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THE FORMULA FOR THE REGULARIZED TRACE OF

THE STURM-LIOUVILLE OPERATOR WITH

A LOGARITHMIC POTENTIAL

KHABIR KABIROVICH ISHKIN AND LEISAN GABDULLOVNA VALIULLINA

Abstract. We have obtained a regularized trace formula for the Sturm-Liouville operator

on a semi-axis with a logarithmic potential.

1. Introduction

Let the function q be defined on (0,+∞), real-valued, summable on any finite interval

(0,b), b > 0, and

lim
x→+∞

q(x)=+∞.

Further, let L be the operator generated in L2(,+∞) by the differential expression l y :=−y ′′+
q y and the boundary condition y(0) = 0 [1, Ch. V, § 18]. According to the well-known A. M.

Molchanov theorem [2], operator L has a discrete spectrum. In the paper [3] an asymptotic

equation for the spectrum of the operator L whose potential can grow arbitrarily slowly was

obtained. This equation allows us to calculate the first few (up to a summable remainder)

terms of the asymptotic series for the eigenvalues in the case

q = log . . . log︸ ︷︷ ︸
m

x, m ∈N, a = const >
{

em−2, m ≥ 2,

0, m = 1.

In particular, when q = log(x +a)

λk = sk +O
(
k−1(log k)−3/2

)
, (1)

sk = log(2
p
πk)−k−1

(
a

π

√
log k +k0 −1/4+

c0√
log k

)
, (2)

where c0 =
a

2π

(
1+ log(2

p
π/a)

)
. A parameter k0 is some positive integer (regularization de-

fect) that ensures the convergence of the series

∞∑

k=2

(λk − sk ) . (3)
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The purpose of this paper is to find the value of k0 and to calculate the sum of the series (3),

wich is called the regularized trace of the operator La with the potential q = log(x +a).

The first L operator with the potential q(x) = log+x := max{log x,0} was considered in [4]

as an example of Feynman–Kac theory application [5, § X.11] (in combination with Karamata’s

Tauberian theorem [6, Ch. XII, § 7]) to the problem of finding the asymptotics of the function

N (λ) :=
∑

λk<λ
1. (4)

This result was summarized by K. Kh. Boymatov [7] on Sturm–Liouville operators with a ma-

trix potential that allows growth of order log . . . log︸ ︷︷ ︸
m

x (m ∈N).

Regularized traces of the form (3) in the case of power growth potentials are well studied

(see [8] and references therein). From the formulas (1) – (2) it is clear that for any n operator

L−n
a is not a trace-class operator, therefore the classical method of zeta-functions [9, 10] is

not applicable in this situation. On the other hand, due to the exponential growth of the

function (4) θ-function of the operator La

Θa (t ) :=
∞∑

k=1

e−tλk . (5)

is determined only on the half-plane ℜ t > c with some positive c . Therefore, the parabolic

equation method [11] using asymptotics Θa (t ) as t → +0 seems inapplicable in this case.

However, formulas (1) – (2) allow us to construct an analytic continuation of the function

Θa on the half-plane ℜ t > 0. Using this fact, it is possible to find the sum of a series (3).

2. Asymptotics of the function Θa

By virtue of formulas (1) – (2) and (5) the function Θa holomorphic in the half-plane

ℜ t > 1.

Theorem 1. The function Θa admits a meromorphic (with a single pole at t = 1) continuation

to the half-plane ℜ t > 0 and as t →+0 the following asymptotic decomposition

Θa (t ) ∼ −
a

2
p
π

t−1/2− (k0 +1/4)+θ0t 1/2 +θ1t +O(t 3/2), (6)

where

θ0 =
a

(
log a −1

)

2
p
π

,

θ1 = λ1 +σ(2)+
a

π

∫∞

1
{x}

(
(log x)1/2x−1

)′
d x

+
(
k0 −

1

4

)
(γ−1)−

(
k0 +

5

4

)
log 2

p
π+

1

2
log 2π
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+
a

2π

(
1+ log

2
p
π

a

)∫∞

1
{x}

(
(log x)−1/2x−1

)′
d x,

γ – Euler’s constant.

