This paper is available online at http://journals.math.tku.edu.tw/index.php/TKJM/pages/view/onlinefirst

THE PARTIAL INVERSE NODAL PROBLEM FOR DIFFERENTIAL PENCILS ON A FINITE INTERVAL

YU PING WANG, YITENG HU AND CHUNG TSUN SHIEH

Abstract. In this paper, the partial inverse nodal problem for differential pencils with real-valued coefficients on a finite interval [0, 1] was studied. The authors showed that the coefficients ($q_0(x)$, $q_1(x)$, h, H_0) of the differential pencil L_0 can be uniquely determined by partial nodal data on the right(or, left) arbitrary subinterval [a, b] of [0, 1]. Finally, an example was given to verify the validity of the reconstruction algorithm for this inverse nodal problem.

1. Introduction

The differential pencil $L_{\xi} = L(q_0, q_1, h, H_{\xi})$:

$$ly := -y'' + (q_0(x) + 2\lambda q_1(x))y = \lambda^2 y, \quad x \in (0, 1),$$
(1.1)

$$U(y) := y'(0) - hy(0) = 0, (1.2)$$

$$V_{\xi}(y) := y'(1) + H_{\xi}y(1) = 0 \tag{1.3}$$

is considered, where $h, H_{\xi} \in \mathbb{R}$, $H_0 \neq H_1$, $q_{\xi}(x)$ is a real-valued function, $q_{\xi} \in W_2^{\xi}[0,1]$, $\xi = 0, 1$. We assume that $q_1(x) \neq \text{const}$ and $Q_1(1) = 0$, where

$$Q_1(x) := \int_0^x q_1(t) \mathrm{d}t$$

Denote $\tau = |\text{Im}\lambda|$, $\varphi(x, \lambda)$ and $\psi_{\xi}(x, \lambda)$ the solutions of (1.1) associated with initial conditions

$$\varphi(0,\lambda) = 1, \quad \varphi'(0,\lambda) = h, \quad \psi_{\xi}(1,\lambda) = 1, \quad \psi'_{\xi}(1,\lambda) = -H_{\xi}.$$

According to [6, 8], we have the following asymptotic formulae

$$\begin{cases} \varphi(x,\lambda) = \cos(\lambda x - Q_1(x)) + O\left(\frac{e^{\tau x}}{\lambda}\right), \\ \varphi'(x,\lambda) = -\lambda \sin(\lambda x - Q_1(x)) + O(e^{\tau x}), \end{cases}$$
(1.4)

²⁰¹⁰ Mathematics Subject Classification. 34A55, 34K29, 45J05.

Key words and phrases. Inverse nodal problem, differential pencil, potential, twin-dense nodal subset, arbitrary interval.

This paper is dedicated to Professor V.A. Yurko on the occasion of his 70th birthday.

and

$$\begin{cases} \psi_{\xi}(x,\lambda) = \cos(\lambda(1-x) + Q_1(x)) + O\left(\frac{e^{\tau(1-x)}}{\lambda}\right), \\ \psi'_{\xi}(x,\lambda) = \lambda \sin(\lambda(1-x) + Q_1(x)) + O(e^{\tau(1-x)}) \end{cases}$$
(1.5)

uniformly with respect to $x \in [0, 1]$ for sufficiently large $|\lambda|$. It is easy to obtain the following equality:

$$\int_0^1 (\psi_\xi l(\varphi) - \varphi l(\psi_\xi)) = <\psi_\xi, \varphi > (1,\lambda) - <\psi_\xi, \varphi > (0,\lambda),$$

where $\langle \psi_{\xi}, \varphi \rangle (x, \lambda) := \psi_{\xi}(x, \lambda)\varphi'(x, \lambda) - \psi'_{\xi}(x, \lambda)\varphi(x, \lambda)$ is the Wronskian of ψ_{ξ} and φ . Denote $\Delta_{\xi}(\lambda) := \langle \psi_{\xi}, \varphi \rangle (x, \lambda)$ which is independent of x. The set of eigenvalues $\sigma(L_{\xi})$ of L_{ξ} consists of the zeros of the characteristic function $\Delta_{\xi}(\lambda)$ which can be enumerated as $\{\lambda_{\xi n}\}_{n \in \mathbf{A}}$ (counting with their multiplicities), where $\mathbf{A} = \{\pm 0, \pm 1, \pm 2, \cdots\}$. For sufficiently large $|n|, \lambda_{\xi n}$ is real and simple, it also satisfies the following asymptotic formula(please refer to [6, 12] for details)

$$\lambda_{\xi n} = n\pi + \frac{\omega_{\xi}(1)}{n\pi} + o\left(\frac{1}{n}\right)$$
(1.6)

as $|n| \to \infty$, where

$$\omega_{\xi}(x) := h + H_{\xi} + \frac{1}{2} \int_0^x (q_0(t) + q_1^2(t)) \mathrm{d}t.$$
(1.7)

Suppose that $x_{\xi n}^{j}$ are the nodal points of the eigenfunction $\varphi(x, \lambda_{\xi n})$ of the pencil L_{ξ} , i.e. $\varphi(x_{\xi n}^{j}, \lambda_{\xi n}) = 0$. Gasymov and Guseinov [12] showed that the differential pencil L_{0} has a discrete spectrum consisting of simple and real eigenvalues with finitely many exceptions, and the *n*-th eigenfunction $u(x, \lambda_{\xi n})$ has exactly |n| nodes in the interval (0, 1) for sufficiently large |n|. Then $x_{\xi n}^{j}$ satisfy the following relations:

$$\begin{aligned} & 0 < x_{\xi_n}^1 < x_{\xi_n}^2 < \cdots < x_{\xi_n}^j < \cdots < x_{\xi_n}^n < 1, & \text{for } n > 0, \\ & 0 < x_{\xi_n}^0 < x_{\xi_n}^{-1} < \cdots < x_{\xi_n}^{j+1} < \cdots < x_{\xi_n}^{n+1} < 1, & \text{for } n < 0. \end{aligned}$$

