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AN INVERSE SPECTRAL PROBLEM FOR

STURM-LIOUVILLE OPERATORS WITH SINGULAR POTENTIALS

ON ARBITRARY COMPACT GRAPHS

S. V. VASILIEV

Abstract. Sturm-Liouville differential operators with singular potentials on arbitrary com-

pact graphs are studied. The uniqueness of recovering operators from Weyl functions is

proved and a constructive procedure for the solution of this class of inverse problems is

provided.

1. Introduction

The paper is devoted to the theory of inverse spectral problems for differential opera-

tors on geometrical graphs. The inverse problem consists in recovering the potential from

the given spectral characteristics. Differential operators on graphs are intensively studied by

mathematicians in recent years and have applications in different branches of science and en-

gineering. The inverse problem for the classical Sturm-Liouville operator on the interval has

been studied comprehensively in the papers [3] - [6]. The case of inverse problem for Sturm-

Liouville operators with potentials from the class W −1
2 , which we call the singular potentials,

on an interval was extensively studied in [7]-[9]. The inverse problems for the classical Strum-

Liouville operator on the graphs were investigated in many papers [15]-[21]. The main result

for such operators was obtain in [21], where the arbitrary graph has been considered. The case

of inverse problem for Sturm-Liouville operators with singular potentials on graphs is more

difficult for investigating, and nowadays there are only a few papers in this area. The inverse

problem on star-type graph with such type of potentials has been studied in [33]. Also, some

specific types of graph has been considered in papers [30]-[32]. The inverse spectral problem

for Sturm-Liouville operators with singular potentials on arbitrary graph has not been studied

yet. In this paper we consider the solution of the inverse spectral problem for Sturm-Liouville

differential operators with singular potentials on compact arbitrary graphs. As the spectral

characteristic we consider the Weyl functions, as itîŰÿ done in [33]. A constructive procedure
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for the solution of the inverse problem from the given spectrums are provided. We develop

the ideas of the method of spectral mappings [6] for studying this inverse problem.

Let G be a metric graph with a set of vertices V (G) and a set of edges E (G). We assume

that all edges are the smooth curves which can intersect only in the vertices. Let le be the

length of the edge e ∈ E (G). We consider each edge e as a segment [0, le ] and parameterize

it by the parameter xe ∈ [0, le]. Let µ be the map, which assigns to each edge an order pair

of vertices e± ∈ V (G): µ(e) = [e−, e+], where e− and e+ are initial and terminal vertices of e

respectively. It is convenient for us to choose the orientation such that xe = le corresponds to

the vertex e− and xe = 0 corresponds to the vertex e+. For every vertex v , we denote by I (v,G)

the set of all the edges incidental to v . The number of elements in I (v,G) is called the valency

of vertex v and is denoted by v al (v). The vertex v is called a boundary vertex, if v al (v) = 1.

All other vertices are called internal. Let V B (G) be a set of boundary vertices and V I (G) be a

set of internal vertices. The edge e is called a boundary edge, if e+ ∈ V B (G) or e− ∈ V B (G). All

other edges are called internal. Let E B (G) be a set of boundary edges and E I (G) be a set of

internal edges.

A chain of edges {e1, . . . ,en} is called a cycle if it forms a closed curve. The edge is called

simple, if it is not a part of any cycle. The set of simple edges is denoted by E S(G). Let EC (G)

be the set of edges, which form the set of cycles. For definiteness, we suppose, that set V B (G)

is not empty and contain at least two vertices. Fix some boundary vertex v0 and call it the

root. The corresponding edge r0 ∈ I (v0,G) is called the rooted edge. We agree, that if e ∈ E S(G),

than e− is nearer to the root, than e+. For each edge e ∈ E B (G) we define

µB (e,G) :=

{
e+, if e+ ∈V B (G),

e−, if e− ∈V B (G).

If we contract each cycle to a point, then we obtain a new graph G∗, such that E (G∗) =

E S(G). Clearly, G∗ is a tree. Fix some e ∈ G∗. The minimal number χe of edges on the G∗

between rooted edge and edge e , including e , we called the order of edge e . The order of the

rooted edge r0 is equal to zero. The number

χ := max
e∈E(G∗)

χe

is called the order of the G∗. The set of edges of order ν is denoted by E (ν), ν= 0,χ.

