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INVERSE SPECTRAL PROBLEM FOR

THE MATRIX STURM-LIOUVILLE OPERATOR WITH

THE GENERAL SEPARATED SELF-ADJOINT BOUNDARY CONDITIONS

XIAO-CHUAN XU

Abstract. In this work, we study the matrix Sturm-Liouville operator with the separated

self-adjoint boundary conditions of general type, in terms of two unitary matrices. Some

properties of the eigenvalues and the normalization matrices are given. Uniqueness the-

orems for determining the potential and the unitary matrices in the boundary conditions

from the Weyl matrix, two characteristic matrices or one spectrum and the correspond-

ing normalization matrices are proved.

1. Introduction

Consider the matrix Sturm-Liouville equation

−Y ′′(x)+Q(x)Y (x) =λY (x), 0 < x < a, (1.1)

with the general self-adjoint boundary conditions of separated type

T1(Y ) := A†
1Y ′(0)−B †

1Y (0) = 0n , T2(Y ) := A†
2Y ′(a)+B †

2Y (a)= 0n , (1.2)

where Y (x) is either an n×n matrix-valued function or a column vector-valued function with

n components, the matrix potential Q(x) satisfies Q(x)† =Q(x) and every entry in Q belongs

to L2(0, a), λ is the spectral parameter, the dagger "†" denotes the matrix adjoint (complex

conjugate and matrix transpose), 0n denotes the zero matrix or the zero vector, and

A j =
1

2

(
U j + In

)
, B j =

i

2

(
U j − In

)
, j = 1,2, (1.3)

the matrix U j is unitary, In denotes the n×n identity matrix. In order to make the system (1.1)

and (1.2) to be self-adjoint, one can also require the boundary matrices to satisfy [2, 1, 11, 17]

A†
j
B j = B †

j
A j , rank[A j B j ] = n, j = 1,2; (1.4)
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or

B †
j

A j = A†
j
B j , A†

j
A j +B †

j
B j > 0, j = 1,2. (1.5)

It was shown in [1] that the conditions (1.3), (1.4) and (1.5) are equivalent to each other. Here,

for convenience, we use (1.3) in our paper. Denote by L(Q ,U1,U2) the problem (1.1) and (1.2).

The λ-values for which (1.1) has a non-trivial column vector solution satisfying (1.2) are

called eigenvalues, and the corresponding vector solutions are called eigenvector functions.

The problem L(Q ,U1,U2) with a diagonal potential Q(x) is connected with the spectral

problems on star graph (see, e.g., [4, 6, 10, 20, 21, 27, 29, 31]). The continuity condition and

Kirchhoff’s condition at x = 0 are equivalent to that U1 has this form: the diagonal entries are

all −1/3 and the other entries are all 2/3. The separated boundary condition at x = a yields

that U2 = −diag{e2iα1 , . . . ,e2iαn } with α j ∈ (0,π]. Some other types of boundary conditions

(such as the δ-type condition [18, 25]) are also included here. Many scholars studied the

matrix Sturm-Liouville operator (see [2, 1, 3, 5, 7, 8, 9, 22, 12, 15, 16, 23, 24, 26, 28, 33] and the

references therein), whereas only a few of them include the problems on star graphs which

are only for noncompact case [2, 1, 15, 16, 26].

The problem considered here is more difficult for investigating. Unlike the case that A j

( j = 1,2) are invertible, In

p
λsin

p
λa is no longer the global main part of asymptotics for

the characteristic matrix. This causes difficulties in studying the behavior of the spectrum

of L(Q ,U1,U2). Furthermore, the boundary conditions (1.3) cause that the Weyl matrix is

no longer O( 1p
λ

) for large λ, which yields that one cannot use the residue theorem as that

used in [32] to prove that the Weyl matrix is uniquely recovered from the eigenvalues and the

normalization matrices. Weyl matrix plays an important role in the spectral theory, which is

from the Weyl function in the scalar case and has been generalized into many cases (see, e.g.,

[14, 30, 31, 33, 34, 35]). In this paper, we give some properties of the Weyl matrix, and show

that the Weyl matrix uniquely determines the potential and the boundary conditions. As a

corollary, we obtain the uniqueness theorems for determining the problem L(Q ,U1,U2) from

two characteristic matrices or one spectrum and the corresponding normalization matrices.