Proof. We transform the decomposition (1) – (2) to a form, wich is more convenient for find-

ing the asymptotics of the function Θa :

λk = log k +c1 +c2(log k)1/2k−1+c3k−1+c0(log k)−1/2k−1+ rk , (7)

where c1 = log 2
p
π, c2 =

a

π
, c3 = k0 −

1

4
, c0 =

a

2π

(
1+ log(2

p
π/a)

)
,

rk =O(k−1(log k)−3/2), k →∞. (8)

Then

Θa (t ) =
∞∑

k=1

e−tλk = e−tλ1 +e−t c1

∞∑

k=2

e−t(logk+c2(logk)1/2+c3k−1+c0(logk)1/2k−1+rk )

= e−tλ1 +e−t c1

∞∑

k=2

k−t e−c2t (logk)1/2k−1

e−c3t k−1

e−c0t (logk)−1/2k−1

e−t rk . (9)

Putting each exponent according to the Taylor formula, we get

e−c3t k−1

= 1−c3t k−1+O(t 2k−2);

e−c0t (logk)−
1
2 k−1

= 1−c0t (log k)−1/2k−1 +O(t 2(log k)−1k−2);

e−c2t (logk)
1
2 k−1

= 1−c2t (log k)1/2k−1+O(t 2(log k)k−2);

e−t rk = 1− t rk +O(t 2rk
2).

Substituting these expansions into (9), we have

Θa (t ) = e−tλ1 + e−t c1
{
ζ(t )−1− t

[
c2ϕ1(t )+c3(ζ(t +1)−1)

+ c0ϕ2(t )+ϕ3(t )
]}
+ϕ4(t ), (10)

where

ϕ1(t ) =
∞∑

k=2

(log k)1/2k−1−t , ϕ2(t ) =
∞∑

k=2

(log k)−1/2k−1−t ,

ϕ3(t ) =
∞∑

k=2

k−t rk , ϕ4(t )= e−t c1

∞∑

k=2

k−t Rk (t ),

Rk (t ) = O
(
t 2(log k)k−2

)
.

Therefore, the function Θa admits a meromorphic extension to the half-plane ℜ t > 0 with a

single pole at t = 1 (because of the term ζ(t )). Find the asymptotics Θa (t ) as t →+0.
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Let ρ(x)= x − {x}, where {x} is fractional part of the number x. Then ∀ 0 < ε< 1

ϕ1(t ) =
∫∞

1+ε
(log x)1/2x−1−t dρ(x)=

∫∞

1+ε
(log x)1/2x−1−t d x

+ε
(
log(1+ε)

)1/2
(1+ε)−1−t +

∫∞

1+ε
{x}

[
(log x)1/2x−1−t

]′
d x,

whence as ε→+0 we get

ϕ1(t )=
∫∞

1
(log x)1/2x−1−t d t +

∫∞

1
{x}

(
(log x)1/2x−1−t

)′
d x =: ϕ11(t )+ϕ12(t ).

Direct calculation gives

ϕ11(t )=
p
π

2
t−3/2.

Further,

ϕ12(t ) =
∫∞

1
{x}

[
−(1+ t )(log x)1/2 +

1

2
(log x)−1/2

]
x−2−t d x.

Denote the integrand by f (x, t ) . Then ∀k

∂k

∂t k
f (x, t )=O

(
(log x)−1/2+k x−2

)
, x ≥ 1,

uniformly in ℜ t > 0, therefore ϕ12 is holomorphic at zero, so

ϕ1,2(t )=ϕ1,2(0)+O(t ), t → 0.

Therefore,

ϕ1(t ) =
p
π

2
t−3/2+

∫∞

1
{x}

(
(log x)1/2x−1

)′
d x +O(t ), t →+0. (11)

Similarly, it is proved that

ϕ2(t ) =
p
πt−1/2+

∫∞

1
{x}

(
(log x)−1/2x−1

)′
d x. (12)

Let us introduce the function

σ(x) =
∑

k≥x

rk .

From (1) – (2) it follows that

σ(x) =O
(
(log x)−1/2

)
, x →∞.

Then

ϕ3(t )=−
∫∞

2
x−t dσ(x)=

σ(2)

2t
− t

∫∞

2
x−t−1σ(x)d x =σ(2)+O(t 1/2), t →+0. (13)
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Further, due to the well-known properties of ζ-functions (see, for example, [12, Ch. II, 10])

ζ(t ) = −
1

2
−

1

2
log(2π)t +O(t 2), (14)

ζ(t +1) =
1

t
+γ+O(t ). (15)

Now substituting (11) – (15) into (10), after simple calculations we get (6). The theorem is

proved.

