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ON THE INTEGRATION OF THE MATRIX MODIFIED

KORTEWEG-DE VRIES EQUATION WITH

A SELF-CONSISTENT SOURCE

GAYRAT URAZBOEV AND A. K. BABADJANOVA

Abstract. In this work we deduce laws of the evolution of the scattering data for the matrix

Zakharov Shabat system with the potential that is the solution of the matrix modified KdV

equation with a self consistent source.

1. Introduction

The inverse scattering transform method was first proposed by Gardner, Green, Kruskal

and Miura (GGKM) [1] in 1967 for solving the Caushy problem for the classical KdV equation

ut = 6uux +uxxx

Their approach was based on the connection between the KdV equation and the spectral

theory for the Sturm-Liouville operator on the line. Shortly thereafter, Lax [2] pointed out

the general character of the inverse scattering method. A few years later, Zakharov Shabat [3]

managed to solve another important nonlinear evolution equation, the so-called nonlinear

Schrödinger equation, using a nontrivial extension of the methods used in [1], [2]. Thus, a

way was found for construction of several other classes of equations that can be solved by

similar methods.

It was shown that modified KdV equation can be solved by the inverse scattering method

in [4]. The inverse scattering problem for the matrix Schrödinger equation was discussed and

the inverse scattering method was generalized to the matrix form in [5].

The direct and inverse scattering theory of the matrix Zakharov-Shabat system was stud-

ied in [6]. A detailed exposition of the relations between the inverse problems and nonlinear

equations of the mathematical physics is provided, for example, in the monographs [7]-[12].
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There was also given much attention to the soliton equations with self- consistent sources

in the recent literature. Physically, the sources appear in solitary waves with non-constant ve-

locity and lead to a variety of dynamics of physical models. For applications, these kinds of

systems are usually used to describe interactions between different solitary waves and are

relevant in some problems related with, among others, hydrodynamics, solid state physics or

plasma physics [13]-[17]. Different techniques have been used to construct their solutions,

such as inverse scattering [14, 15, 18, 19, 20].

The multisoliton solutions of the matrix KdV equation was considered by Goncharenko

[21] and the matrix KdV equation with self-consistent source was studied in [22]. The ma-

trix modified KdV equation was studied in [23]. In this work we study the matrix modified

Korteweg-de Vries equation with self-consistent source and give the representations for the

evolution equations of the scattering data.

We consider the integration of the following problem

Ut +3U 2Ux +3UxU 2
+Uxxx

= 2
N
∑

n=1

(Φ1,n(λn , x, t )⊗ΦT
1,n(−λn , x, t )+Φ2,n(λn , x, t )⊗ΦT

2,n(−λn , x, t )), (1)

−i JΦ′
n −VΦn =λnΦn n = 1,2, . . . ,2N , (2)

under the initial condition

U |t=0 =U0(x), (3)

with the normalizing conditions

∫

∞

−∞

Φ̂
T
n (x, t )Φn(x, t )d x = a2

n(t ) n = 1,2, . . . ,2N . (4)

Here U = U (x, t ) is a real symmetric m × m matrix U = U T ; Φn =

(

Φ1,n

Φ2,n

)

, Φ1,n ∈ Rm and

Φ2,n ∈ Rmare column vector functions Φn =Φ(λn , x, t ) ; J =

[

Im 0

0 −Im

]

, Im is the unit matrix;

the potential V =

[

0 U (x)

−U (x) 0

]

is (2m × 2m) matrix ; Ŷ (x, t ) = σY (x, t ) and σ =

(

0 Im

Im 0

)

;

a2
n(t ), n = 1,2, . . . ,2N are nonzero continuous scalar functions.

The matrix function U0(x) satisfy the following properties:

1.
∫

∞

−∞(1+|x|)‖U0(x)‖d x <∞, where ‖X ‖= max
j

∑m
k=1

∣

∣x j k

∣

∣, X =
(

x j k

)m

j ,k=1
;

2. Operator L(0) =−i J d
dx −V (x) possess exactly 2N simple eigenvaluesλ1(0), λ2(0), . . .,λ2N (0)

in the orthogonal direct sum of 2m copies of L2(R) if the potential U (x) have entries in

L1(R).
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Our purpose is to find the solution of the problem (1)-(4) which is a collection

{U (x, t ),Φ1(x, t ),Φ2(x, t ), . . . ,Φ2N (x, t ) } ,

satisfying the problem (1)-(4) and the following conditions:

1. For all t > 0,
3

∑

r=0

∫

∞

−∞

(1+|x|)

∥

∥

∥

∥

∂r

∂xr
U (x, t )

∥

∥

∥

∥

d x <∞; (5)

2. Operator L(t ) = −i J d
dx −V (x, t ) possess exactly 2N simple eigenvalues λ1(t ), λ2(t ), . . .,

λ2N (t ) on the orthogonal direct sum of 2m copies of L2(R) if the potential U (x, t ) have

entries in L1(R);

3. The column vector functions Φn(x, t ) for n = 1,2, . . . ,2N belong to the domain of L2(R)

corresponding to the eigenvalue λn .

We assume that the solution {U (x, t ),Φ1(x, t ),Φ2(x, t ), . . . ,Φ2N (x, t ) } of the problem (1)-

(4) exists in the sense of described above. The main aim of the work is to derive the represen-

tations for the evolution equations of the scattering data with which it is available to find the

collection of solution of the problem (1)-(4) in the framework of the inverse scattering method

for the operator L(t ).

2.The auxiliary statements from the direct scattering theory

In this section we give the brief information about the scattering theory for the matrix

Zakharov Shabat system on the line (−∞< x <∞),

LX ≡−i J X ′
−V X =λX , (6)

and the auxiliary equation

−i (Y T )′ J +Y T V =µY T , (7)

where X (λ, x) and Y (λ, x) are column vector functions X =
(

x j

)2m

j=1
. We assume that the en-

tries of V (x) satisfy the required conditions for U0(x).

Lemma 1. Let X (λ, x) and Y (µ, x) be solutions of the equations (6) and (7), respectively, then

following relations hold

i (µ+λ)Y T (µ, x)X (λ, x)) = (Y T J X )′, (8)

i (λ−µ)Ŷ T (µ, x)X (λ, x)) = (Ŷ T J X )′. (9)
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In the proof we use JV +V J = 0 and J 2 = I2m. It is easy to check that the X̂ (−λ, x) also

satisfy the equation (6).

For λ ∈ R the Jost matrix F (λ, x) and G(λ, x) as the 2m ×2m matrix solutions of (6) satisfy

the following asymptotic conditions [6]:

F (λ, x) = [ψ̄(λ, x) ψ(λ, x)] → e iλJx I2m, x →∞,

G(λ, x) = [φ(λ, x) φ̄(λ, x)] → e iλJx I2m, x →−∞ .
(10)

Here ψ̄(λ, x), ψ(λ, x), φ(λ, x) and φ̄(λ, x) are the submatrices with m rows and m columns,

respectively, which are usually called Jost solutions. It is easy to show that the matrices F (λ, x)

and G(λ, x) at any λ ∈ R satisfy the integral equations

G(λ, x) = e iλJx
− i J

∫x

−∞

e iλJ(x−z)V (z)G(λ, z)d z ,

F (λ, x) = e iλJx
− i J

∫

∞

x
e iλJ(x−z)V (z)F (λ, z)d z .

(11)

For λ∈ R there exists 2m ×2m matrices A(λ) and C (λ) such that

G(λ, x) = F (λ, x)A(λ),

F (λ, x) =G(λ, x)C (λ).
(12)

Here A(λ) and C (λ) consist of block matrices such as X =

(

X1 X2

X3 X4

)

, Xs , s = 1,2,3,4 are m ×m

matrices.

Assuming that the potential U (x) have entries in L1(R), we can say that for each fixed x ∈ R

the matrix functions ψ̄(λ, x)e−iλx and φ̄(λ, x)e iλx ( ψ(λ, x)e iλx and φ(λ, x)e−iλx) can be

continuated to the half-plane Imλ > 0 (Imλ < 0) and for all Imλ > 0 (Imλ < 0) the matrix

functions ψ̄(λ, x)e−iλx and φ̄(λ, x)e iλx ( ψ(λ, x)e iλx and φ(λ, x)e−iλx) are bounded. Invert-

ible matrix function A1(λ) (A4(λ)) can be analytically continuated to the half-plane Imλ> 0

(Imλ< 0) and the equation det A1(λ) = 0 (det A4(λ) = 0) has exactly a finite number of simple

zeros λ j j = 1, 2, . . . N ( j = N + 1, N + 2, . . . 2N ) which correspond to the simple eigen-

values of the operator L with the requirement of the absence of spectral singularities. The

matrix function (A1(λ))−1((A4(λ))−1) has simple poles in the points λ j , j = 1, 2, . . . N . Let

N j = Res
λ=λj

(A1(λ))−1, j = 1,2, . . . , N . Then there are matrices R j such that

φ̄(λ j , x)N j = i ψ̄(λ j , x)R j , j = 1, 2, . . . N . (13)

The following matrix for λ ∈ R

R(λ)=−A−1
1 (λ)A2(λ), (14)
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is called reflection coefficient.