The paper is organized as follows. In Section 2, we give some preliminaries, where the no-

tations and some asymptotic estimates of the initial solutions are provided. Section 3 shows

some properties of the eigenvalues and normalization matrices. In this section, we also in-

troduce the so-called Weyl solutions and Weyl matrices, and establish the relations between

the normalization matrices and the Weyl matrices. In the last section, the inverse problem is

considered, where we show that the Weyl matrix uniquely determines the potential and the

matrices in the boundary conditions.
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2. Preliminaries

Let Cn be the space of complex column vector with n components. Denote C
± = {k ∈ C :

±Imk > 0}, C
± =C

±∪R and C
+
δ

:= {k : 0< δ≤ argk ≤π−δ}. Let L2((0, a);Cn ) be the space of the

column vector-valued functions with each element belonging to L2(0, a). If it does not cause

misunderstanding, we may just use the notation L2(0, a). An overdot used below means the

λ-derivative.

Together with (1.1), we consider the following equation

−Z ′′(x)+Z (x)Q(x) =λZ (x), x ∈ (0, a), (2.1)

where Z (x) is either an n ×n matrix-valued function or a row vector-valued function with

n components. Let [Z ;Y ] := Z Y ′ − Z ′Y denote the Wronskian. It is easy to prove that the

Wronskian [Z (x,λ);Y (x,λ)] does not depend on x. In addition, if Y (x,λ) is a solution to (1.1),

then Y (x, λ̄)† is the solution to (2.1), where λ̄ means the complex conjugate of λ.

Let ϕ(x,λ),ψ(x,λ),ϕ1(x,λ) and ψ1(x,λ) be the matrix solutions to (1.1) with the initial

conditions, respectively,

ϕ(0,λ) = −ϕ′
1(0,λ) = A1, ϕ′(0,λ) =ϕ1(0,λ) =B1, (2.2)

ψ(a,λ) = −ψ′
1(a,λ) = A2, ψ′(a,λ) =ψ1(a,λ) =−B2. (2.3)

The above solutions are all entire matrix-valued functions of λ of order 1/2 for each fixed

x ∈ [0, a].

Using (1.3), (2.2) and (2.3), it is easy to show

[ψ(x, λ̄)†;ψ(x,λ)] = [ψ1(x, λ̄)†;ψ1(x,λ)]=[ϕ(x, λ̄)†;ϕ(x,λ)]=[ϕ1(x, λ̄)†;ϕ1(x,λ)]=0n , (2.4)

[ϕ1(x, λ̄)†;ϕ(x,λ)] = [ϕ(x, λ̄)†;−ϕ1(x,λ)]=[ψ1(x, λ̄)†;ψ(x,λ)]=[ψ(x, λ̄)†;−ψ1(x,λ)] = In .(2.5)

Let λ= k2 and λ̄= k̄2 with −k̄,k ∈C
+

. It is known that ϕ(x,λ) satisfies the integral equa-

tion

ϕ(x,λ) = A1 cos k x +B1
sink x

k
+

∫x

0

sink(x − t )

k
Q(t )ϕ(t ,λ)d t ,

from which it follows that as |k |→∞ in C,

ϕ(x,λ) = A1 cos k x +B1
sink x

k
+

∫x

0

sink(x − t )cosk t

k
Q(t )d t A1 +O

(
e |Imk |x

k2

)
, (2.6)

ϕ′(x,λ) = −A1k sink x +B1cos k x +
∫x

0
cos k(x − t )cosk tQ(t )d t A1 +O

(
e |Imk |x

k

)
. (2.7)

Using the formula

sinαcosβ=
1

2
[sin(α+β)+sin(α−β)], cosαcosβ=

1

2
[cos(α+β)+cos(α−β)]
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in (2.6) and (2.7), respectively, we obtain that as |k |→∞ in C,

ϕ(x,λ) = A1 cos k x +B1
sin k x

k
+

sink x

2k

∫x

0
Q(t )d t A1+o

(
e |Imk |x

k

)
, (2.8)

ϕ′(x,λ) = −A1k sink x +B1cos k x +
cos k x

2

∫x

0
Q(t )d t A1 +o

(
e |Imk |x

)
. (2.9)

Lemma 2.1. Let F (x) be an n ×n continuous matrix-valued function. Then for all x ∈ [0, a]

there hold

F (x)A j [i k A j±B j ]−1 = O

(
1

k

)
, |k |→∞, k ∈C, j = 1,2. (2.10)

F (x)B j [i kB j±A j ]−1 = O

(
1

k

)
, |k |→∞, k ∈C, j = 1,2. (2.11)

Proof. We only prove (2.10) for j = 1. The other cases can be proved similarly.

