exponent according to the Taylor formula, we get

$$
\begin{aligned}
e^{-c_{3} t k^{-1}} & =1-c_{3} t k^{-1}+O\left(t^{2} k^{-2}\right) \\
e^{-c_{0} t(\log k)^{-\frac{1}{2}} k^{-1}} & =1-c_{0} t(\log k)^{-1 / 2} k^{-1}+O\left(t^{2}(\log k)^{-1} k^{-2}\right) \\
e^{-c_{2} t(\log k)^{\frac{1}{2}} k^{-1}} & =1-c_{2} t(\log k)^{1 / 2} k^{-1}+O\left(t^{2}(\log k) k^{-2}\right) \\
e^{-t r_{k}} & =1-t r_{k}+O\left(t^{2} r_{k}^{2}\right)
\end{aligned}
$$

Substituting these expansions into (9), we have

$$
\begin{align*}
\Theta_{a}(t)=e^{-t \lambda_{1}} & +e^{-t c_{1}}\left\{\zeta(t)-1-t\left[c_{2} \varphi_{1}(t)+c_{3}(\zeta(t+1)-1)\right.\right. \\
& \left.\left.+c_{0} \varphi_{2}(t)+\varphi_{3}(t)\right]\right\}+\varphi_{4}(t), \tag{10}
\end{align*}
$$

where

$$
\begin{array}{ll}
\varphi_{1}(t)=\sum_{k=2}^{\infty}(\log k)^{1 / 2} k^{-1-t}, & \varphi_{2}(t)=\sum_{k=2}^{\infty}(\log k)^{-1 / 2} k^{-1-t}, \\
\varphi_{3}(t)=\sum_{k=2}^{\infty} k^{-t} r_{k}, & \varphi_{4}(t)=e^{-t c_{1}} \sum_{k=2}^{\infty} k^{-t} R_{k}(t), \\
R_{k}(t)=O\left(t^{2}(\log k) k^{-2}\right) .
\end{array}
$$

Therefore, the function Θ_{a} admits a meromorphic extension to the half-plane $\Re t>0$ with a single pole at $t=1$ (because of the term $\zeta(t)$). Find the asymptotics $\Theta_{a}(t)$ as $t \rightarrow+0$.

Let $\rho(x)=x-\{x\}$, where $\{x\}$ is fractional part of the number x. Then $\quad \forall 0<\varepsilon<1$

$$
\begin{aligned}
\varphi_{1}(t)= & \int_{1+\varepsilon}^{\infty}(\log x)^{1 / 2} x^{-1-t} d \rho(x)=\int_{1+\varepsilon}^{\infty}(\log x)^{1 / 2} x^{-1-t} d x \\
& +\varepsilon(\log (1+\varepsilon))^{1 / 2}(1+\varepsilon)^{-1-t}+\int_{1+\varepsilon}^{\infty}\{x\}\left[(\log x)^{1 / 2} x^{-1-t}\right]^{\prime} d x
\end{aligned}
$$

whence as $\varepsilon \rightarrow+0$ we get

$$
\varphi_{1}(t)=\int_{1}^{\infty}(\log x)^{1 / 2} x^{-1-t} d t+\int_{1}^{\infty}\{x\}\left((\log x)^{1 / 2} x^{-1-t}\right)^{\prime} d x=: \varphi_{11}(t)+\varphi_{12}(t)
$$

Direct calculation gives

$$
\varphi_{11}(t)=\frac{\sqrt{\pi}}{2} t^{-3 / 2}
$$

Further,

$$
\varphi_{12}(t)=\int_{1}^{\infty}\{x\}\left[-(1+t)(\log x)^{1 / 2}+\frac{1}{2}(\log x)^{-1 / 2}\right] x^{-2-t} d x
$$