The set {R(λ), λ1, λ2, . . . λ2N , R1 ,R2, . . . ,R2N } represents the scattering data associated with

the equation (6).

The potential U (x, t ) can be determined from the scattering data [5].

3. Evolution of the scattering data

It is easy to show that equation (1) can be represented as a Lax operator equality:

Lt = [B ,L]−
2N
∑

n=1

[

J ,Φn ⊗ Φ̂
T
n

]

, [B ,L] = BL−LB , (15)

where

B =









−3(U 2)x −6U 2 d
dx −4I d3

dx3 3iUxx +6iUx
d

dx

3iUxx +6iUx
d

dx
−3(U 2)x −6U 2 d

dx
−4I d3

dx3









. (16)

Here, both sides of the equality (15) turn out to be operators of multiplication by a matrix

function.

The eigenvector function Φn(x, t )corresponds to the eigenvalue λn , then Φ̂n =

(

Φ2,n

Φ1,n

)

corre-

sponds to the eigenvalue −λn .

Let us consider the following system of equations

LF0 = λF0,λ ∈ R (17)

∂Fn

∂x
= i Φ̂n

T F0, n = 1,2, . . . ,2N . (18)

Then, the matrix functions

H0 = Ḟ0 −BF0 +

2N
∑

n=1

Φn ⊗Fn (19)

Hn = Φ̂n
T JF0 − (λ−λn )Fn , n = 1,2, . . . ,2N . (20)

satisfy the equality

LH0 −λH0 =

2N
∑

n=1

Φn ⊗Hn .

In fact, if we take the derivative from equation (17) with respect to t

L̇F0 +LḞ0 =λḞ0,

here, we find LḞ0

LḞ0 =λḞ0 − L̇F0 =λḞ0 −BLF0 +LBF0 −

2N
∑

n=1

[

J ,Φn ⊗ Φ̂n
T
]

F0.
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Using this equality now we calculate LH0

LH0 = λḞ0 −λBF0 −

2N
∑

n=1

[

J ,Φn ⊗ Φ̂n
T
]

F0 +

2N
∑

n=1

L(Φn ⊗Fn),

LH0 −λH0 = −λ
2N
∑

n=1

Φn ⊗Fn −

2N
∑

n=1

[

J ,Φn ⊗ Φ̂n
T
]

F0 +

2N
∑

n=1

L(Φn ⊗Fn),

LH0 −λH0 = −λ
2N
∑

n=1

Φn ⊗Fn −

2N
∑

n=1

JΦn ⊗ Φ̂n
T F0 +

2N
∑

n=1

Φn ⊗ Φ̂n
T JF0

−i
2N
∑

n=1

JΦ′
n ⊗Fn − i

2N
∑

n=1

JΦn ⊗F ′
n −

2N
∑

n=1

VΦn ⊗Fn ,

LH0 −λH0 = −λ
2N
∑

n=1

Φn ⊗Fn −

2N
∑

n=1

JΦn ⊗ Φ̂
T
n F0 +

2N
∑

n=1

Φn ⊗ Φ̂n
T JF0

+

2N
∑

n=1

λnΦn ⊗Fn +

2N
∑

n=1

JΦn ⊗ Φ̂
T

nF0 ,

LH0 −λH0 = −

2N
∑

n=1

(λ−λn)Φn ⊗Fn +

2N
∑

n=1

Φn ⊗ Φ̂n
T JF0.

According to the Lemma 1, it is easy to see that

∂Hn

∂x
= i (λ−λn) Φ̂n

T F0 − (λ−λn)
∂Fn

∂x
= 0 (21)

Thus, Hn does not depend on x.

Lemma 2. Let F (λ, x, t ) and G(λ, x, t ) be the Jost solutions of equation (17) for x → ∞ and

x →−∞, respectively. Then the vector functions

Fn
−
= i

∫x

−∞

Φ̂
T
n (x, t )G(λ, x, t )d x ,

Fn
+
=−i

∫

∞

x
Φ̂

T
n (x, t )F (λ, x, t )d x .