Since (1.3) and U1 is unitary, there exists an unitary matrix D such that

D† A1D = diag{ξ1, . . . ,ξr ,0n−r } :=
[
Ξr 0

0 0n−r

]
,

D†B1D = diag{γ1, . . . ,γr ,−i In−r } :=
[
Γr 0

0 −i In−r

]
,

where ξ j (6= 0) and γ j ( j = 1, s) are constants.

Denote

D†F (x)D :=
[

f11(x) f12(x)

f21(x) f22(x)

]
,

where f11 is a r × r matrix. It follows that as |k |→∞ in C,

D†F (x)A1[i k A1±B1]−1D =
[

f11(x)Ξr 0

f21(x)Ξr 0n−r

][
(i kΞr ±Γr )−1 0

0 ±i In−r

]
=O

(
1

k

)
,

which implies (2.10) for j = 1. ���

Remark 2.1. From the above proof, we see that, if we use [i k A j ±B j ]−1F (x)A j and [i kB j ±
A j ]−1F (x)B j instead of the left-hand sides in (2.10) and (2.11), respectively, then the results

may not hold.

Using the formulas

sinα=
e iα−e−iα

2i
, cosα=

e iα+e−iα

2
,
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in (2.8) and (2.9), and noting that
(
i k A1−B1− 1

2

∫x
0 Q(t )d t A1

)
is invertible for large k , we have

that as |k |→∞ in C
+
δ

,

ϕ(v)(x,λ)=
(−1)v e−i kx

2(i k)1−v
[In +o(1)]

(
i k A1−B1−

1

2

∫x

0
Q(t )d t A1

)
, x ∈ (0, a],

which implies from Lemma 2.1 that

ϕ(v)(x,λ) =
(−1)v e−i kx

2(i k)1−v
[In +o(1)] [i k A1 −B1] , v = 0,1, x ∈ (0, a]. (2.12)

Similarly, we also have that as |k |→∞ in C
+
δ

,

ψ(v)(x,λ) =
e−i k(a−x)

2(i k)1−v
[In +o(1)] [i k A2−B2] , v = 0,1, x ∈ [0, a), (2.13)

ϕ(v)
1 (x,λ) =

(−1)v e−i kx

2(i k)1−v
[In +o(1)] [i kB1+ A1] , v = 0,1, x ∈ (0, a], (2.14)

ψ(v)
1 (k , x) = −

e−i k(a−x)

2(i k)1−v
[In +o(1)] [i kB2+A2] , v = 0,1, x ∈ [0, a), (2.15)

3. Eigenvalues and normalization matrices

In this section, we give some properties of the eigenvalues and the normalization matri-

ces. The specifical forms of the normalization matrices are presented in terms of the initial

value solutions ϕ and ψ.

Denote

∆(λ):=[ψ(x, λ̄)†;ϕ(x,λ)]=ψ(0, λ̄)†B1−ψ′(0, λ̄)† A1=A†
2ϕ

′(a,λ)+B †
2ϕ(a,λ), (3.1)

which is called the characteristic matrix. Then we have

∆(λ̄)†=−[ϕ(x, λ̄)†;ψ(x,λ)]=ϕ′(a, λ̄)† A2 +ϕ(a, λ̄)†B2=B †
1ψ(0,λ)−A†

1ψ
′(0,λ). (3.2)

Proposition 3.1. λ0 is an eigenvalue of the problem L(Q ,U1,U2) if and only if ker∆(λ0) is non-

trivial, i.e., det∆(λ0) = 0. Moreover, any eigenvector function must be ϕ(x,λ0)ξ (or ψ(x,λ0)η)

for some nonzero column vector ξ ∈ ker∆(λ0) (or η ∈ ker∆(λ0)†). For the eigenvalue λ0, there is

a bijection ξ→ η between ker∆(λ0) and ker[∆(λ0)†] in such a way that ϕ(x,λ0)ξ=ψ(x,λ0)η.