Denote the integrand by $f(x, t)$. Then $\quad \forall k$

$$
\frac{\partial^{k}}{\partial t^{k}} f(x, t)=O\left((\log x)^{-1 / 2+k} x^{-2}\right), \quad x \geq 1
$$

uniformly in $\Re t>0$, therefore φ_{12} is holomorphic at zero, so

$$
\varphi_{1,2}(t)=\varphi_{1,2}(0)+O(t), \quad t \rightarrow 0 .
$$

Therefore,

$$
\begin{equation*}
\varphi_{1}(t)=\frac{\sqrt{\pi}}{2} t^{-3 / 2}+\int_{1}^{\infty}\{x\}\left((\log x)^{1 / 2} x^{-1}\right)^{\prime} d x+O(t), \quad t \rightarrow+0 . \tag{11}
\end{equation*}
$$

Similarly, it is proved that

$$
\begin{equation*}
\varphi_{2}(t)=\sqrt{\pi} t^{-1 / 2}+\int_{1}^{\infty}\{x\}\left((\log x)^{-1 / 2} x^{-1}\right)^{\prime} d x \tag{12}
\end{equation*}
$$

Let us introduce the function

$$
\sigma(x)=\sum_{k \geq x} r_{k} .
$$

From (1) - (2) it follows that

$$
\sigma(x)=O\left((\log x)^{-1 / 2}\right), \quad x \rightarrow \infty
$$

Then

$$
\begin{equation*}
\varphi_{3}(t)=-\int_{2}^{\infty} x^{-t} d \sigma(x)=\frac{\sigma(2)}{2^{t}}-t \int_{2}^{\infty} x^{-t-1} \sigma(x) d x=\sigma(2)+O\left(t^{1 / 2}\right), t \rightarrow+0 \tag{13}
\end{equation*}
$$

Further, due to the well-known properties of ζ-functions (see, for example, [12, Ch. II, $\left.1^{0}\right]$)

$$
\begin{align*}
\zeta(t) & =-\frac{1}{2}-\frac{1}{2} \log (2 \pi) t+O\left(t^{2}\right) \tag{14}\\
\zeta(t+1) & =\frac{1}{t}+\gamma+O(t) \tag{15}
\end{align*}
$$

Now substituting (11) - (15) into (10), after simple calculations we get (6). The theorem is proved.

3. Operator $e^{-t L_{a}}$ and its trace

3.1. Estimation of the resolvent kernel for the operator L_{a}

We introduce the notation. Let be $\Omega_{a}=\mathbb{C} \backslash[\log a,+\infty), \Omega_{r \sigma}=\{\sigma \leq \arg (\lambda-\log a-r) \leq$ $2 \pi-\sigma\}, r>0,0<\sigma<\pi, \varphi(x, \lambda)$ and $\psi(x, \lambda)$ - solutions of the equation

$$
\begin{equation*}
-y^{\prime \prime}+q_{a} y=\lambda y \tag{16}
\end{equation*}
$$

that satisfy the following conditions:

$$
\begin{align*}
& \varphi(0, \lambda)=0, \frac{\partial \varphi}{\partial x}(0, \lambda)=1 \\
& \psi(x, \lambda) \sim\left(q_{a}(x)-\lambda\right)^{-1 / 4} \exp \left(-\int_{0}^{x}\left(q_{a}(t)-\lambda\right)^{1 / 2} d t\right), x \rightarrow+\infty \tag{17}
\end{align*}
$$

Hereinafter, the expression $z^{1 / n}$ will mean that branch of the root $\sqrt[n]{z}$, which is positive for positive z. Since for each fixed $\lambda \notin\left[q_{a}(b),+\infty\right)$ the function

$$
\begin{equation*}
\alpha(x, \lambda)=\frac{1}{8} \frac{q_{a}^{\prime \prime}(x)}{\left(q_{a}(x)-\lambda\right)^{3 / 2}}-\frac{5}{32} \frac{q_{a}^{\prime 2}(x)}{\left(q_{a}(x)-\lambda\right)^{5 / 2}} \tag{18}
\end{equation*}
$$

is summable on $(b,+\infty)$, there exists a unique solution ψ, satisfying (17),[13, Ch. II, § 6].
The resolvent kernel for the operator L_{a} has the form

$$
G(x, y, \lambda)=\frac{1}{\psi(0, \lambda)}\left\{\begin{array}{l}
\varphi(x, \lambda) \psi(t, \lambda), x<t<\infty \tag{19}\\
\psi(x, \lambda) \varphi(t, \lambda), 0<t<x
\end{array}\right.
$$