3. Operator e−t La and its trace

3.1. Estimation of the resolvent kernel for the operator La

We introduce the notation. Let be Ωa = C\[log a,+∞), Ωrσ = {σ ≤ arg(λ− log a − r ) ≤
2π−σ}, r > 0,0 <σ<π, ϕ(x,λ) and ψ(x,λ) — solutions of the equation

−y ′′+qa y =λy (16)

that satisfy the following conditions:

ϕ(0,λ) = 0,
∂ϕ

∂x
(0,λ) = 1,

ψ(x,λ) ∼ (qa(x)−λ)−1/4 exp

(
−

∫x

0
(qa(t )−λ)1/2d t

)
, x →+∞. (17)

Hereinafter, the expression z1/n will mean that branch of the root n
p

z, which is positive for

positive z. Since for each fixed λ ∉ [qa(b),+∞) the function

α(x,λ) =
1

8

q ′′
a (x)

(qa(x)−λ)3/2
−

5

32

q ′2
a (x)

(qa(x)−λ)5/2
, (18)

is summable on (b,+∞), there exists a unique solution ψ, satisfying (17),[13, Ch. II, § 6].

The resolvent kernel for the operator La has the form

G(x, y,λ) =
1

ψ(0,λ)

{
ϕ(x,λ)ψ(t ,λ), x < t <∞,

ψ(x,λ)ϕ(t ,λ), 0 < t < x.
(19)

Therefore,

G(x, x,λ) =
1

ψ(0,λ)
ϕ(x,λ)ψ(x,λ). (20)

Lemma 1. For each ε > 0 there is a constant rε > 0 such that if ε ≤ σ < π,r ≥ rε, then for all

x ≥ 0 and λ∈Ωrσ function ψ(x,λ) permits the representation

ψ(x,λ) ∼ (qa(x)−λ)−1/4 exp

(
−

∫x

0
(qa(t )−λ)1/2d t

)
×
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×
[

1+
∫+∞

x

(
α+

α′

2
√

q −λ
+R

)
d t

]
, (21)

where α is defined by the formula (18) and

sup
x≥0,λ∈Ωrσ

∣∣R(x,λ)(x +a)3(q −λ)5/2
∣∣<∞. (22)

Proof. Substituting

ψ(x,λ) = (qa(x)−λ)−1/4 exp

(
−

∫x

0
(qa(t )−λ)1/2d t +

∫x

x0

(−α+β)d t

)
, (23)

we get the equation for β

β′−2(β0 +β1 +α)β+2β1α+α2 −α′+β2 = 0,

where

β0 =
√

qa −λ, β1 =
1

4

q ′
a

qa −λ
.

The method of variation of constants leads to the equation

β = γ+
∫+∞

x
e−2

∫t
x (β0+α)dt (qa(x)−λ)1/2(qa(t )−λ)−1/2β2d t , (24)

where

γ =
∫+∞

x
e−2

∫t
x (β0+α)dt (qa (x)−λ)1/2(qa (t )−λ)−1/2(2β1α−α′+α2)d t .

By direct calculations, it is easy to verify that for every r > 0, 0 <σ<π

|qa(t )−λ| > sinσ|qa (x)−λ| ∀ t ≥ x,λ∈Ωrσ.

Integrating in parts and taking into account the last inequality, we get

γ=−
α′

2
√

qa −λ
+O

(
(x +a)−3(qa(x)−λ)−5/2

)

uniformly in x ≥ 0 and λ ∈Ωrσ for all r > 0,0 <σ<π.

Replacing

R = (x +a)3(qa(x)−λ)5/2

(
β+

α′

2
√

qa −λ

)
(25)

converts the equation (24) to the form

R(x,λ)= γ̃(x,λ)+
∫+∞

x
K (x, t ,λ)R2(t ,λ)d t , (26)
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where functions γ̃(x,λ) and K (x, t ,λ) are continuous on [0,+∞)×Ωa and [0,+∞)2 ×Ωa re-

spectively. Moreover,

γ̃(x,λ) =O(1), K (x, t ,λ)=O
(
(x +a)−3(qa(x)−λ)−5/2

)

uniformly in x ≥ 0 and λ ∈Ωrσ (for all r > 0,0 <σ< π). According to the second estimate for

any ε > 0 there is a sufficiently large rε > 0 such that for all r ≥ rε and ε ≤ σ < π the integral

operator on the right side of (26) is a contraction in a Banach space C ([0,+∞)×Ωrσ).The

method of successive approximations shows that for all r ≥ rε and ε≤σ<π, the equation (26)

has a unique solution R ∈C ([0,+∞)×Ωrσ). Hence, according to the equalities (25) and (23),

for x0 =+∞, the representation (21) with the estimate (22) follows. The lemma is proved.