Proof. If det∆(λ0) = 0 for some λ0 ∈ C, then there exists at least one nonzero column vector

ξ ∈ ker∆(λ0), namely,

0n = [ψ(x, λ̄0)†;ϕ(x,λ0)ξ]x=a = A†
2ϕ

′(0,λ0)ξ+B †
2ϕ(0,λ0)ξ.
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Note that ϕ(x,λ0)ξ satisfies the left boundary condition in (1.2). Thus, ϕ(x,λ)ξ is the nonzero

column solution to (1.1) and satisfies (1.2). This implies that λ0 is a certain eigenvalue of the

problem L(Q ,U1,U2).

Assume that λ0 is an certain eigenvalue, and the corresponding eigenvector function is

ω(x,λ0) which satisfies (1.2). From (1.3), (2.2) and (2.3) we see that {ϕ,ϕ1} and {ψ,ψ1} are both

the fundamental solutions to (1.1). Thus, there exist column vectors ξ,ξ1,η,η1 ∈C
n such that

ω(x,λ0) =ϕ(x,λ0)ξ+ϕ1(x,λ0)ξ1 =ψ(x,λ0)η+ψ1(x,λ0)η1. (3.3)

Since T1(ω) = 0n = T2(ω), we have

0n = A†
1ω

′(0,λ0)−B †
1ω(0,λ0) =−ξ1, 0n = A†

2ω
′(π,λ0)+B †

2ω(π,λ0) =−η1. (3.4)

From (3.1)-(3.4), we get

0n = A†
1ψ

′(0,λ0)η−B †
1ψ(0,λ0)η= [ϕ(x, λ̄0)†;ψ(x,λ0)]η=−∆(λ̄0)†η,

and

0n = A†
2ϕ

′(0,λ0)ξ+B †
2ϕ(0,λ0)ξ= [ψ(x, λ̄0)†;ϕ(x,λ0)]ξ=∆(λ0)ξ,

which imply, respectively, 0n 6= η ∈ ker[∆(λ0)†] (the following proposition shows λ0 = λ̄0) and

0n 6= ξ ∈ ker∆(λ0). Thus, det∆(λ0)= 0. ���

Proposition 3.2. The eigenvalues of the problem L(Q ,U1,U2) are all real. Eigenvector functions

related to different eigenvalues are orthogonal in L2((0, a);Cn ).

Proof. Let λ1 be an certain eigenvalues of the problem L(Q ,U1,U2), and ω1(x) be the corre-

sponding eigenvector functions. From the proof of Proposition 2.1, we seeω1(x) =ϕ(x,λ1)ξ1 =
ψ(x,λ1)η1 for some ξ1,η1 ∈C

n . By integration by parts and, and using (2.2) and (2.3), we have

∫a

0
[ω′′

1 (x)† +ω1(x)†Q(x)]ω1(x)d x =
∫a

0
ω1(x)†[ω′′

1 (x)+Q(x)ω1(x)]d x,

which implies

(λ1 − λ̄1)

∫a

0
ω1(x)†ω1(x)d x = 0. (3.5)

It follows that if λ1 6= λ̄1 then ω1(x) = 0 a.e. on (0, a). This is impossible.

Let λ2 be a different eigenvalue from λ1, and ω2(x) be the corresponding eigenvector

functions. Using a similar method to (3.5) and noting λ2 = λ̄2, we obtain

(λ1 −λ2)

∫a

0
ω1(x)†ω2(x)d x = 0, (3.6)

which implies
∫a

0 ω1(x)†ω2(x)d x = 0. ���

Let {λ j } j≥0 be all the eigenvalues of the problem L(Q ,U1,U2).
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Proposition 3.3. The inverse of the the characteristic matrix ∆(λ)−1 has a simple poles at λ j

( j ≥ 0), namely,

∆(λ)−1 =
N−1, j

λ−λ j
+N0 +O(λ−λ j ), λ→ λ j , (3.7)

where N−1, j is a nonzero constant matrix.