Therefore,

$$
\begin{equation*}
G(x, x, \lambda)=\frac{1}{\psi(0, \lambda)} \varphi(x, \lambda) \psi(x, \lambda) \tag{20}
\end{equation*}
$$

Lemma 1. For each $\varepsilon>0$ there is a constant $r_{\varepsilon}>0$ such that if $\varepsilon \leq \sigma<\pi, r \geq r_{\varepsilon}$, then for all $x \geq 0$ and $\lambda \in \Omega_{r \sigma}$ function $\psi(x, \lambda)$ permits the representation

$$
\psi(x, \lambda) \sim\left(q_{a}(x)-\lambda\right)^{-1 / 4} \exp \left(-\int_{0}^{x}\left(q_{a}(t)-\lambda\right)^{1 / 2} d t\right) \times
$$

$$
\begin{equation*}
\times\left[1+\int_{x}^{+\infty}\left(\alpha+\frac{\alpha^{\prime}}{2 \sqrt{q-\lambda}}+R\right) d t\right] \tag{21}
\end{equation*}
$$

where α is defined by the formula (18) and

$$
\begin{equation*}
\sup _{x \geq 0, \lambda \in \Omega_{r \sigma}}\left|R(x, \lambda)(x+a)^{3}(q-\lambda)^{5 / 2}\right|<\infty \tag{22}
\end{equation*}
$$

Proof. Substituting

$$
\begin{equation*}
\psi(x, \lambda)=\left(q_{a}(x)-\lambda\right)^{-1 / 4} \exp \left(-\int_{0}^{x}\left(q_{a}(t)-\lambda\right)^{1 / 2} d t+\int_{x_{0}}^{x}(-\alpha+\beta) d t\right) \tag{23}
\end{equation*}
$$

we get the equation for β

$$
\beta^{\prime}-2\left(\beta_{0}+\beta_{1}+\alpha\right) \beta+2 \beta_{1} \alpha+\alpha^{2}-\alpha^{\prime}+\beta^{2}=0
$$

where

$$
\beta_{0}=\sqrt{q_{a}-\lambda}, \beta_{1}=\frac{1}{4} \frac{q_{a}^{\prime}}{q_{a}-\lambda} .
$$

The method of variation of constants leads to the equation

$$
\begin{equation*}
\beta=\gamma+\int_{x}^{+\infty} e^{-2 \int_{x}^{t}\left(\beta_{0}+\alpha\right) d t}\left(q_{a}(x)-\lambda\right)^{1 / 2}\left(q_{a}(t)-\lambda\right)^{-1 / 2} \beta^{2} d t \tag{24}
\end{equation*}
$$

where

$$
\gamma=\int_{x}^{+\infty} e^{-2 \int_{x}^{t}\left(\beta_{0}+\alpha\right) d t}\left(q_{a}(x)-\lambda\right)^{1 / 2}\left(q_{a}(t)-\lambda\right)^{-1 / 2}\left(2 \beta_{1} \alpha-\alpha^{\prime}+\alpha^{2}\right) d t
$$

By direct calculations, it is easy to verify that for every $r>0,0<\sigma<\pi$

$$
\left|q_{a}(t)-\lambda\right|>\sin \sigma\left|q_{a}(x)-\lambda\right| \forall t \geq x, \lambda \in \Omega_{r \sigma} .
$$