According to the proof of the lemma it follows that if ε ≤ σ < π,r ≥ rε then the function

ψ(x,λ) for every λ ∈ Ωrσ does not have zeros on [0,+∞). Therefore, the solution ϕ(x,λ) can

be accepted in the form

ϕ(x,λ) =ψ(0,λ)ψ(x,λ)

∫x

0
ψ−2(t ,λ)d t . (27)

Substituting this expression into (20), we get

G(x, x,λ) =ψ2(x,λ)

∫x

0
ψ−2(t ,λ)d t . (28)

We set

Ψ(x,λ) =
∫x

0
ψ−2(t ,λ)d t , x > 0, λ ∈Ωrσ, ε≤σ<π,r ≥ rε. (29)

Lemma 2. Let ε≤σ<π,r ≥ rε. Then

Ψ(x,λ) ∼
1

2
exp

(
2

∫x

0
(qa(t )−λ)1/2d t

)

×
[

1−2

∫+∞

x

(
α+

α′

2
√

q −λ

)
d t +Q(x,λ)

]
, (30)

where

sup
x≥0,λ∈Ωrσ

∣∣Q(x,λ)(x +a)2(q −λ)5/2
∣∣<∞. (31)

Proof. Fix ε > 0 and everywhere until the end of the proof of the lemma we assume that

ε<σ<π, λ ∈Ωrσ, x > 0. The function Ψ can be represented as

Ψ(x,λ) =
∫x/2

0
ψ−2(t ,λ)d t +

∫x

x/2
ψ−2(t ,λ)d t =: Ψ1(x,λ)+Ψ2(x,λ). (32)

Since for all σ−π< arg qa(x)−λ<π−σ then ∀ 0 ≤ t < x/2

ℜ
(∫x

t

√
qa −λdτ

)
> ℜ

(∫x

x/2

√
qa −λdτ

)
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> sin(σ/2) min
{√

qa(x)−λ,
√

qa(x/2)−λ
}

. (33)

Futher, since ∀ t ∈ [x/2, x] |qa(x)− qa (t )| < log 2 and |qa(x)−λ| > r sinσ then for all r >
2log 2/sinσ

1/2 <
∣∣∣∣

qa(x)−λ

qa(t )−λ

∣∣∣∣< 3/2 ∀ t ∈ [x/2, x],λ ∈Ωrσ. (34)

Hence, taking into account (33), we conclude

ℜ
(∫x

t

√
qa −λdτ

)
≥C |qa (x)−λ|1/2x.

Therefore, for all x ≥ 0,λ ∈Ωrσ, where r > 2log 2/sinε,

|Ψ1(x,λ)| ≤C (r )
∣∣∣e2

∫x
0 (qa (t )−λ)1/2dt (x +a)−2(q(x)−λ)−5/2

∣∣∣ , (35)

C (ε) > 0 depends only on ε.

Next, we substitute the expression (21) into the formula for Ψ2 and integrate the latter in

parts. Cosequently, according to (34), we obtain (30), (31).

Lemma 3. Let 0 < ε≤σ<π. Then there exists rε > 0 so that the representation is true

G(x, x,λ) =
1

2
(qa(x)−λ)−1/2

(
1−e−2

∫x
0

p
qa (t )−λdt + g (x,λ)

)
, (36)

|g (x,λ| ≤ C (ε)(x +a)−2|q(x)−λ|−5/2 ∀ x ≥ 0,λ ∈Ωrσ, (37)

where r > rε,C (ε) > 0 depends only on ε.

Proof. It follows from the formula (28) and Lemmas 2, 3.

3.2. Formula for the kernel of the operator e−t La

Let 0 < ε ≤ σ < π,r > rε, where rε is the constant appearing in the formulation of the

Lemma 3, γrσ is the boundary of the region Ωrσ with the counterclockwise direction1 .

Lemma 4. For any t > 0 the representation

e−t La =
1

2πi

∫

γrσ

e−tλ (λ−La )−1 dλ (38)

holds. Here the limit is understood in the sense of convergence in the uniform operator topology.

1Since λ1 > log a, then bypassing γrσ the entire spectrum of La remains on the left.
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Proof. Since e−t La is a bounded operator, then

e−t La = lim
n→∞

e−t La Pn ,

where Pn is orthogonal projector on the linear span of the first n eigenvectors of the operator

La and the limit is understood in the sense of a convergence in the norm. We have (see, for

example, [14, § XII.2])

Pn =
1

2πi

∫

Γn

(λ−La )−1dλ,

where γn is any contour covering the first n eigenvalues of the operator La , the integral is

taken in the counterclockwise direction. Then

e−t La Pn =
1

2πi

∫

γn

e−t La (λ−La )−1dλ.