and

$$x_{\xi n}^{j} = \frac{j - \frac{1}{2}}{n} + \frac{Q_{1}(x_{\xi n}^{j})}{n\pi} + \frac{1}{(n\pi)^{2}} (\omega_{\xi}(x_{\xi n}^{j}) - \omega_{\xi}(1)x_{\xi n}^{j} - H_{\xi}) + o\left(\frac{1}{n^{2}}\right)$$
(1.8)

uniformly with respect to $j \in \mathbb{Z}$ (refer to Theorem 4 of [6] for details). Denote $X_{\xi} := \{x_{\xi n}^{J}\}$. Clearly the nodal set X_{ξ} is dense on [0, 1] for $\xi = 0, 1$. Buterin [4] firstly showed that $(q_0(x), q_1(x), h, H_0)$ of L_0 can be uniquely determined by the nodal set X_0 . Analogous result for the case of Dirichlet boundary conditions was proved in [5]. The related results are also found in [6]. However, in [33] a more weak statement was established. By using the results in [16], Guo and Wei [17] proved an alternative result involving specification of nodal points on arbitrarily

small subintervals having the midpoint. Note that the Guo-Wei's result in [17] excludes the case $\frac{1}{2} \notin (a, b)$. For the case $\frac{1}{2} \notin (a, b)$, one need some additional information to reconstruct the coefficients $(q_0(x), q_1(x), h, H_0)$ of L_0 , for example, in [17], the authors showed all conditions together with information of eigenfunctions in some interior points can lead to a uniqueness theorem. To the best of our knowledge, this partial inverse nodal problem for differential pencils has been not completely solved.

The aim of this paper is to study a partial inverse nodal problem for differential pencils with real-valued coefficients on a finite interval. The authors show that the coefficients $(q_0(x), q_1(x), h, H_0)$ are uniquely determined by the partial nodal information on the right (or, left) arbitrary subinterval [a, b] of [0, 1]. This approach is different from that in [17].

Inverse spectral problems for differential pencils have been studied well(see [6, 9, 12, 13, 15, 16, 20, 21, 25, 37, 38] and references therein). We also note that inverse spectral and nodal problems for other differential pencils were studied in [1, 2, 7, 8, 31, 32, 35]. Define the Weyl m-function of L_0

$$m(x,\lambda) = -\frac{\varphi'(x,\lambda)}{\varphi(x,\lambda)}.$$

By the known method in [8, 12], one can obtain

Theorem 1.1. The Weyl *m*-function $m(a_0, \lambda)$ with $0 < a_0 \le 1$ of the boundary value problem (1.1)-(1.3) can uniquely determine $(q_0(x), q_1(x))$ on the interval $[0, a_0]$ and *h*.

Let $B_{\xi} = \{n_{\xi,k}\}_{k=-\infty}^{\infty}$ be a strictly increasing sequence in \mathbb{Z} for $\xi = 0$ and 1 and B_{ξ} be almost symmetrical with respect to the origin, i.e. that means

$$B_{\xi} \subseteq \mathbb{Z}, \quad n \in B_{\xi} \Rightarrow -n \in B_{\xi},$$

with finitely many possible exceptions, we may also assume $\lambda_{\xi, n_{\xi,k}} \neq 0$. The nodal subset

$$W_{B_{\xi}}([a,b]) := \left\{ x_{\xi,n_{\xi,k}}^{j_k} : x_{\xi,n_{\xi,k}}^{j_k} \in X_{\xi}, n_{\xi,k} \in B_{\xi}, a \le x_{\xi,n_{\xi,k}}^{j_k} \le b \right\}$$

is called a twin-dense nodal subset on [a, b], i.e.

1. If $x_{\xi, n_{\xi,k}}^j \in W_{B_{\xi}}([a, b])$, then either $x_{\xi, n_{\xi,k}}^{j+1} \in W_{B_{\xi}}([a, b])$ or $x_{\xi, n_{\xi,k}}^{j-1} \in W_{B_{\xi}}([a, b])$,

2.
$$\overline{W_{B_{\xi}}([a,b])} = [a,b].$$

Denote

$$S_{\xi} := \left\{ \lambda_{\xi, n_{\xi,k}} : n_{\xi,k} \in B_{\xi}, \, \lambda_{\xi, n_{\xi,k}} \in \sigma(L_{\xi}) \right\}$$

and define

$$n_{S_{\xi}}(t) := \begin{cases} \sum_{0 < \lambda_{\xi, n_{\xi,k}} < t, \ n_{\xi,k} \in B_{\xi}} 1, \\ -\sum_{t < \lambda_{\xi, n_{\xi,k}} < 0, \ n_{\xi,k} \in B_{\xi}} 1, \end{cases}$$
$$w_{B_{\xi}}(\lambda) := \text{p.v.} \prod_{n_{\xi,k} \in B_{\xi}} \left(1 - \frac{\lambda}{\lambda_{\xi, n_{\xi,k}}} \right) = \lim_{N \to +\infty} \prod_{k=-N}^{N} \left(1 - \frac{\lambda}{\lambda_{\xi, n_{\xi,k}}} \right). \tag{1.9}$$

In addition, we assume that the following two conditions

(i)

$$\lim_{t \to \infty} \frac{n_{S_{\xi}}(t)}{t} = \frac{2\theta_{\xi}}{\pi}.$$
(1.10)

(ii) There exist positive numbers t_0 , ε , δ' and $b_{\xi} \in \mathbb{Z}$ such that

$$n_{S_{\xi}}(t) = \begin{cases} \geq 2\theta_{\xi}[\frac{t}{\pi}] + b_{\xi} + \varepsilon + \mathcal{O}\left(t^{-\delta'}\right), & t \geq t_{0}, \\ \leq -2\theta_{\xi}[-\frac{t}{\pi}] + b_{\xi} - 2\theta_{\xi} + \mathcal{O}\left(|t|^{-\delta'}\right), & t \leq -t_{0} \end{cases}$$
(1.11)

hold for S_{ξ} , where $[\cdot]$ denotes the floor function.

In the next section, we present and prove some uniqueness theorems in this paper.