Integrating in parts and taking into account the last inequality, we get

$$
\gamma=-\frac{\alpha^{\prime}}{2 \sqrt{q_{a}-\lambda}}+O\left((x+a)^{-3}\left(q_{a}(x)-\lambda\right)^{-5 / 2}\right)
$$

uniformly in $x \geq 0$ and $\lambda \in \Omega_{r \sigma}$ for all $r>0,0<\sigma<\pi$.
Replacing

$$
\begin{equation*}
R=(x+a)^{3}\left(q_{a}(x)-\lambda\right)^{5 / 2}\left(\beta+\frac{\alpha^{\prime}}{2 \sqrt{q_{a}-\lambda}}\right) \tag{25}
\end{equation*}
$$

converts the equation (24) to the form

$$
\begin{equation*}
R(x, \lambda)=\widetilde{\gamma}(x, \lambda)+\int_{x}^{+\infty} K(x, t, \lambda) R^{2}(t, \lambda) d t \tag{26}
\end{equation*}
$$

where functions $\widetilde{\gamma}(x, \lambda)$ and $K(x, t, \lambda)$ are continuous on $[0,+\infty) \times \Omega_{a}$ and $[0,+\infty)^{2} \times \Omega_{a}$ respectively. Moreover,

$$
\widetilde{\gamma}(x, \lambda)=O(1), K(x, t, \lambda)=O\left((x+a)^{-3}\left(q_{a}(x)-\lambda\right)^{-5 / 2}\right)
$$

uniformly in $x \geq 0$ and $\lambda \in \Omega_{r \sigma}$ (for all $r>0,0<\sigma<\pi$). According to the second estimate for any $\varepsilon>0$ there is a sufficiently large $r_{\varepsilon}>0$ such that for all $r \geq r_{\varepsilon}$ and $\varepsilon \leq \sigma<\pi$ the integral operator on the right side of (26) is a contraction in a Banach space $C\left([0,+\infty) \times \Omega_{r \sigma}\right)$.The method of successive approximations shows that for all $r \geq r_{\varepsilon}$ and $\varepsilon \leq \sigma<\pi$, the equation (26) has a unique solution $R \in C\left([0,+\infty) \times \Omega_{r \sigma}\right)$. Hence, according to the equalities (25) and (23), for $x_{0}=+\infty$, the representation (21) with the estimate (22) follows. The lemma is proved.

According to the proof of the lemma it follows that if $\varepsilon \leq \sigma<\pi, r \geq r_{\varepsilon}$ then the function $\psi(x, \lambda)$ for every $\lambda \in \Omega_{r \sigma}$ does not have zeros on $[0,+\infty)$. Therefore, the solution $\varphi(x, \lambda)$ can be accepted in the form

$$
\begin{equation*}
\varphi(x, \lambda)=\psi(0, \lambda) \psi(x, \lambda) \int_{0}^{x} \psi^{-2}(t, \lambda) d t \tag{27}
\end{equation*}
$$

Substituting this expression into (20), we get

$$
\begin{equation*}
G(x, x, \lambda)=\psi^{2}(x, \lambda) \int_{0}^{x} \psi^{-2}(t, \lambda) d t \tag{28}
\end{equation*}
$$

We set

$$
\begin{equation*}
\Psi(x, \lambda)=\int_{0}^{x} \psi^{-2}(t, \lambda) d t, x>0, \lambda \in \Omega_{r \sigma}, \varepsilon \leq \sigma<\pi, r \geq r_{\varepsilon} \tag{29}
\end{equation*}
$$

Lemma 2. Let $\varepsilon \leq \sigma<\pi, r \geq r_{\varepsilon}$. Then

$$
\begin{align*}
\Psi(x, \lambda) \sim & \frac{1}{2} \exp \left(2 \int_{0}^{x}\left(q_{a}(t)-\lambda\right)^{1 / 2} d t\right) \\
& \times\left[1-2 \int_{x}^{+\infty}\left(\alpha+\frac{\alpha^{\prime}}{2 \sqrt{q-\lambda}}\right) d t+Q(x, \lambda)\right] \tag{30}
\end{align*}
$$

where

$$
\begin{equation*}
\sup _{x \geq 0, \lambda \in \Omega_{r \sigma}}\left|Q(x, \lambda)(x+a)^{2}(q-\lambda)^{5 / 2}\right|<\infty . \tag{31}
\end{equation*}
$$