A function y on graph G is considered as y = [ye(xe )]e∈E(G), xe ∈ [0, le ]. Let q = [qe(xe )]e∈E(G)

be a real-valued function on G such that qe ∈W −1
2 [0, le ], i.e. qe (xe ) =σ′

e (xe ), σe (xe ) ∈ L2[0, le],

where the derivative is considered in the sense of distributions. Function σ = [σe (xe )]e∈E(G)

we call the potential. The Sturm-Liouville differential operator on the edges e ∈ E (G) is de-

fined by the following expression:

ℓe ye :=−
(

y [1]
e

)′
−σe (xe )y [1]

e −σ2
e (xe )ye ,
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where y [1]
e := y ′

e −σe (xe )ye - is a quasi-derivative, and

dom(ℓe )= {ye | ye ∈W 1
2 [0, le ], y [1]

e ∈W 1
1 [0, le ], ℓy ee ∈ L2[0, le ]}.

We consider the Sturm-Liouville equation on e ∈ E (G):

(ℓe ye )(xe ) =λye (xe ), xe ∈ (0, le ), ye ∈ dom(ℓe ). (1)

At internal vertex v we consider the following matching conditions MC (v,G):

ye |v = yr |v , e,r ∈ I (v,G),
∑

e∈I (v,G)

∂e ye |v = 0, (2)

where

ye |v :=

{
ye(0), v = e+

ye (le ), v = e−
, ∂e ye |v :=

{
y [1]

e (0), v = e+

−y [1]
e (le ), v = e−

We denote by MC (G) the matching conditions MC (v,G), v ∈V I (G).

Fix some k ∈ EC (G). In the case k+ 6= k− at internal vertex u = k+ we consider the follow-

ing matching conditions MCk (u,G):

ye |u = yr |u , e,r ∈ I (u,G)\{k},
∑

e∈I (u,G)\{k}

∂e ye |u = 0. (3)

In the case |I (u,G)\{k}| = 1 this matching condition has the form ∂e ye |u = 0, e ∈ I (u,G)\{k}.

In the case k+ = k− at internal vertex u = k+ we consider the following matching condi-

tions MCk (u,G):

yk |k− = ye |u , ye |u = yr |u , e,r ∈ I (u,G)\{k},
∑

e∈I (u,G)\{k}

∂e ye |u +∂k yk |k− = 0. (4)

We denote by MCk (G) the matching conditions MC (v,G), v ∈ V I (G)\{k+} and the matching

condition MCk (k+,G).

Fix some r ∈ E B (G)\{r0}. Let us consider the solution ϕer of the equation (1) on edge

e ∈ E (G), satisfying MC (G) and the boundary conditions:

∂eϕer |µB (e,G) = δer , e ∈ E B (G), (5)

where δer is the Kronecker delta. The function Mr (λ,G) := ϕr r |µB (r,G), r ∈ E B (G)\{r0} we call

the Weyl function for (1) with respect to the edge r ∈ E B (G)\{r0}.

Fix some k ∈ EC (G). Let us consider the solution ϕek of the equation (1) on edge e ∈ E (G),

satisfying MCk (G) and the boundary conditions:

∂eϕek |µB (e,G) = 0, ∂kϕkk |k+ = 1, e ∈ E B (G) (6)
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The function Mk (λ,G) :=ϕkk |k+ , k ∈ EC (G) we call the Weyl function for (1) with respect to the

edge k ∈ EC (G). Denote M (λ,G) = [Me (λ,G)]e∈E B (G)\{r0}∪EC (G). The vector M (λ,G) is called the

Weyl vector. The inverse problem is formulated as follows.

Inverse problem 1. Given the Weyl vector M (λ,G), construct the potential σ.

Everywhere below if a symbol α denotes an object, related to σ, then α̃ will denote the

analogous object, related to σ̃ and α̂=α−α̃. Let us formulate the uniqueness theorem for the

solution of Inverse Problem 1.

Theorem 1. If M (λ,G) = M̃(λ,G), thenσ= σ̃. Thus, the specification of the Weyl vector M (λ,G)

uniquely determines the potential σ on G.

The paper is structured as follows. Section 2 contains some auxiliary propositions. Sec-

tion 3 is devoted to the solution the so-called auxiliary inverse problems. In the section 4

we prove Theorem 1, provide the descent procedure and the solution of the global inverse

problem on the graph.