2. Main Results and Proofs

From now on, we denote $\tilde{L}_{\xi} = L_{\xi}(\tilde{q}_0, \tilde{q}_1, h, H_{\xi})$ the same form as $L_{\xi} = L_{\xi}(q_0, q_1, h, H_{\xi})$ but with different coefficients. If a certain symbol ζ denotes an object related to $L_{\xi}(q_0, q_1, h, H_{\xi})$, then the corresponding symbol $\tilde{\zeta}$ with tilde denotes the analogous object related to $L_{\xi}(\tilde{q}_0, \tilde{q}_1, h, H_{\xi})$, and $\hat{\zeta} = \zeta - \tilde{\zeta}$. At first, we have

Lemma 2.1. The coefficients $(q_0(x) - 2\omega_{\xi}(1), q_1(x))$ on [a, b] can be reconstructed by the given $W_{B_{\xi}}([a, b])$ for each $\xi = 0, 1$.

For each ξ , $\xi = 0, 1$, the so-called $W_{B_{\xi}}([a, b]) = \widetilde{W}_{\widetilde{B}_{\xi}}([a, b])$ means that for any $x_{\xi, n_{\xi,k}}^{j_k} \in W_{B_{\xi}}([a, b])$, then at least one of two formulae holds, i.e.

$$\begin{aligned} x_{\xi,n_{\xi,k}}^{j_k} &= \widetilde{x}_{\xi,\widetilde{n}_{\xi,k}}^{j_k} \quad \text{and} \quad x_{\xi,n_{\xi,k}}^{j_k+1} &= \widetilde{x}_{\xi,\widetilde{n}_{\xi,k}}^{j_k+1}, \\ x_{\xi,n_{\xi,k}}^{j_k} &= \widetilde{x}_{\xi,\widetilde{n}_{\xi,k}}^{\widetilde{j}_k} \quad \text{and} \quad x_{\xi,n_{\xi,k}}^{j_k-1} &= \widetilde{x}_{\xi,\widetilde{n}_{\xi,k}}^{\widetilde{j}_k-1}, \end{aligned}$$

where $x_{\xi,n_{\xi,k}}^{j_k+j} \in W_{B_{\xi}}([a,b])$ and $\widetilde{x}_{\xi,\widetilde{n}_{\xi,k}}^{\widetilde{j}_k+j} \in \widetilde{W}_{\widetilde{B}_{\xi}}([a,b])$ for $j = 0, \pm 1$ in this paper. Denote

$$M_0 := \max_{a \le x \le b} \{q_1(x)\}$$
 and $m_0 := \min_{a \le x \le b} \{q_1(x)\}$

By using the results in [31], the Weyl *m*-function and the theory concerning densities of zeros of entire functions (refer to [22, 23]), we shall show that

Theorem 2.2. Let $\frac{1}{2} < a \le c_0 < c_1 \le b \le 1$. Suppose that $W_{B_1}([a, c_1]) = \widetilde{W}_{\widetilde{B}_1}([a, c_1])$, and $W_{B_0}([c_0, b]) = \widetilde{W}_{\widetilde{B}_0}([c_0, b])$, $\omega_1(1) = \widetilde{\omega}_1(1)$, and (1.10) and (1.11) hold for each S_{ξ} , $\xi = 0, 1$, where $\theta_0 = 1 - b$ and $\theta_0 + \theta_1 = a$, and for each $x_{\xi, n_{\xi,k}}^{j_k} = x_{\xi, \widetilde{n}_{\xi,k}}^{\widetilde{j}_k}$, the corresponding eigenvalues $\lambda_{\xi, n_{\xi,k}}$ and $\widetilde{\lambda}_{\xi, \widetilde{n}_{\xi,k}}$ satisfy the inequalities:

$$\begin{cases} \lambda_{\xi, n_{\xi,k}} + \tilde{\lambda}_{\xi, \tilde{n}_{\xi,k}} > 2M_0 & \text{for all} \quad n_{\xi,k} > 0, \\ \lambda_{\xi, n_{\xi,k}} + \tilde{\lambda}_{\xi, \tilde{n}_{\xi,k}} < 2m_0 & \text{for all} \quad n_{\xi,k} < 0. \end{cases}$$
(2.1)

Then

 $q_1(x) = \tilde{q}_1(x), \quad q_0(x) \stackrel{a.e.}{=} \tilde{q}_0(x) \quad \text{on} \quad [0,1], \quad h = \tilde{h} \quad \text{and} \quad H_{\xi} = \tilde{H}_{\xi}, \quad \xi = 0, 1.$ (2.2)

Note that the length b-a of the right subinterval [a, b] of [0, 1] is arbitrarily small. Furthermore we establish a uniqueness theorem for the right arbitrary subinterval [a, b] as follows:

Theorem 2.3. Let $\frac{1}{2} < a \le c < b \le 1$. Suppose that $W_{B_1}([a,c]) = \widetilde{W}_{\widetilde{B}_1}([a,c])$, and $W_{B_0}([c,b]) = \widetilde{W}_{\widetilde{B}_0}([c,b])$, $\omega_1(1) = \widetilde{\omega}_1(1)$, and (1.10) and (1.11) hold for each S_{ξ} , $\xi = 0, 1$, where $\theta_0 = 1 - b$ and $\theta_0 + \theta_1 = a$, and for each $x_{\xi, n_{\xi,k}}^{j_k} = x_{\xi, \widetilde{n}_{\xi,k}}^{\widetilde{j}_k}$ the corresponding eigenvalues $\lambda_{\xi, n_{\xi,k}}$ and $\widetilde{\lambda}_{\xi, \widetilde{n}_{\xi,k}}$ satisfy (2.1) and $q_0(x) - \widetilde{q}_0(x)$ is continuous at x = c, then (2.2) holds.

Note that $0 \le \theta_0 \le \frac{1}{2}$, then $\theta_0 < a$ for the case $\frac{1}{2} < a < b \le 1$. Therefore Theorems 2.2 and 2.3 cannot be valid for the cases $S_1 = \emptyset$ and $\frac{1}{2} < a < b \le 1$. In addition, one can obtain an analogy of Theorem 2.2 and 2.3 for the case $0 \le a < b < 1/2$ by symmetry. We omit the details here.