Proof. Fix $\varepsilon>0$ and everywhere until the end of the proof of the lemma we assume that $\varepsilon<\sigma<\pi, \lambda \in \Omega_{r \sigma}, x>0$. The function Ψ can be represented as

$$
\begin{equation*}
\Psi(x, \lambda)=\int_{0}^{x / 2} \psi^{-2}(t, \lambda) d t+\int_{x / 2}^{x} \psi^{-2}(t, \lambda) d t=: \Psi_{1}(x, \lambda)+\Psi_{2}(x, \lambda) \tag{32}
\end{equation*}
$$

Since for all $\sigma-\pi<\arg q_{a}(x)-\lambda<\pi-\sigma$ then $\forall 0 \leq t<x / 2$

$$
\Re\left(\int_{t}^{x} \sqrt{q_{a}-\lambda} d \tau\right)>\Re\left(\int_{x / 2}^{x} \sqrt{q_{a}-\lambda} d \tau\right)
$$

$$
\begin{equation*}
>\sin (\sigma / 2) \min \left\{\sqrt{q_{a}(x)-\lambda}, \sqrt{q_{a}(x / 2)-\lambda}\right\} . \tag{33}
\end{equation*}
$$

Futher, since $\forall t \in[x / 2, x] \quad\left|q_{a}(x)-q_{a}(t)\right|<\log 2$ and $\left|q_{a}(x)-\lambda\right|>r \sin \sigma$ then for all $r>$ $2 \log 2 / \sin \sigma$

$$
\begin{equation*}
1 / 2<\left|\frac{q_{a}(x)-\lambda}{q_{a}(t)-\lambda}\right|<3 / 2 \quad \forall t \in[x / 2, x], \lambda \in \Omega_{r \sigma} \tag{34}
\end{equation*}
$$

Hence, taking into account (33), we conclude

$$
\Re\left(\int_{t}^{x} \sqrt{q_{a}-\lambda} d \tau\right) \geq C\left|q_{a}(x)-\lambda\right|^{1 / 2} x .
$$

Therefore, for all $x \geq 0, \lambda \in \Omega_{r \sigma}$, where $r>2 \log 2 / \sin \varepsilon$,

$$
\begin{equation*}
\left|\Psi_{1}(x, \lambda)\right| \leq C(r)\left|e^{2 \int_{0}^{x}\left(q_{a}(t)-\lambda\right)^{1 / 2} d t}(x+a)^{-2}(q(x)-\lambda)^{-5 / 2}\right|, \tag{35}
\end{equation*}
$$

$C(\varepsilon)>0$ depends only on ε.
Next, we substitute the expression (21) into the formula for Ψ_{2} and integrate the latter in parts. Cosequently, according to (34), we obtain (30), (31).

Lemma 3. Let $0<\varepsilon \leq \sigma<\pi$. Then there exists $r_{\varepsilon}>0$ so that the representation is true

$$
\begin{align*}
G(x, x, \lambda) & =\frac{1}{2}\left(q_{a}(x)-\lambda\right)^{-1 / 2}\left(1-e^{-2 \int_{0}^{x} \sqrt{q_{a}(t)-\lambda} d t}+g(x, \lambda)\right), \tag{36}\\
\mid g(x, \lambda \mid & \leq C(\varepsilon)(x+a)^{-2}|q(x)-\lambda|^{-5 / 2} \quad \forall x \geq 0, \lambda \in \Omega_{r \sigma}, \tag{37}
\end{align*}
$$

where $r>r_{\varepsilon}, C(\varepsilon)>0$ depends only on ε.

Proof. It follows from the formula (28) and Lemmas 2, 3.