2. Auxiliary propositions

Let us consider the boundary value problem LΩ(G), Ω⊂ E B (G), for equation (1) with the

matching conditions MC (G) and boundary conditions

∂e ye |µB (e,G) = 0, e ∈ E B (G)\{Ω}, yr |µB (r,G) = 0, r ∈Ω. (7)

We define L(G) := L∅(G). Also we consider the boundary value problem Lν
k

(G), ν = 0,1, k ∈

EC (G) for equation (1) with the matching conditions MCk (G) and boundary conditions

∂e ye |µB (e,G) = 0, e ∈ E B (G), ∂νk yk |k+ = 0, (8)

where ∂0
k

yk |k+ = yk |k+ and ∂1
k

yk |k+ = ∂k yk |k+ .

Let Ce (xe ,λ), Se(xe ,λ), ψe (xe ,λ) and ζe (xe ,λ) be the solutions of equation (1) on the edge

e ∈ E (G) under initial conditions

Ce (0,λ) = S [1]
e (0,λ) = 1, C [1]

e (0,λ) = Se (0,λ) = 0,

ζe (le ,λ) =−ψ[1]
e (le ,λ) = 1, ψe (le ,λ) = ζ[1]

e (le ,λ) = 0.

(9)

For each fixed xe ∈ [0, le] the functions Ce (xe ,λ), Se (xe ,λ), C [1]
e (xe ,λ), S [1]

e (xe ,λ) and ζe (xe ,λ),

ψe (xe ,λ), ζ[1]
e (xe ,λ), ψ[1]

e (xe ,λ), e ∈ E (G) are entire in λ. Moreover,

〈Ce (xe ,λ),Se (xe ,λ)〉 = 1, 〈ζe (xe ,λ),ψe (xe ,λ)〉 =−1,
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where 〈y, z〉 := y z[1] − y [1]z is the Wronskian of y and z. Let Y = {ye (xe )}e∈E(G) be a solution of

equation (1) on graph G . Then

ye (xe ,λ) = M 0
e (λ)Se (xe ,λ)+M 1

e (λ)Ce (xe ,λ). (10)

Substituting this representation into matching and boundary conditions of the boundary

value problem L in fixed order (analogous to [21]), we obtain a linear algebraic system with

respect to ae (λ), be (λ), e ∈ E (G). The determinant ∆(λ,L) of this system is an entire function.

The zeros of ∆(λ,L) coincide with the eigenvalues of L. The function ∆(λ,L) is called char-

acteristic function for boundary value problems L. We denote by ΛΩ := {λΩn}n≥0 the zeros of

∆(λ,LΩ(G)) and define λΩn = ρ2
Ωn , n ≥ 0.

As in the classical case [21] one can show that the functions Me (λ), e ∈ E B (G)\{r0}∪EC (G)

are meromorphic in λ, namely:

Me (λ) =−
∆(λ,Le (G))

∆(λ,L(G))
, e ∈ E B (G)\{r0}, Mr (λ) =−

∆(λ,L0
r (G))

∆(λ,L1
r (G))

, r ∈ EC (G) (11)

Let He , e ∈ E (G), be the classes of functions, which are entire in ρ for all x ∈ [0, le ] and fixed

potential σe , such that for ηe (xe ,ρ,σe ) ∈ He following conditions are valid:

1) ηe (xe ,ρ,σe ) = o(exp(xe |Imρ|)) for ρ→∞ and any fixed xe ∈ [0, le] and σe ∈ L2[0, le ].

2) ηe (xe , ·,σe ) ∈ L2(γ) for all xe ∈ [0, le], real τ and fixed σe ∈ L2[0, le ], where

γ= γ(τ) := (−∞+ iτ,+∞+ iτ).

3) ηe (·, ·,σe ) ∈ L2[0, le]×γ and bounded uniformly on [0, le]×γ for any fixed real τ and σe ∈

L2[0, le ].

4) ηe (xe ,ρ,σe ) depends continuously on the potential in the following sense: if σen (xe ) →

σe (xe ) in L2[0, le ] as n →∞, then the correspondingηe (xe ,ρ,σen) ∈ He converges toηe (xe ,ρ,σe )∈

He uniformly as n →∞ on [0, le]×γ for all τ> τ0 and

max
xe∈[0,le ]

||ηe (xe , ·,σen)−ηe (xe , ·,σe )||L2(γ) → 0.