(22)

satisfy (18), therefore the matrices

H+
0 = Ḟ −BF +

2N
∑

n=1

Φn ⊗F+
n ,

H−
0 = Ġ −BG +

2N
∑

n=1

Φn ⊗F−
n

, (23)

are solutions of equation (17).

Proof. Substituting (10) and (22) into (19) and (20), we define H−
0 , H+

0 , H−
n , H+

n . According

to (21), it is easy to show for n = 1,2, . . . ,2N that H−
n = H+

n = 0. Therefore, we can conclude

that the matrix functions H+
0 and H−

0 are solutions of equation (17) as x →∞ and x →−∞,

respectively, that LH−
0 −λH−

0 = 0 and LH+
0 −λH+

0 = 0 .
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Remark 1. According to (5), (16) and considering the asymptotics (10) and the integral equa-

tion (11) for the solutions in (23), we obtain

H0
+
→ −4iλ3

(

e iλx I 0

0 e−iλx I

)

J , as x →∞

H0
−
→ −4iλ3

(

e iλx I 0

0 e−iλx I

)

J , as x →−∞.

By the uniqueness of the Jost solutions we get







H+
0 =−4iλ3F J ,

H−
0 =−4iλ3G J .

(24)

Lemma 3. For all λ ∈ R the following equality is valid

Ṙ(λ) = 8iλ3R(λ). (25)

Proof. We introduce the following function

H = H−
0 −H+

0 A(λ) (26)

Substituting (24) into (26), we receive

H =−4iλ3F A(λ)J +4iλ3F J A(λ) = 4iλ3F [J , A(λ)] (27)

Using the representations (23) in (26), we have

H = F A(̇λ)+
2N
∑

n=1

Φn ⊗ (F−
n −F+

n A(λ)).

Here,

F−
n −F+

n A(λ) = i

∫+∞

−∞

Φ̂n
T Gd x.

Since, Φn(x, t ) belong to the L2(R) and by virtue of Lemma 1, we find that

∫+∞

−∞

Φ̂n
T Gd x =

(Φ̂T
n JG)

i (λ−λn )

∣

∣

∣

∣

∞

−∞

= 0.

So, we get

H = F A(̇λ). (28)

Comparing (27) and (28) we find

4iλ3 [J , A(λ)] = A(̇λ). (29)
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Particularly,

Ȧ1(λ) = 0, Ȧ2(λ) = 8iλ3 A2(λ) , (30)

Ȧ3(λ) =−8iλ3 A3(λ) , Ȧ4(λ) = 0. (31)

According to R(λ) =−A−1
1 (λ)A2(λ) and the assumptions on the block matrices of A1(λ) (A4(λ))

we can find

A1(λ) ·R(λ) =−A2(λ)

Taking the derivative respect to t we obtain

A1(λ)Ṙ(λ) =−8iλ3 A2(λ)

and we find that Ṙ(λ) =−8iλ3 A−1
1 (λ)A2(λ), which is (25).

Corollary 1. Since, A1(λ) and A4(λ) do not depend on t , their determinants det A1(λ) and

det A4(λ) , its zeros λ j , j = 1, 2, . . . 2N also do not depend on t .

Lemma 4. The matrix functions R j (t ), j = 1, 2, . . . 2N satisfy the following equations

dR j (t )

d t
= (8iλ3

j +a2
j (t ))R j (t ). (32)

Proof. For λ j (Imλ j > 0) , j = 1, 2, . . . N we denote

h−
0 (λ j , x, t )= ˙̄φ−B φ̄+

2N
∑

n=1

Φn ⊗ f −
n ,

h+
0 (λ j , x, t )= ˙̄ψ−Bψ̄+

2N
∑

n=1

Φn ⊗ f +
n ,

(33)

where

f −
n (λ j , x, t ) = i

∫x

−∞

Φ̂
T
n (x, t )φ̄(λ j , x, t )d x ,

f +
n (λ j , x, t ) =−i

∫x

−∞

Φ̂
T
n (x, t )ψ̄(λ j , x, t )d x .

(34)

We now introduce the following matrix function

h j =h−
0 (λ j , x, t )N j − i h+

0 (λ j , x, t )R j (t ), j = 1,2, . . . , N . (35)

And we know that

Φ j (x, t ) = ψ̄(λ j , x, t )c j (t ), j = 1,2, . . . , N . (36)

Here, c j (t ) are non-zero column vectors.