3.2. Formula for the kernel of the operator $e^{-t L_{a}}$

Let $0<\varepsilon \leq \sigma<\pi, r>r_{\varepsilon}$, where r_{ε} is the constant appearing in the formulation of the Lemma 3, $\gamma_{r \sigma}$ is the boundary of the region $\Omega_{r \sigma}$ with the counterclockwise direction ${ }^{1}$.

Lemma 4. For any $t>0$ the representation

$$
\begin{equation*}
e^{-t L_{a}}=\frac{1}{2 \pi i} \int_{\gamma_{r \sigma}} e^{-t \lambda}\left(\lambda-L_{a}\right)^{-1} d \lambda \tag{38}
\end{equation*}
$$

holds. Here the limit is understood in the sense of convergence in the uniform operator topology.

[^0]Proof. Since $e^{-t L_{a}}$ is a bounded operator, then

$$
e^{-t L_{a}}=\lim _{n \rightarrow \infty} e^{-t L_{a}} P_{n}
$$

where P_{n} is orthogonal projector on the linear span of the first n eigenvectors of the operator L_{a} and the limit is understood in the sense of a convergence in the norm. We have (see, for example, [14, § XII.2])

$$
P_{n}=\frac{1}{2 \pi i} \int_{\Gamma_{n}}\left(\lambda-L_{a}\right)^{-1} d \lambda,
$$

where γ_{n} is any contour covering the first n eigenvalues of the operator L_{a}, the integral is taken in the counterclockwise direction. Then

$$
e^{-t L_{a}} P_{n}=\frac{1}{2 \pi i} \int_{\gamma_{n}} e^{-t L_{a}}\left(\lambda-L_{a}\right)^{-1} d \lambda
$$

As γ_{n} we take a contour composed of l_{n} - parts of $\gamma_{r \sigma}$ lying in the half-plane $\Re \lambda<\left(\lambda_{n}+\right.$ $\left.\lambda_{n+1}\right) / 2$, and the segment l_{n} connecting the ends of γ_{n}.

Let

$$
R_{n}=\int_{l_{n}} e^{-t L_{a}}\left(\lambda-L_{a}\right)^{-1} d \lambda
$$

Let us prove that for any $\Re t>1$

$$
\begin{equation*}
\left\|R_{n}\right\| \rightarrow 0, \quad n \rightarrow \infty \tag{39}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left\|\left(\lambda-L_{a}\right)^{-1}\right\| \leq \frac{1}{\operatorname{dist}\left(\lambda, \sigma\left(L_{a}\right)\right)} \tag{40}
\end{equation*}
$$

Hence, for all λ from $\left[N_{-}, N_{+}\right]$, where $N_{ \pm}=\left(\lambda_{n}+\lambda_{n+1}\right) / 2 \pm i$, we will have $\left\|\left(\lambda-L_{a}\right)^{-1}\right\| \leq$ $2 /\left(\lambda_{n+1}-\lambda_{n}\right)$. According to (1) - (2) $\lambda_{n+1}-\lambda_{n} \sim n^{-1}, \quad n \rightarrow \infty$. Hence, for the operator

$$
r_{n}=\int_{\left[N_{-}, N_{+}\right]} e^{-t L_{a}}\left(\lambda-L_{a}\right)^{-1} d \lambda
$$

we get

$$
\begin{equation*}
\left\|r_{n}\right\|=O\left(n^{-t+1}\right), \quad n \rightarrow \infty \tag{41}
\end{equation*}
$$

Further, since according to (40) \|($\left.\lambda-L_{a}\right)^{-1} \|<1$ on $l_{n} \backslash\left[N_{-}, N_{+}\right]$, then

$$
\begin{equation*}
\left\|R_{n}-r_{n}\right\|=O\left(e^{-t n} n\right), n \rightarrow \infty \tag{42}
\end{equation*}
$$

Now (39) directly follows from (41) and (42).