If $q_1(x) \equiv 0$ on [0,1], then the problem (1.1)-(1.3) becomes a classical Sturm-Liouville operator and such problems are well studied (please refer to [3, 10, 11, 14, 15, 18, 24, 25, 26, 27, 28, 29, 30, 34, 36, 38] and the references therein).

In the remaining of this section, we shall present proofs of Theorems 2.2 and 2.3. At first, we show the proof of Lemma 2.1.

Proof of Lemma 2.1. For each $\xi = 0, 1$ and each fixed $x \in [a, b]$, choose $\{x_{\xi, n_{\xi, k}}^{j_k}\}$ such that

$$\lim_{|k|\to\infty} x_{n_{\xi,k}}^{j_k} = x$$

By virtue of (1.8), then there exist the following finite limits and the corresponding equalities hold:

$$f_{\xi}(x) := \lim_{|k| \to \infty} n_{\xi,k} \pi \left(x_{\xi,n_{\xi,k}}^{j_k} - \frac{j_k - \frac{1}{2}}{n_{\xi,k}} \right) = Q_1(x),$$

$$g_{\xi}(x) := \lim_{|k| \to \infty} n_{\xi,k}^2 \pi^2 \left(x_{\xi,n_{\xi,k}}^{j_k} - \frac{j_k - \frac{1}{2}}{n_{\xi,k}} - \frac{Q_1(x_{\xi,n_{\xi,k}}^{j_k})}{n_{\xi,k}\pi} \right)$$
(2.3)

$$=\omega_{\xi}(x)-\omega_{\xi}(1)x-H_{\xi}.$$
(2.4)

Thus we find the functions $f_{\xi}(x)$ and $g_{\xi}(x)$ via (2.3) and (2.4). Moreover we reconstruct ($q_0(x) - 2\omega_{\xi}(1), q_1(x)$) on [a, b] by

$$q_1(x) = f'_{\varepsilon}(x), \quad x \in [a, b],$$
 (2.5)

$$q_0(x) - 2\omega_{\xi}(1) = 2g'_{\xi}(x) - q_1^2(x), \quad x \in [a, b],$$
(2.6)

This complete the proof of Lemma 2.1.

The following are the proofs of our main results.

Proof of Theorem 2.2. Since $W_{B_1}([a, c_1]) = \widetilde{W}_{\widetilde{B}_1}([a, c_1])$, and $W_{B_0}([c_0, b]) = \widetilde{W}_{\widetilde{B}_0}([c_0, b])$, we have

$$f_1(x) = \tilde{f}_1(x), \quad x \in [a, c_1],$$
 (2.7)

$$f_0(x) = \tilde{f}_0(x), \quad x \in [c_0, b],$$
 (2.8)

$$g_1(x) = \tilde{g}_1(x), \quad x \in [a, c_1],$$
 (2.9)

$$g_0(x) = \tilde{g}_0(x), \quad x \in [c_0, b].$$
 (2.10)

Therefore (2.7)-(2.10) together with the assumption $\omega_1(1) = \tilde{\omega}_1(1)$ lead to that

$$\begin{cases} \hat{q}_1(x) = 0 \quad \text{on} \quad [a, b], \\ \hat{q}_0(x) \stackrel{a.e.}{=} 0 \quad \text{on} \quad [a, c_1], \\ \hat{q}_0(x) \stackrel{a.e.}{=} 2\hat{\omega}_0(1) \quad \text{on} \quad [c_0, b] \end{cases}$$

which together with $a \le c_0 < c_1 \le b$ imply

$$\hat{q}_1(x) = 0$$
 on $[a, b],$ (2.11)

$$\widehat{q}_0(x) \stackrel{a.e.}{=} 0 \quad \text{on} \quad [a,b].$$
(2.12)

Next we shall show $\lambda_{\xi, n_{\xi,k}} = \widetilde{\lambda}_{\xi, \widetilde{n}_{\xi,k}}$ for all $n_{\xi,k} \in B_{\xi}$. Note that

ſ

$$\begin{cases} -\varphi''(x,\lambda_{\xi,n_{\xi,k}}) + (q_0(x) + 2\lambda_{\xi,n_{\xi,k}}q_1(x))\varphi(x,\lambda_{\xi,n_{\xi,k}}) = \lambda_{\xi,n_{\xi,k}}^2\varphi(x,\lambda_{\xi,n_{\xi,k}}), \quad (2.13) \\ & i_{\xi,n_{\xi,k}} = 1 \end{cases}$$

$$\varphi(x_{\xi,n_{\xi,k}}^{j_k},\lambda_{\xi,n_{\xi,k}}) = \varphi(x_{\xi,n_{\xi,k}}^{j_k+1},\lambda_{\xi,n_{\xi,k}}) = 0,$$
(2.14)

and

2.11

$$-\widetilde{\varphi}''(x,\widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}) + (\widetilde{q}_0(x) + 2\widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}\widetilde{q}_1(x))\widetilde{\varphi}(x,\widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}) = \widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}^2\widetilde{\varphi}(x,\widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}),$$
(2.15)

$$\widetilde{\varphi}(x_{\xi,n_{\xi,k}}^{j_k},\widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}) = \widetilde{\varphi}(x_{\xi,n_{\xi,k}}^{j_k+1},\widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}) = 0.$$
(2.16)