Using (33) we can rewrite (35) as

h j =
˙̄φ(λ j , x, t )N j −B φ̄(λ j , x, t )N j − i ˙̄ψ(λ j , x, t )R j (t )
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+i Bψ̄(λ j , x, t )R j (t )+
2N
∑

n=1

Φn ⊗ ( f −
n N j − i f +

n R j (t )), j = 1,2, . . . , N . (37)

Differentiating (13) with respect to t and taking account of the independence of N j from t we

obtain
˙̄φ(λ j , x, t )N j = i ˙̄ψ(λ j , x, t )R j (t )+ i ψ̄(λ j , x, t )Ṙ j (t ), j = 1,2, . . . , N . (38)

Substituting (34) and (38) into (37) we get

h j = i ψ̄(λ j , x, t )Ṙ j (t )− i
2N
∑

n=1

Φn ⊗

∫∞

−∞

Φ̂
T
n (x, t )ψ̄(λ j , x, t )d xR j (t ), j = 1,2, . . . , N . (39)

If n 6= j , according to Lemma 1 we get

∫∞

−∞

Φ̂n(x, t )ψ̄(λ j , x, t )d x = 0.

In the case of n = j , we receive

h j = i ψ̄(λ j , x, t )Ṙ j (t )− iΦ j ⊗

∫

∞

−∞

Φ̂
T
j (x, t )ψ̄(λ j , x, t )d xR j (t ), j = 1,2, . . . , N . (40)

In the second term of the (40) using (36) we have

Φ j ⊗

∫∞

−∞

Φ̂
T
j (x, t )ψ̄(λ j , x, t )d x = ψ̄(λ j , x, t )c j (t )⊗cT

j (t )

∫∞

−∞

ψ̄T (λ j , x, t )σψ̄(λ j , x, t )d x

= ψ̄(λ j , x, t )P j (t )

Denoting P j (t )

P j (t ) = c j (t )⊗cT
j (t )

∫

∞

−∞

ψ̄T (λ j , x, t )σψ̄(λ j , x, t )d x, (41)

we write (40) in the following form

h j = i ψ̄(λ j , x, t )Ṙ j (t )− i ψ̄(λ j , x, t )P j (t )R j (t ), j = 1,2, . . . , N . (42)

Using the normalization condition we do the calculation P 2
j
(t )

P 2
j (t ) = c j (t )⊗ (cT

j (t )

∫

∞

−∞

ψ̄T (λ j , x, t )σψ̄(λ j , x, t )d x c j (t ))

⊗cT
j (t )

∫

∞

−∞

ψ̄T (λ j , x, t )σψ̄(λ j , x, t )d x

P 2
j (t ) = a2

j (t )P j (t ) (43)

Via the work of [24] the following equality can be taken

R j (t )= P j (t )(P j (t )

∫

∞

−∞

ψ̄T (λ j , x, t )σψ̄(λ j , x, t )d x P j (t )+ (I −P j (t )))−1 (44)
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By (43) and (44) we have

P j (t )R j (t )= a2
j (t )R j (t ) (45)

Substituting (45) into (42) we obtain

h j = i ψ̄(λ j , x, t )Ṙ j (t )− i ψ̄(λ j , x, t )a2
j (t )R j (t ), j = 1,2, . . . , N . (46)

According (13) and (24) we get

h j =−8λ3
j ψ̄(λ j , x, t )R j (t ) (47)

Comparing (46) and (47) we arrive at (32) for λ j (Imλ j > 0), j = 1,2, . . . , N . Analogically, if we

do this process for λ j (Imλ j < 0), j = N +1, N +2, . . . ,2N we obtain (32).

Thus, we have proved the following theorem.

Theorem 2. If the matrix function U (x, t ), Φn =Φ(λn , x, t ), n = 1,2, . . . ,2N form a solution of

the problem (1)-(4), then the scattering data for the operator

L(t )=−i J
d

d x
−V (x, t ),

acting on the orthogonal direct sum of 2m copies of L2(R) satisfy the relations

dλ j

d t
= 0, j = 1, 2, . . . 2N ,

Ṙ(λ) = 8iλ3R(λ),λ∈ R,

dR j (t )

d t
= (8iλ3

j +a2
j (t ))R j (t ), j = 1, 2, . . . 2N .

The obtained relations completely specify the evolution of the scattering data for L(t )

and this allows using the inverse scattering method to find solutions of the problem (1)-(4).
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