3.3. Asymptotics of $\operatorname{tr}\left(e^{-t L_{a}}\right)$

Lemma 5. For $\Re t>1$

$$
\operatorname{tr}\left(e^{-t L_{a}}\right)=-\frac{1}{2 \pi i} \int_{0}^{\infty} d x \int_{\gamma_{r \sigma}} e^{-t \lambda} G(x, x, \lambda) d \lambda
$$

Proof. By Lemma 4

$$
\begin{equation*}
\left(e^{-t L_{a}} f\right)(x)=-\frac{1}{2 \pi i} \int_{\Gamma} d \lambda e^{-t \lambda} \int_{0}^{\infty} G(x, y, \lambda) f(y) d y \tag{43}
\end{equation*}
$$

According to formulas (19), (27) and Lemmas 1 and 2

$$
\begin{equation*}
|G(x, y, \lambda)| \leq C\left|\left(q_{a}(x)-\lambda\right)^{-1 / 4}\right| q_{a}(y)-\left.\lambda\right|^{-1 / 4} \exp \left(-\left|\Re \int_{x}^{y} \sqrt{q_{a}(t)-\lambda} d t\right|\right) \tag{44}
\end{equation*}
$$

where $C=$ const >0. Further, for any fix $x>0$ and all $f \in L^{2}(0,+\infty)$

$$
\begin{aligned}
\left|\left(e^{-t L_{a}} f\right)(x)\right| & \leq \int_{\Gamma}\left|d \lambda \| e^{-t \lambda}\right| \int_{0}^{\infty}|G(x, y, \lambda) f| d y \\
& \leq \frac{1}{2 \pi} \int_{\Gamma}\left|d \lambda \| e^{-t \lambda}\right| \sqrt{\int_{0}^{\infty}|G(x, y, \lambda)|^{2} d y \cdot\|f\|}
\end{aligned}
$$

Hence, taking into account the estimate (44), we will have

$$
\left|e^{-t L_{a}} f(x)\right| \leq C \int_{\gamma_{r \sigma}}\left|e^{-t \lambda}\right|\left|q_{a}(x)-\lambda\right|^{-\frac{1}{4}}|d \lambda|<\infty
$$

Therefore, we can apply the Fubini theorem to the right side of (43). As a result, we get

$$
e^{-t L_{a}} f=-\int_{0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\gamma_{r \sigma}} d \lambda e^{-t \lambda} G(x, y, \lambda)\right) f d y
$$

Consequently, the kernel of the operator $e^{-t L_{a}}$ has the form

$$
H(x, y, t)=-\frac{1}{2 \pi i} \int_{\gamma_{r \sigma}} d \lambda e^{-t \lambda} G(x, y, \lambda) .
$$

According to formulas (1) - (2) for $\Re t>1$ the operator $e^{-t L_{a}}$ is a trace-class one, therefore

$$
\operatorname{tr}\left(e^{-t L_{a}}\right)=\int_{0}^{\infty} H(x, x, t) d x=-\frac{1}{2 \pi i} \int_{0}^{\infty} d x \int_{\gamma_{r \sigma}} d \lambda e^{-t \lambda} G(x, x, \lambda) .
$$

Theorem 2. For the θ-functions of the operator L_{a} as $t \rightarrow+0$ the following decomposition is true

$$
\begin{equation*}
\Theta_{a}(t) \sim-\frac{a}{2 \sqrt{\pi}} t^{-1 / 2}-1 / 4+\theta_{0} t^{1 / 2}+\frac{\log a}{4} t+O\left(t^{3 / 2}\right) . \tag{45}
\end{equation*}
$$

Here θ_{0} is defined in the same way as in (6).

Proof. The statement of the theorem follows directly from the Lemmas 3 and 5.
Corollary 3. The constant k_{0} in formulas (1) - (2) and (6) is equal to 0.