Equations (2.13)-(2.16) yield to

$$\int_{x_{\xi,n_{\xi,k}}^{j_k}}^{x_{\xi,n_{\xi,k}}^{k+1}} [\widehat{q}_0(x) + 2(\lambda_{\xi,n_{\xi,k}}q_1(x) - \widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}\widetilde{q}_1(x)) - (\lambda_{\xi,n_{\xi,k}}^2 - \widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}^2)]\varphi(x,\lambda_{\xi,n_{\xi,k}})\widetilde{\varphi}(x,\widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}})dx = 0.$$

$$(2.17)$$

By virtue of (2.17) together with (2.11) and (2.12), this yields

$$\left(\lambda_{\xi,n_{\xi,k}} - \widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}\right) \int_{x_{\xi,n_{\xi,k}}^{j_k+1}}^{x_{\xi,n_{\xi,k}}^{j_k+1}} \left(2q_1(x) - \lambda_{\xi,n_{\xi,k}} - \widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}\right) \varphi(x,\lambda_{\xi,n_{\xi,k}}) \widetilde{\varphi}(x,\widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}) \mathrm{d}x = 0.$$

$$(2.18)$$

Since both $\varphi(x, \lambda_{\xi, n_{\xi,k}})$ and $\tilde{\varphi}(x, \lambda_{\xi, \tilde{n}_{\xi,k}})$ have no zero in the interval $(x_{n_k}^{j_k}, x_{n_k}^{j_k+1})$ together with the assumption (2.1), we obtain

$$\int_{x_{\xi,n_{\xi,k}}^{j_k+1}}^{x_{\xi,n_{\xi,k}}^{j_k+1}} \left(2q_1(x) - \lambda_{\xi,n_{\xi,k}} - \widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}} \right) \varphi(x,\lambda_{\xi,n_{\xi,k}}) \widetilde{\varphi}(x,\widetilde{\lambda}_{\xi,\widetilde{n}_{\xi,k}}) \mathrm{d}x \neq 0.$$
(2.19)

Therefore (2.18) and (2.19) show that

$$\lambda_{\xi, n_{\xi,k}} = \tilde{\lambda}_{\xi, \tilde{n}_{\xi,k}}, \quad \forall \ n_{\xi,k} \in B_{\xi}.$$
(2.20)

For each $\lambda_{\xi, n_{\xi,k}}$, by (2.17) and (2.20), we get

$$\int_{a}^{x_{1,n_{1,k}}^{j_{k}}} (\widehat{q}_{0}(x) + 2\lambda_{1,n_{1,k}}\widehat{q}_{1}(x))\varphi(x,\lambda_{1,n_{1,k}})\widetilde{\varphi}(x,\lambda_{1,n_{\xi,k}})dx$$

= $\langle \widetilde{\varphi}, \varphi \rangle (x_{1,n_{1,k}}^{j_{k}},\lambda_{1,n_{1,k}}) - \langle \widetilde{\varphi}, \varphi \rangle (a,\lambda_{1,n_{1,k}}),$ (2.21)

By virtue of (2.14), (2.16), (2.11) and (2.12), then (2.21) implies

$$<\widetilde{\varphi}, \varphi > (a, \lambda_{1, n_{1,k}}) = 0, \quad \forall n_{1,k} \in B_1.$$

$$(2.22)$$

Applying the same arguments as the proof of (2.22), we obtain

$$<\widetilde{\varphi}, \varphi > (c_0, \lambda_{0, n_{0,k}}) = 0, \quad \forall n_{0,k} \in B_0.$$
 (2.23)

By virtue of (2.11), (2.12) and (2.23), this yields

$$\langle \widetilde{\varphi}, \varphi \rangle (a, \lambda_{0, n_{0,k}}) = 0, \quad \forall n_{0,k} \in B_0.$$
 (2.24)

Furthermore (2.11), (2.12), (2.23) and (2.24) show that

$$\langle \widetilde{\varphi}, \varphi \rangle (a, \lambda_{\xi, n_{\xi, k}}) = 0, \quad \forall n_{\xi, k} \in B_{\xi},$$

$$(2.25)$$

$$\langle \widetilde{\varphi}, \varphi \rangle (b, \lambda_{\xi, n_0 k}) = 0, \quad \forall n_{0,k} \in B_0.$$

$$(2.26)$$

Since the functions $\varphi(x, \lambda_{0,n_{0,k}})$ and $\psi_0(x, \lambda_{0,n_{0,k}})$ are both eigenfunctions corresponding to the $n_{0,k}$ -th eigenvalue $\lambda_{0,n_{0,k}}$ of L_0 , there exists a constant $\beta_0(\lambda_{0,n_{0,k}}) \neq 0$ such that

$$\psi_0(x,\lambda_{0,n_{0,k}}) = \beta_0(\lambda_{0,n_{0,k}})\varphi(x,\lambda_{0,n_{0,k}}), \quad \forall x \in [0,1].$$
(2.27)

Consequently (2.26) and (2.27) imply

$$<\widetilde{\psi}_{0}, \psi_{0} > (b, \lambda_{0, n_{0,k}}) = 0, \quad \forall n_{0,k} \in B_{0}.$$
 (2.28)

It is easy to prove

$$\left| < \widetilde{\varphi}, \varphi > (a, \lambda) \right| = \mathcal{O}(e^{2a\tau}) \tag{2.29}$$

for sufficiently large λ . Define the function

$$K_1(\lambda) := \frac{\langle \tilde{\varphi}, \varphi \rangle (a, \lambda)}{w_{B_0}(\lambda) w_{B_1}(\lambda)}.$$
(2.30)

Note that $\lambda_{\xi, n_{\xi,k}}$ satisfy (1.6), and

$$\left(1 - \frac{\lambda}{\lambda_{\xi, n_{\xi,k}}}\right) \left(1 - \frac{\lambda}{\lambda_{\xi, -n_{\xi,k}}}\right) = \left(1 - \frac{\lambda}{n_{\xi,k}\pi + O(1)}\right) \left(1 + \frac{\lambda}{n_{\xi,k}\pi - O(1)}\right) \\
= 1 - \frac{\lambda^2 + O(1)\lambda + O(1)}{(n_{\xi,k}\pi + O(1))(n_{\xi,k}\pi - O(1))}.$$
(2.31)