Obviously, if ηe (xe ,ρ,σe ), η∗e (xe ,ρ,σe ) ∈ He , than ηe (xe ,ρ,σe )+η∗e (xe ,ρ,σe ) ∈ He .

Define Aε(τ0) := {ρ : Imρ ≥ 0,di st (ρ, Z ) > ε}, where Z ⊂ {ρ : 0 ≤ Imρ ≤ τ0} is countable

set with constrained number of points in Reρ ∈ [t , t +1], Imρ ∈ [0,τ0]. Let K be the class of

meromorphic functions, such that for κ(ρ,σ)∈ K following conditions are valid:

1) κ(ρ,σ)= o(1) for ρ→∞ and fixed σ ∈ L2(G), ρ ∈ Aε(τ0), where τ0 depends on κ.

2) κ(·,σ) ∈ L2(γ) for all τ> τ0 and fixed σ ∈ L2(G).
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3) κ(ρ,σ) depends continuously on σ, in the following sense: if σn(x) → σ(x) in L2(G) as

n →∞, then κ(ρ,σn) ∈ K converges to κ(ρ,σ) ∈ K uniformly as n →∞ on γ for all τ> τ0

and

lim
n→∞

||κ(·,σn )−κ(·,σ)||L2(γ) → 0.

Obviously, if κ(ρ,σ), κ∗(ρ,σ) ∈ K , than κ(ρ,σ)+κ∗(ρ,σ) ∈ K and κ(ρ,σ)κ∗(ρ,σ) ∈ K . De-

fine [1] := 1+κ(ρ), κ(ρ)∈ K . We consider the solutions of equation (1):

ξe (xe ,λ) :=Ce (xe ,λ)− iρSe(xe ,λ), Ee (xe ,λ) := ζe (x,λ)− iρψe (x,λ), e ∈ E (G)

Let λ= ρ2, Imρ ≥ 0. Analogous to [33], we obtain

ξe (le ,λ) = e−iρle [1], Ee (0,λ) = e−iρle [1],

ξ[1]
e (le ,λ) =−iρe−iρle [1], E [1]

e (0,λ) = iρe−iρle [1],

(12)

Using Liouville’s formula and (12), we obtain 〈ξe ,Ee〉 = 2iρe−iρle [1]. Clearly, that 〈ξe ,Ee〉 6≡ 0

and consequently {ξe (xe ,λ),Ee (xe ,λ)} is a fundamental system of solutions. We consider the

case of some fixed r ∈ E B (G). Then

ϕer (xe ,λ) = Aer (λ)ξe (xe ,λ)+Ber (λ)Ee (xe ,λ), e ∈ E (G). (13)

Substituting (13) into (2) and (5) in fixed order (analogous to [21]), we obtain the system of

linear equations with variables Aer (λ) and Ber (λ). Determinant of this system we define as

∆E (λ,G).

Lemma 1. Define Θ := {
∑

e∈E(G)
θe le , θe ∈ {0,1,2}}. The following representation is valid:

∆E (λ,G) = (iρ)n
∑

l∈Θ

Al (G)e−iρl [1], A|G| 6= 0, (14)

where n := |V I (G)|+ |V B (G)|, |G| := 2
∑

e∈E(G)
le .

Proof. In the each internal vertex u ∈V I (G) we define a variable αu and we define the indica-

tor function

J±s (u) :=

{
1, s± = u,

0, s± 6= u.
(15)

Substitute (13) into (2) and (5), we obtain

ξe (le ,λ)Aer (λ)+Ber (λ)−
∑

v∈V I (G)

J−e (v)αv = 0,

Aer (λ)+Ee (0,λ)Ber (λ)−
∑

v∈V I (G)

J+e (v)αv = 0,

∑

e∈E(G)

{
J+e (u)

[
E [1]

e (0,λ)Ber (λ)− iρAer (λ)
]
− J−e (u)

[
ξ[1]

e (le ,λ)Aer (λ)+ iρBer (λ)
]}

= 0,

(16)
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for e ∈ E (G) and u ∈V I (G) and boundary conditions for k ∈ E B (G)

−iρAkr (λ)+E [1]
k

(0,λ)Bkr (λ) = δkr , if k+
∈V B (G),

ξ[1]
k

(lk ,λ)Akr (λ)+ iρBkr (λ) = δkr , if k−
∈V B (G),

(17)