4. Regularized trace of the operator L_{a}

The sum

$$
\begin{equation*}
\sigma=\lambda_{1}+\sum_{k=2}^{\infty}\left[\lambda_{k}-\log (2 \sqrt{\pi} k)-k^{-1}\left(\frac{a}{\pi}(\log k)^{1 / 2}-1 / 4+c_{0}(\log k)^{-1 / 2}\right)\right] \tag{46}
\end{equation*}
$$

where $c_{0}=\frac{a}{2 \pi}(1+\log (2 \sqrt{\pi} / a))$, we call the regularized trace of the operator L_{a}.
Theorem 4. The following formula is true

$$
\begin{align*}
\sigma= & \frac{1}{4}(\log (2 \sqrt{\pi})+\gamma-1+\log a)-\frac{a}{\pi} \int_{1}^{\infty}\{x\}\left((\log x)^{1 / 2} x^{-1}\right)^{\prime} d x \\
& -\frac{a}{2 \pi}\left(1+\log \frac{2 \sqrt{\pi}}{a}\right) \int_{1}^{\infty}\{x\}\left((\log x)^{-1 / 2} x^{-1}\right)^{\prime} d x . \tag{47}
\end{align*}
$$

Proof. The formula (47) follows from the formulas (6) and (45).

Acknowledgement

This work was supported by the grant from the Russian Science Foundation (project no. 18-11-00002).

References

[1] M.A. Naimark, Linear Differential Operators, 2nd ed., Nauka, Moscow (1969); English transl. of 1st ed., Parts I,II, Ungar, New York (1967, 1968).
[2] A. M. Molchanov, On conditions for discreteness of the spectrum of self-adjoint differential equations of the second order, (Russian) Trudy Moskov. Mat. Obsch., 2 (1953), 169-199.
[3] L. G. Valiullina, Kh. K. Ishkin, On the localization conditions for the spectrum of a non-self-adjoint SturmLiouville operator with slowly growing potential, Journal of Mathematical Sciences, 241 (2019), no.5, 556569.
[4] D. Ray, On spectra of second order differential operator, Trans. of Amer. Math. Soc., 77 (1954), 320-321.
[5] M. Rid., B. Simon, Methods of modern mathematical physics, Methods of modern mathematical physics, Academic Press, New York-San Francisco-London, 2 (1975).
[6] M. E. Taylor, Pseudodifferential Operators, Prinston, N. Y., 1981.
[7] K. Kh. Boimatov, Sturm-Liouville operators with matrix potentials, Math. Notes, 16 (1974), no. 6, 921-932.
[8] Kh. K. Ishkin, Asymptotic behavior of the spectrum and the regularized trace of higher-order singular differential operators, Diff. Equ., 31 (1995), no. 10, 1622-1632.
[9] R. T. Seeley, The powers A^{s} of an elliptic operator A (preprint); Russian transl., Matematika, 12 (1968), no. 1, 96-112.
[10] L. A. Dikii, The zeta function of an ordinary differential equation on a finite interval, (Russian) Izv. Akad. Nauk SSSR. Ser. Mat., 19 (1955), 187-200.
[11] S. Minakshisundaram, A. Pleijel, Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds, Canadian Journal of Mathematics, 1 (1949), no. 3, 242-256.
[12] E. K. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford University Press, Oxford, 1951.
[13] M. V. Fedoryuk, Asymptotic Analysis. Linear Ordinary Differential Equations, Springer-Verlag, BerlinîăĄeidelberg, 1993.
[14] M. Rid., B. Simon, Methods of modern mathematical physics, Methods of modern mathematical physics, Academic Press, New York-San Francisco-London, 4 (1979).

UDepartment of Mathematics and Information Technology, Bashkir State University, Zaki Validi street, 83, Ufa, 450076, Russia.

E-mail: Ishkin62@mail.ru
Department of Mathematics and Information Technology, Bashkir State University, Zaki Validi street, 83, Ufa, 450076, Russia.

E-mail: l.matem2012@yandex.ru

[^0]: ${ }^{1}$ Since $\lambda_{1}>\log a$, then bypassing $\gamma_{r \sigma}$ the entire spectrum of L_{a} remains on the left.