Therefore (2.31) implies that the locally uniform convergence of the products (1.9) holds. Since $H_0 \neq H_1$, then $\sigma(L_0) \cap \sigma(L_1) = \emptyset$, which guarantees that

$$S_0 \cap S_1 = \emptyset. \tag{2.32}$$

Thus (2.25), (1.9) and (2.32) show that the function $K_1(\lambda)$ is an entire function in λ . Next we shall prove $K_1(\lambda) \equiv 0$. By the classical estimate of Levinson in [23] together with the assumptions in Theorem 2.2 and (1.9), there exists a constant C_{ξ} such that

$$\frac{1}{|w_{B_{\xi}}(\lambda)|} = O\left(e^{-2\theta_{\xi}\tau + \varepsilon r}\right), \quad \forall \lambda \in G_{C_{\xi}}, \quad r = |\lambda|,$$
(2.33)

where $\varepsilon > 0$, $G_{C_{\xi}} := \{\lambda : |\lambda - \lambda_{n_{\xi,k}}| \ge \frac{1}{8}C_{\xi}, \lambda_{\xi,n_{\xi,k}} \in S_{\xi}\}$. Consequently (2.33) and (2.29) imply

$$|K_1(\lambda)| = O\left(e^{-2(\theta_0 + \theta_1 - a)\tau + 2\varepsilon r}\right), \quad \forall \lambda \in G_{C_0} \bigcap G_{C_1}$$

for sufficiently large $|\lambda|$, where ε is arbitrary. Since $\theta_0 + \theta_1 - a = 0$, the maximum modulus principle shows that

$$|K_1(\lambda)| \le c_2 e^{2\varepsilon|\lambda|}, \quad \lambda \in \mathbb{C},$$
(2.34)

where c_2 is constant. Therefore (2.34) implies that $K_1(z)$ is of zero exponential type. We say that the notation \asymp means that both $\frac{|w_{B_{\xi}}(\lambda)|}{|w_{B_{\xi}}^*(\lambda)|}$ and $\frac{|w_{B_{\xi}}^*(\lambda)|}{|w_{B_{\xi}}(\lambda)|}$ are bounded, where

$$w_{B_{\xi}}^{*}(\lambda) = \text{p.v.} \prod_{n_{\xi,k} \in B_{\xi}} \left(1 - \frac{\lambda}{n_{\xi,k}}\right).$$

By Lemmas 2.5-2.7 in [19], for each $\delta > 0$, we have

$$|w_{B_{\xi}}(\lambda)| \simeq |w_{B_{\xi}}^{*}(\lambda)|$$
 if $|\lambda - \lambda_{\xi, n_{\xi,k}}| \ge \delta$, $|\lambda - n_{\xi,k}| \ge \delta$ for $n_{\xi,k} \in B_{\xi}$.

This implies

$$|w_{B_{\xi}}(iy)| \asymp |w_{B_{\xi}}^{*}(iy)|, \quad |y| \to \infty.$$

$$(2.35)$$

By calculating(refer to [16, 31] for details), we obtain

$$\begin{aligned} \ln \left| w_{B_{\xi}}^{*}(iy) \right| &= \int_{-\infty}^{\infty} \frac{n_{S_{\xi}}(t)}{t} \frac{y^{2}}{y^{2} + t^{2}} dt \\ &= \int_{-\infty}^{1} \frac{n_{S_{\xi}}(t)}{t} \frac{y^{2}}{y^{2} + t^{2}} dt + \int_{1}^{\infty} \frac{n_{S_{\xi}}(t)}{t} \frac{y^{2}}{y^{2} + t^{2}} dt + O(1) \\ &= 2\theta_{\xi} |y| + \varepsilon \ln |y| + O(1). \end{aligned}$$

This shows that

$$\left| w_{B_{\xi}}^{*}(iy) \right| \asymp \left| y \right|^{\varepsilon} \mathrm{e}^{2\theta_{\xi} \left| y \right|}.$$
(2.36)

Therefore (2.34)-(2.36) show that

$$|K_1(iy)| = O\left(\frac{1}{|y|^{2\varepsilon}}\right). \tag{2.37}$$

By the Phragmén-Lindelöf-type result in [22] together with (2.34) and (2.37), we get

$$K_1(\lambda) \equiv 0, \quad \lambda \in \mathbb{C}.$$

This implies

$$m(a,\lambda) = \widetilde{m}(a,\lambda). \tag{2.38}$$

By virtue of Theorem 1.1 together with (2.38), we have

 $\hat{q}_1(x) = 0$, and $\hat{q}_0(x) \stackrel{a.e.}{=} 0$ on [0, a] and $h = \tilde{h}$. (2.39)

Define the function

$$K_2(\lambda) := \frac{\langle \tilde{\psi}_0, \psi_0 \rangle (b, \lambda)}{w_{B_0}(\lambda)},\tag{2.40}$$

Consequently (2.23), (2.28) and (2.40) show that the function $K_2(\lambda)$ is an entire function in λ . Applying the same arguments as the proof of (2.34) and (2.37), we obtain

$$|K_2(\lambda)| \le c e^{\varepsilon |\lambda|}, \quad \lambda \in \mathbb{C},$$
(2.41)

$$|K_2(iy)| = O\left(\frac{1}{|y|^{\varepsilon}}\right).$$
(2.42)

By the Phragmén-Lindelöf-type result in [22] together with (2.41) and (2.42) again, we have

$$K_2(\lambda) \equiv 0, \quad \lambda \in \mathbb{C}.$$

This implies

$$\langle \tilde{\psi}_0, \psi_0 \rangle (b, \lambda) \equiv 0, \quad \lambda \in \mathbb{C}.$$
 (2.43)

The function

$$m_+(b,\lambda) = \frac{\psi'_0(b,\lambda)}{\psi_0(b,\lambda)}, \quad 0 \le b < 1$$

is called the Weyl *m*-function of L_0 . Thus (2.43) shows that

$$m_{+}(b,\lambda) = \frac{\psi_{0}'(b,\lambda)}{\psi_{0}(b,\lambda)} = \frac{\widetilde{\psi}_{0}'(b,\lambda)}{\widetilde{\psi}_{0}(b,\lambda)} = \widetilde{m}_{+}(b,\lambda),$$
(2.44)

Similar to Theorem 1.1, then it follows from (2.44)

$$\hat{q}_1(x) = 0, \quad \hat{q}_0(x) \stackrel{u.e.}{=} 0 \quad \text{on} \quad [b,1] \quad \text{and} \quad H_0 = \tilde{H}_0.$$
 (2.45)

Moreover we have

$$H_1 = \widetilde{H}_1$$

This together with (2.11), (2.12), (2.39) and (2.45) implies Theorem 2.2 holds.

Next we prove Theorem 2.3.