Proof. Differentiating (1.1) for Y =ϕ with respect to λ and evaluating it at λ=λ j yield

−ϕ̇′′(x,λ j )+Q(x)ϕ̇(x,λ j ) =λϕ̇(x,λ j )+ϕ(x,λ j ). (3.8)

Premultiplying (3.8) by ϕ(x,λ j )†, postmultiplying (2.1) for Z =ϕ(x,λ j )† by ϕ̇(x,λ j ), taking the

difference, and integrating on [0, a], we get

∫a

0
ϕ(x,λ j )†ϕ(x,λ j ) =[ϕ′(x,λ j )†ϕ̇(x,λ j )−ϕ(x,λ j )†ϕ̇′(x,λ j )]|a0

=ϕ′(a,λ j )†ϕ̇(a,λ j )−ϕ(a,λ j )†ϕ̇′(a,λ j ). (3.9)

Here, we have used the fact that ϕ̇(0,λ) ≡ 0n ≡ ϕ̇′(0,λ) for all λ ∈C.

Let ξ ∈ ker∆(λ j ) and η ∈ ker[∆(λ j )†] such that ϕ(x,λ j )ξ =ψ(x,λ j )η. It follows from (3.9)

and (3.1) that ∫a

0
ξ†ϕ(x,λ j )†ϕ(x,λ j )ξd x =−η†

∆̇(λ j )ξ. (3.10)

Since det∆(λ j ) = 0, we have that as λ→λ j ,

∆(λ) =∆(λ j )+ (λ−λ j )∆̇(λ j )+O((λ−λ j )2), (3.11)

∆(λ)−1 =
N−p, j

(λ−λ j )p
+

N−p+1, j

(λ−λ j )p−1
+·· ·+

N−1, j

λ−λ j
+N0 +O(λ−λ j ), (3.12)

where {N−s, j }
p
s=1 are constant matrices and at least one of them is nonzero.

Since ∆(λ)∆(λ)−1 = In , we get that if p ≥ 2 then

∆(λ j )N−p, j = 0n , ∆(λ j )N−p+1, j + ∆̇(λ j )N−p, j = 0n . (3.13)

It follows that each column in N−p, j , denoted also by ξ, belongs to ker∆(λ j ). Let η ∈ ker∆(λ j )†

such that ϕ(x,λ j )ξ=ψ(x,λ j )η. It follows from η†
∆(λ j ) = 0n and (3.13) that

η†
∆̇(λ j )ξ= 0n , (3.14)

which implies from (3.10) that ξ= 0n . Thus, N−p, j = 0n if p ≥ 2. The proof is complete. ���

Denote

C j := P j

[
P j

∫a

0
ϕ(x,λ j )†ϕ(x,λ j )d xP j + In −P j

]−1

, (3.15)
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and

C1, j := P1, j

[
P1, j

∫a

0
ψ(x,λ j )†ψ(x,λ j )d xP1, j + In −P1, j

]−1

, (3.16)

which are called normalization matrices, where P j and P1, j are the orthogonal projections

onto ker∆(λ j ) and ker[∆(λ j )†], respectively, j ≥ 0.

Consider the Weyl solutionsΦ(x,λ) andΦ1(x,λ) of the problem L(Q ,U1,U2), which satisfy

(1.1) with the conditions T1(Φ) = In,T2(Φ) = 0n and T1(Φ1) = 0n ,T2(Φ1) = In , respectively. It is

easy to show that the Weyl solutions Φ and Φ1 uniquely exist. Denote

M (λ):=V1(Φ):=A†
1Φ(0,λ)+B †

1Φ
′(0,λ), M1(λ):=V2(Φ1):=A†

2Φ1(a,λ)−B †
2Φ

′
1(a,λ), (3.17)

which are called Weyl matrices. Using (1.3), (2.2), (2.3), (3.1) and (3.2), it is easy to verify

Φ(x,λ) = −ψ(x,λ)[∆(λ̄)†]−1 =−ϕ1(x,λ)+ϕ(x,λ)M (λ), (3.18)

M (λ) = −V1(ψ)[∆(λ̄)†]−1 = T2(ϕ)−1T2(ϕ1)=∆(λ)−1T2(ϕ1), (3.19)

Φ1(x,λ) = ϕ(x,λ)∆(λ)−1 =−ψ1(x,λ)+ψ(x,λ)M1(λ), (3.20)

M1(λ) = V2(ϕ)∆(λ)−1 =T1(ψ)−1T1(ψ1) =−[∆(λ̄)†]−1T1(ψ1). (3.21)

Remark 3.1. From the above discussion, we see that if U1 = U2 and Q(x) = Q(a − x), then

A1 = A2 and B1 = B2, ϕ(x, ,λ) =ψ(a − x,λ). It follows from (3.1) and (3.2) that ∆(λ) = ∆(λ̄)†,

and so P j = P1, j and C j = C1, j . It also follows from (3.18)-(3.21) that Φ(x,λ) = −Φ1(a − x,λ)

and M (λ)=−M1(λ).