Using (16), (17) and (12), we obtain

∆E (λ,G) = (iρ)n
∑

l∈Θ

Al (G)e−iρl [1],

where A|G|(G) is the determinant of system

Aer (λ)−
∑

v∈V I (G)

J−e (v)αv = 0, e ∈ E (G), (18)

Ber (λ)−
∑

v∈V I (G)

J+e (v)αv = 0, e ∈ E (G), (19)

∑

e∈E(G)

(
Aer (λ)J−e (u)+Ber (λ)J+e (u)

)
= 0, u ∈V I (G), (20)

We denote by P the matrix of this system (18)-(20) and by P 1
e , P 2

e and Pu the rows of the

matrix P , which correspond to the equation (18), (19) and (20) respectively for e ∈ E (G) and

u ∈V I (G). Transform the matrix P by following equation

Pu = Pu −
∑

e∈E(G)

J−e (u)P 1
e −

∑

e∈E(G)

J+e (u)P 2
e , u ∈V I (G),

we obtain, that A|G|(G) is the determinant of system

Aer (λ)−
∑

v∈V I (G)

J−e (v)αv = 0,

Ber (λ)−
∑

v∈V I (G)

J+e (v)αv = 0,

∑

e∈E(G)

(
J−e (u)+ J+e (u)

)
αu = 0, u ∈V I (G)

(21)

In each vertex u ∈V I (G) we denote

N±(u) :=
∑

e∈E(G)

J±e (u).

Graph G is connected, thus N+(u)+N−(u) 6= 0 for each u ∈ V I (G). Consequently, using

(21), we obtain

A|G| =
∏

u∈V I (G)

(N+(u)+N−(u)) 6= 0,

�

Using standard methods [27], we obtain
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Lemma 2. For sufficiently large |ρ|, such that ρ ∈ Aε(τ0), τ0 is some fix number, following

inequality is valid

C1|ρ|
ne |G|Imρ

< |∆E (λ,G)| <C2|ρ|
ne |G|Imρ. (22)

Consequently, we obtain for fixed r ∈ E B (G):

Lemma 3. For each fixed xe ∈ [0, le] and for ρ ∈ Aε(τ0), τ0 is some fix number,ρ→∞, following

representations are valid

ϕer (xe ,λ) =O
( 1

ρ
e−xe Imρ

)
, ϕ[1]

er (xe ,λ) =O
(
e−xe Imρ

)
,

ϕ̂er (xe ,λ) =
1

ρ
e iρxe κ̂(ρ), κ(ρ), κ̃(ρ) ∈ K .

(23)

Proof. Analogous to [21], using (22) and Cramer’s rule, we obtain

Aer =O
( 1

ρ
e−2le Imρ

)
, Ber =O

( 1

ρ
e−le Imρ

)
.,

Âe (λ) =
1

ρ
e2iρle κ̂(ρ), B̂e (λ) =

1

ρ
e iρle κ̂(ρ), κ(ρ), κ̃(ρ)∈ K .

(24)

Together with (12) and (13), this yields for each fixed xe ∈ [0, le ] to (23). �

Using the same arguments, one can prove, that Lemma 3 is valid also for some fixed

r ∈ EC (G).

3. Auxiliary inverse problem

Fix some edge e ∈ E B (G)\{r0} and consider the following auxiliary inverse problem on the

edge e , which is called I P(e,G):

Auxiliary inverse problem I P(e,G). Given Me (λ,G), construct σe (xe ), xe ∈ [0, le].

Using properties of functions from class K , analogous to [33] one can prove following

theorem:

Theorem 2. If Me (λ,G) ≡ M̃e (λ,G), then σe (xe ) ≡ σ̃e (xe ) almost everywhere on [0, le ].

In the ρ-plane consider the contour γ= γ(τ), where τ> 0 is such that inf{Λe ∪ Λ̃e } >−τ2.