Proof of Theorem 2.3. By virtue of $W_{B_1}([a, c]) = \widetilde{W}_{\widetilde{B}_1}([a, c])$, and $W_{B_0}([c, b]) = \widetilde{W}_{\widetilde{B}_0}([c, b])$, this together with Lemma 2.1 and the assumption $\omega_1(1) = \widetilde{\omega}_1(1)$ yields

$$(\hat{q}_1(x) = 0 mtext{ on } [a, b], mtext{ (2.46)}$$

$$\hat{q}_0(x) \stackrel{a.e.}{=} 0$$
 on $[a, c],$ (2.47)

$$\hat{q}_0(x) \stackrel{a.e.}{=} 2\hat{\omega}_0(1)$$
 on $[c, b].$ (2.48)

Therefore (2.47) and (2.48) together with the function $q_0(x) - \tilde{q}_0(x)$ is continuous at x = c, this yields

$$\widehat{\omega}_0(1) = 0.$$
 (2.49)

Consequently (2.47), (2.48) and (2.49) imply that

$$\hat{q}_0(x) \stackrel{a.e.}{=} 0$$
 on $[a,b].$ (2.50)

Similar to the proof of (2.20) in Theorem 2.2, we have

$$\lambda_{\xi, n_{\xi,k}} - \widetilde{\lambda}_{\xi, \widetilde{n}_{\xi,k}} = 0, \quad \forall \ n_{\xi,k} \in B_{\xi}, \quad \xi = 0, 1.$$

$$(2.51)$$

Modifying the proof in Theorem 2.2 simply together with (2.46), (2.50) and (2.51), we obtain

$$\hat{q}_1(x) = 0, \quad \hat{q}_0(x) \stackrel{a.e.}{=} 0 \quad \text{on} \quad [0,1], \quad h = \tilde{h}, \quad \text{and} \quad H_{\xi} = \tilde{H}_{\xi}, \quad \xi = 0, 1.$$

Finally, we shall present an example for reconstruction of $(q_0(x), q_1(x), h, H_0)$ from the twin-dense nodal subset $W_{B_0}([0, 1])$.

Example 2.4. Let $W_{B_0}([0,1]) = \{x_{n_k}^j\}, B_0 \subseteq \mathbb{Z}$, be the twin-dense nodal subset of the pencil $L(q_0, q_1, h, H_0)$ and $\int_0^1 q_0(t) dt = \frac{1}{2}$, where

$$x_{n_k}^j = \frac{j - \frac{1}{2}}{n_k} - \frac{j - \frac{1}{2}}{n_k^2 \pi} + \frac{(j - \frac{1}{2})^2}{n_k^3 \pi} + \frac{\omega_0(x_{n_k}^j)}{(n_k \pi)^2} + o\left(\frac{1}{n_k^2}\right), \quad \forall n_k \in B_0,$$
(2.52)

where

$$\omega_0(x_{n_k}^j) = \frac{2(j-\frac{1}{2})^3}{3n_k^3} - \frac{3(j-\frac{1}{2})^2}{4n_k^2} - \frac{23(j-\frac{1}{2})}{12n_k} + 1,$$

reconstruct $(q_0(x), q_1(x), h, H_0)$.

For each fixed $x \in [0, 1]$, we choose $x_{n_k}^{j_{n_k}}$ such that $\lim_{k \to \infty} \frac{j - \frac{1}{2}}{n_k} = x$. By (2.52), we have

$$f(x) := \lim_{|k| \to \infty} n_k \pi \left(x_{n_k}^{j_k} - \frac{j_k - \frac{1}{2}}{n_k} \right)$$
$$= \lim_{|k| \to \infty} \left(\frac{(j - \frac{1}{2})^2}{n_k^2} - \frac{j_k - \frac{1}{2}}{n_k} + O\left(\frac{1}{n_k}\right) \right)$$
$$= x^2 - x = \int_0^x q_1(x) dt,$$

which implies

$$q_1(x) = 2x - 1, \quad x \in [0, 1]. \tag{2.53}$$

By (2.53), we obtain

$$g(x) := \lim_{|k| \to \infty} n_k^2 \pi^2 \left(x_{n_k}^{j_k} - \frac{j_k - \frac{1}{2}}{n_k} + \frac{j - \frac{1}{2}}{n_k^2 \pi} - \frac{(j - \frac{1}{2})^2}{n_k^3 \pi} \right)$$

$$= \lim_{|k| \to \infty} \left(\frac{2(j - \frac{1}{2})^3}{3n_k^3} - \frac{3(j - \frac{1}{2})^2}{4n_k^2} - \frac{23(j - \frac{1}{2})}{12n_k} + 1 + o(1) \right)$$

$$= \frac{2}{3}x^3 - \frac{3}{4}x^2 - \frac{23}{12}x + 1$$

$$= \omega_0(x) - \omega_0(1)x - H_0.$$
(2.54)

Therefore (2.54) shows that

$$h = g(0) = 1$$
, and $H_0 = -g(1) = 1$. (2.55)

By (2.53)-(2.55) together with $\int_0^1 q_0(t) dt = \frac{1}{2}$, we get

$$q_0(x) \stackrel{a.e.}{=} 4 + 2g'(x) - (2x-1)^2 + \int_0^1 (2x-1)^2 dx + \frac{1}{2} = x, \quad x \in [0,1].$$
(2.56)

Thus the coefficients $(q_0(x), q_1(x), h, H_0)$ are reconstructed by (2.53), (2.55) and (2.56).

Acknowledgements

The authors would like to thank the anonymous referees for valuable suggestions, which help to improve the readability and quality of the paper.