As γn we take a contour composed of ln – parts of γrσ lying in the half-plane ℜλ < (λn +
λn+1)/2, and the segment ln connecting the ends of γn .

Let

Rn =
∫

ln

e−t La (λ−La )−1dλ.

Let us prove that for any ℜ t > 1

‖Rn‖→ 0, n →∞. (39)

We have

‖(λ−La )−1‖≤
1

dist(λ,σ(La ))
. (40)

Hence, for all λ from [N−, N+], where N± = (λn +λn+1)/2 ± i , we will have ‖(λ− La)−1‖ ≤
2/(λn+1 −λn). According to (1) – (2) λn+1 −λn ∼ n−1, n →∞. Hence, for the operator

rn =
∫

[N−,N+]
e−t La (λ−La )−1dλ

we get

‖rn‖ =O
(
n−t+1

)
, n →∞. (41)

Further, since according to (40) ‖(λ−La )−1‖< 1 on ln\[N−, N+], then

‖Rn − rn‖=O
(
e−t nn

)
, n →∞. (42)

Now (39) directly follows from (41) and (42).
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3.3. Asymptotics of tr
(
e−t La

)

Lemma 5. For ℜ t > 1

tr
(
e−t La

)
=−

1

2πi

∫∞

0
d x

∫

γrσ

e−tλG(x, x,λ)dλ.

Proof. By Lemma 4

(e−t La f )(x) =−
1

2πi

∫

Γ

dλe−tλ

∫∞

0
G(x, y,λ) f (y)d y. (43)

According to formulas (19), (27) and Lemmas 1 and 2

|G(x, y,λ)| ≤C |(qa (x)−λ)−1/4|qa(y)−λ|−1/4 exp

(
−

∣∣∣∣ℜ
∫y

x

√
qa(t )−λd t

∣∣∣∣
)

, (44)

where C = const > 0. Further, for any fix x > 0 and all f ∈ L2(0,+∞)

|
(
e−t La f

)
(x)| ≤

∫

Γ

|dλ||e−tλ|
∫∞

0
|G(x, y,λ) f |d y

≤
1

2π

∫

Γ

|dλ||e−tλ|

√∫∞

0
|G(x, y,λ)|2d y · ‖ f ‖

Hence, taking into account the estimate (44), we will have

|e−t La f (x)| ≤C

∫

γrσ

|e−tλ||qa (x)−λ|−
1
4 |dλ| <∞.

Therefore, we can apply the Fubini theorem to the right side of (43). As a result, we get

e−t La f =−
∫∞

0

(
1

2πi

∫

γrσ

dλe−tλG(x, y,λ)

)
f d y.

Consequently, the kernel of the operator e−t La has the form

H (x, y, t )=−
1

2πi

∫

γrσ

dλe−tλG(x, y,λ).

According to formulas (1) – (2) for ℜ t > 1 the operator e−t La is a trace-class one, therefore

tr
(
e−t La

)
=

∫∞

0
H (x, x, t )d x =−

1

2πi

∫∞

0
d x

∫

γrσ

dλe−tλG(x, x,λ).

Theorem 2. For the θ-functions of the operator La as t → +0 the following decomposition is

true

Θa (t )∼−
a

2
p
π

t−1/2 −1/4+θ0 t 1/2 +
log a

4
t +O

(
t 3/2

)
. (45)

Here θ0 is defined in the same way as in (6).
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Proof. The statement of the theorem follows directly from the Lemmas 3 and 5.

Corollary 3. The constant k0 in formulas (1) – (2) and (6) is equal to 0.

4. Regularized trace of the operator La

The sum

σ = λ1 +
∞∑

k=2

[
λk − log(2

p
πk)−k−1

( a

π
(log k)1/2 −1/4+c0(log k)−1/2

)]
, (46)

where c0 =
a

2π

(
1+ log(2

p
π/a)

)
, we call the regularized trace of the operator La .

Theorem 4. The following formula is true

σ =
1

4

(
log

(
2
p
π
)
+γ−1+ log a

)
−

a

π

∫∞

1
{x}

(
(log x)1/2x−1

)′
d x

−
a

2π

(
1+ log

2
p
π

a

)∫∞

1
{x}

(
(log x)−1/2x−1

)′
d x. (47)

Proof. The formula (47) follows from the formulas (6) and (45).
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