Let Γ be the contour in theλ-plane which is the image of γ under the mapping λ= ρ2. Denote

by D+ the image of the half-plane {Imρ > τ} and D− :=C \D+. We define the sequence of real

numbers δn , n ∈ N, such that ∀n,k ∈ N δn 6= |ρek |, δn 6= |ρ̃ek |, δk < δk+1, and δn → ∞ as

n →∞. Let CN := {|λ| = δ2
N }, γN = γ∩ {ρ : |ρ|2 = δ2

N }, where C−
N := CN ∩D− be the contours

with clockwise orientation. Denote ΓN = Γ∩ i ntCN , Γ
−
N = ΓN ∪C−

N . Denote θ2 = µ. Define

the functions

De (xe ,λ,µ) :=
〈Ce (xe ,λ),Ce (xe ,µ)〉

λ−µ
=

∫xe

0
Ce (t ,λ)Ce (t ,µ)d t ,
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D̃e (xe ,λ,µ) :=
〈C̃e (xe ,λ),C̃e (xe ,µ)〉

λ−µ
=

∫xe

0
C̃e (t ,λ)C̃e (t ,µ)d t ,

re (xe ,ρ,θ) :=De (xe ,λ,µ)θM̂e (µ), r̃e(xe ,ρ,θ) := D̃e (xe ,λ,µ)θM̂e (µ).

Everywhere below we chose contourγ(τ) such that θM̂e (µ) ∈ L2(γ). It is always possible to

choose such contour because of the properties of functions from class K and (23). Analogous

to [33], one can obtain the main equation

Ψe (xe ,ρ)= Ũe (xe )Ψe (xe ,ρ)+ F̃e (xe ,ρ), (25)

where Ψe (xe ,ρ) :=Ce (xe ,λ)−C̃e (xe ,λ),

F̃e (xe ,ρ) :=
1

2πi
lim

N→∞

∫

ΓN

D̃e (xe ,λ,µ)M̂e (µ)C̃e (xe ,µ)dµ, λ=ρ2, (26)

and for all fixed xe ∈ [0, le ]

Ũe (xe ) f (ρ) :=
1

πi

∫

γ
r̃e (xe ,ρ,θ) f (θ)dθ, Ue (xe ) f (ρ) :=

1

πi

∫

γ
re(xe ,ρ,θ) f (θ)dθ

Operator Ũe (xe ) is a Hilbert-Schmidt operator in L2(γ). Also from [33] we obtain the validity

of the following theorem:

Theorem 3. For each fixed xe ∈ [0, le ] equation (25) is uniquely solvable in L2(γ).

Using the solution Ψe (xe ,ρ) of the main equation (25), one can calculate the function

Ce (xe ,λ) and then construct σe (xe ) according to the next theorem [33].

Theorem 4. The solution σe (xe ) of the I P(e,G) can be found by the formula

σe (x) =−
1

πi

∫

Γ

C̃e (xe ,µ)Ĉe (xe ,µ)M̂e (µ)dµ+
1

πi
l .i .m.N→∞

∫

γN

ρ cos 2ρxe M̂e (ρ2)dρ (27)

Thus, the solution of the auxiliary inverse problem I P(e,G) can be constructed by the

following algorithm.

Algorithm 1. Given Me (λ).

1) Take σ̃= 0 and calculate C̃e (xe ,λ), M̃e (λ), D̃e (xe ,λ,µ) and r̃e (xe ,ρ,θ).

2) Construct F̃e (xe ,ρ)) by (26).

3) Find Ψe (xe ,ρ) by solving the main equation (25) for each x ∈ [0, le ].

4) Construct σe (xe ) using (27), where Ĉe (xe ,λ) =Ψe (xe ,ρ).

Fix some edge k ∈ EC (G) and consider the following auxiliary inverse problem on the

edge k , which is called I P(k ,G):
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Auxiliary inverse problem I P(k ,G). Given Mk (λ,G), construct σk (xk ), xk ∈ [0, lk ].

Fix some k ∈ EC (G). If we unlink the vertex k+ = v ∈ V I (G) and move it slightly to new

vertex v1 ∉ V (G) without moving other edges and without changing the length of k , we tear

apart the cycle, which contains the edge k , and obtain a new graph Gk with edge k1 instead

of k and with the new vertex v1, such that v1 6= v and k+
1 = v1. Moreover, k1 ∉ I (v,Gk) and

the edge k1 is a boundary edge for Gk and v1 ∈ V B (Gk ). For example, if E (G) = {k ,r0,r1},

EC (G) = {k ,r1}, k− 6= k+, k+ = v ∈ V I (G) and I (v,G) = {k ,r1}, then after this procedure we

obtain graph Gk with edge k1 instead of k and with the new vertex v1, such that k+
1 = v1,

v1 6= v , I (v1,Gk )= {k1}, I (v,Gk)= {r1}. Clearly, that in this case r1 ∈ E I (G) and r1 ∈ E B (Gk ).