References

- [1] N. Bondarenko, *A partial inverse problem for the differential pencil on a star-shaped graph*, Results in Mathematics, **72(4)** (2017), 1933–1942.
- [2] N. Bondarenko, *Recovery of the matrix quadratic differential pencil from the spectral data*, Journal of Inverse and Ill-posed Problems, **24(3)**(2016), 245–263.
- [3] P. J. Browne and B.D. Sleeman, *Inverse nodal problem for Sturm-Liouville equation with eigenparameter dependent boundary conditions*, Inverse Problems, **12**(1996), 377–381.
- [4] S. Buterin, *Inverse nodal problem for differential pencils of second order* (Russian), Spect. Evol. Problems, 18 (2008), 46–51.
- [5] S. Buterin and C.-T. Shieh, *Inverse nodal problem for differential pencils*, Appl. Math. Lett., 22 (2009), 1240– 1247.
- [6] S. Buterin and C.-T. Shieh, Incomplete inverse spectral and nodal problems for differential pencils, Results Math., 62(2012), 167–179.
- [7] S. Buterin and V. Yurko, *Inverse spectral problem for pencils of differential operators on a finite interval*, Vestnik Bashkir. Univ., 4(2006), 8–12.
- [8] S. Buterin, On half inverse problem for differential pencils with the spectral parameter in boundary conditions, Tamkang J. Math., **42**(2011), 355–364.
- [9] S. Buterin and V. Yurko, *Inverse problems for second-order differential pencils with dirichlet boundary conditions*, J. Inverse Ill-Posed Probl., 20 (2012), No.(5-6), 855–881.
- [10] X. F. Chen, Y. H. Cheng and C. K. Law, *Reconstructing potentials from zeros of one eigenfunction*, Trans. Amer. Math. Soc., 363(2011), 4831–4851.
- [11] Y. H. Cheng, C. K. Law and J. Tsay, *Remarks on a new inverse nodal problem*, J. Math. Anal. Appl., **248** (2000), 145–155.
- [12] M. G. Gasymov and G. Sh. Guseinov, Determination of the diffusion operator by spectral data (in Russian), Doklady Acad. Nauk AzSSR, 37 (1981), 19–23.
- I. M. Guseinov and I. M. Nabiev, *The inverse spectral problem for pencils of differential operators*, Sbornik: Mathematics 198 (2007), 1579-1598.
- [14] F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential II: The case of discrete spectrum, Trans. Amer. Math. Soc., 352 (2000), 2765–2787.
- [15] G. Freiling and V. A. Yurko, *Recovering nonselfadjoint differential pencils with nonseparated boundary condi*tions, Applicable Analysis, 94 (2015), No.8, 1649–1661.
- [16] Y. Guo and G. Wei, *Inverse problem for diferential pencils with incompletely spectral information*, Taiwanese Journal of Mathematics **19** (2015), 927–942.
- [17] Y. Guo and G. Wei, *Determination of differential pencils from dense nodal subset in an interior subinterval,* Israel Journal of Mathematics, **206** (2015), No.1, 213–231.

- [18] Y. Guo and G. Wei, *Inverse problems: Dense nodal subset on an interior subinterval*, J. Differential Equations, 255 (2013), 2002–2017.
- [19] M. Horvath, On the inverse spectral theory of Schrödinger and Dirac operators, Trans. Amer. Math. Soc., 353 (2001), 4155–4171.
- [20] R. Hryniv and N. Pronska, *Inverse spectral problems for energy-dependent Sturm-Liouville equations*, Inverse Problems, **28** (2012), 085008 (21 pp).
- [21] M. Jaulent and C. Jean, *The inverse s-wave scattering problem for a class of potentials depending on energy,* Comm. Math. Phys., **28** (1972), 177–220.
- [22] B. Ja. Levin, Distribution of Zeros of Entire Functions (in Russian), GITTL, Moscow 1956.
- [23] N. Levinson, Gap and density theorems, AMS Coll. Publ., New York, 1940.
- [24] J. R. McLaughlin, Inverse spectral theory using nodal points as data-a uniqueness result, J. Differential Equations, 73(1988), 354–362.
- [25] N. Pronska, *Reconstruction of energy-dependent Sturm-Liouville operators from two spectra*, Integral Equations and Operator Theory, **76**(2013), 403–419.
- [26] C. L. Shen, On the nodal sets of the eigenfunctions of the string equations, SIAM J. Math. Anal., **19** (1988), 1419–1424.
- [27] C.-T. Shieh and V. A. Yurko, *Inverse nodal and inverse spectral problems for discontinuous boundary value problems*, J. Math. Anal. Appl., **347**(2008), 266–272.
- [28] Y. P. Wang, Inverse problems for discontinuous Sturm-Liouville operators with mixed spectral data, Inverse Probl. Sci. Eng., 23(2015), 1180–1198.
- [29] Y. P. Wang and V. Yurko, *On the inverse nodal problems for discontinuous Sturm-Liouville operators*, J. Differential Equations, **260** (2016), 4086–4109.
- [30] Y. P. Wang, K. Y. Lien and C.-T. Shieh, *Inverse problems for the boundary value problem with the interior nodal subsets*, Applicable Analysis, **96** (2017), No.7, 1229-1239.
- [31] Y. P. Wang, *The inverse spectral problem for differential pencils by mixed spectral data*, Applied Mathematics and Computation, **338** (2018), 544–551.
- [32] Y. P. Wang and V. Yurko, *Inverse spectral problems for differential pencils with boundary conditions dependent on the spectral parameter*, Math. Meth. Appl. Sci., **40**(2017), 3190–3196.
- [33] C. F. Yang, Reconstruction of the diffusion operator from nodal data, Z. Natureforsch, 65a.1 (2010), 100–106.
- [34] C. F. Yang, Solution to open problems of Yang concerning inverse nodal problems, Isr. J. Math., **204**(2014), 283–298.
- [35] C. F. Yang, *Inverse nodal problems for differential pencils on a star-shaped graph*, Inverse Problems, **26** (2010), 085008.
- [36] X. F. Yang, A new inverse nodal problem, J. Differential Equations, 169 (2001), 633–653.
- [37] V. Yurko, *Inverse problem for quasi-periodic differential pencils with jump conditions inside the interval*, Complex Anal. Oper. Theory, **10** (2016), 1203–1212.
- [38] V. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, VSP, Utrecht: Inverse and Ill-posed Problems Ser. 2002.

Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China.

E-mail: ypwang@njfu.com.cn

Department of Applied Mathematics, School of Science, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.

E-mail: huyiteng6@163.com

Department of Mathematics, Tamkang University, Danshui Dist., New Taipei City, 25137, Taiwan(R.O.C.).

E-mail: ctshieh@mail.tku.edu.tw