Clearly, inverse problem I P(k ,G), k ∈ EC (G), is equivalent to the inverse problem I P(k1,Gk ).

Therefore, I P(k ,G), k ∈ EC (G), is solved by the same arguments as I P(r,G), r ∈ E B (G)\{r0}.

4. Descent procedure. Solution of the inverse problem 1

Consider the solution of the equation (1) on the edges e ∈ E (G), represented by (10). Let

us construct graphs T and Q . Fix the edge r ∈ E S(G)∩E I (G)∪ {r0}. Denote v := r+, v ∈ V (G).

The vertex v divide graph G on two parts: G =Q∪T , where V (Q)∩V (T ) = v , E (T )∩I (v,G)= r ,

r ∈ E B (T ) and r ∉ E (Q)∩ I (v,G). Moreover, the rooted edge r0 ∈ E (T ).

Consider the boundary value problem LΩ(Q , v) for equation (1) with the matching con-

ditions MC (u,Q), u ∈V I (Q)\{v} and boundary conditions

∂e ye |µB (e,G) = 0, e ∈ E B (G)\{Ω}, yr |µB (r,G) = 0, r ∈Ω, ∂r yr |v = 0, r ∈ I (v,Q).

We define L∅(Q , v) = L(Q , v). Using the Laplace expansion by the columns, corresponding to

M 0
e (λ), M 1

e (λ), e ∈ E (T ), we obtain two possible cases:

1. The vertex v ∈V B (Q), I (v,Q)=: e . Clearly, for k ∈ E B (Q)∩E B (G)

(
∆(λ,Le (Q)) ∆(λ,L(Q))

∆(λ,Lek (Q)) ∆(λ,Lk (Q))

)(
∆(λ,L(T ))

∆(λ,Lr (T ))

)
=

(
∆(λ,L(G))

∆(λ,Lk (G))

)

Using Cramer’s rule and (11), we obtain

Mr (λ,T ) =
Mk (λ,G)∆(λ,Le (Q))+∆(λ,Lek (Q))

∆(λ,Lk (Q))+∆(λ,Q)Mk (λ,G)
. (28)

2. The vertex v ∈V I (Q). Clearly, for k ∈ E B (Q)∩E B (G)

(
∆(λ,L(Q)) ∆(λ,L(Q , v))

∆(λ,Lk (Q)) ∆(λ,Lk (Q , v))

)(
∆(λ,L(T ))

∆(λ,Lr (T ))

)
=

(
∆(λ,L(G))

∆(λ,Lk (G))

)
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Analogous to the first case, using Cramer’s rule and (11), we obtain

Mr (λ,T ) =
Mk(λ,G)∆(λ,L(Q))+∆(λ,Lk (Q))

∆(λ,Lk (Q , v))+∆(λ,L(Q , v))Mk (λ,G)
. (29)

Descent procedure. Fix edge r ∈ E S(G)∩E I (G)∪ {r0} and suppose, that r ∈ E (ν) be a fixed

simple edge of order ν. Denote v = r−. The vertex v divide graph G on two parts G = Q ∪T ,

where V (Q)∩V (T ) = v , E (T )∩ I (v,G) = r , r ∈ E B (T ) and r ∉ E (Q)∩ I (v,G). We consider the

potential σ on the graph Q are known. Fix e ∈ E B (G)∩E (Q). We consider the Me (λ,G) is

known.

1. Weyl functions Mr (λ,T ) find from (28) or (29).

2. Solving the inverse problem I P(r,T ), we construct σr on r .

We suppose, that Me (λ,G), e ∈ EC (G)∪E B (G)\{r0} are known. The solution of the inverse

problem can be found by the following algorithm

Algorithm 2.

1. For each fixed edge k ∈ EC (G) we solve I P(k ,G) by the algorithm 1 and find σk on the

edge k .

2. For each fixed edge r ∈ E B (G)\{r0} we solve I P(r,G) by the algorithm 1 and find σr on the

edge r .

3. For ν = χ−1, . . . ,0 we perform the following operations: for each fixed edge r ∈ E (ν)(G)∩(
E S(G)∩E I (G)∪ {r0}

)
using the descent procedure, we find σr .

The considerations above show that the solution of Inverse Problem 1 is uniquely deter-

mined, and Theorem 1 is proved.
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