The following theorem gives the relations between the Weyl solutions and normalization

matrices.

Theorem 3.1. For all j ≥ 0, the matrices C j and C1, j defined in (3.15) and (3.16) are positive

semi-definite. Moreover, the following equations hold:

Res
λ=λ j

Φ(x,λ) = ϕ(x,λ j )C j , Res
λ=λ j

M (λ)= Res
λ=λ j

V1(Φ)=C j , (3.22)

Res
λ=λ j

Φ1(x,λ) = −ψ(x,λ j )C1, j , Res
λ=λ j

M1(λ) = Res
λ=λ j

V2(Φ1)=−C1, j . (3.23)

Proof. We only prove (3.22), and one can prove (3.23) similarly. From (3.7), we have

[∆(λ̄)†]−1 =
N †

−1, j

λ−λ j
+N †

0 +O(λ−λ j ), λ→λ j , (3.24)

which implies from (3.18) that

Res
λ=λ j

Φ(x,λ) =− lim
λ→λ j

ψ(x,λ)(λ−λ j )[∆(λ̄)†]−1 =−ψ(x,λ)N †
−1, j

, (3.25)
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Using (1.3), (3.1) and (3.2), by a direct calculation, one can verify

{
A2U †

2 [ϕ(a,λ j )+iϕ′(a,λ j )]P j = [i∆(λ j )+ϕ(a,λ j )]P j =ϕ(a,λ j )P j ,

−B2U †
2 [ϕ(a,λ j )+iϕ′(a,λ j )]P j = [−∆(λ j )+ϕ′(a,λ j )]P j =ϕ′(a,λ j )P j ,

(3.26)

which implies from (2.3) that

ψ(x,λ j )U †
2 [ϕ(a,λ j )+iϕ′(0,λ j )]P j =ϕ(x,λ j )P j . (3.27)

Note that [ϕ(x, λ̄)†;ϕ(x,λ)] = 0n . It follows from (3.26) and (3.2) that

∆(λ j )†U †
2 [ϕ(a,λ j )+iϕ′(a,λ j )]P j = 0n . (3.28)

From (3.7) and (3.11), and noting ∆(λ)∆(λ)−1 = In , we have

∆(λ j )N−1, j = 0n , N †
0, j

∆(λ j )† +N †
−1, j

∆̇(λ j )† = In . (3.29)

It follows from the first equation in (3.29) that P j N−1, j = N−1, j , or equivalently,

N †
−1, j

P j = N †
−1, j

. (3.30)

Using (3.28) and the second equation in (3.29), together with (3.1), (3.9) and (3.26), we get

U †
2 [ϕ(a,λ j )+iϕ′(a,λ j )]P j =N †

−1, j
∆̇(λ j )U †

2 [ϕ(a,λ j )+iϕ′(a,λ j )]P j

=N †
−1, j

[ϕ̇′(a,λ j )† A2 + ϕ̇(a,λ j )†B2]U †
2 [ϕ(a,λ j )+iϕ′(a,λ j )]P j

=N †
−1, j

[ϕ̇′(a,λ j )†ϕ(a,λ j )− ϕ̇(a,λ j )†ϕ′(a,λ j )]P j

=−N †
−1, j

∫a

0
ϕ(x,λ j )†ϕ(x,λ j )d xP j . (3.31)

Going back to (3.27), and using (3.31) and (3.30), we obtain

ϕ(x,λ j )P j =−ψ(x,λ j )N †
−1, j

∫a

0
ϕ(t ,λ j )†ϕ(t ,λ j )d t P j =−ψ(x,λ j )N †

−1, j
F j , (3.32)

where F j = P j

∫a
0 ϕ(t ,λ j )†ϕ(t ,λ j )d t P j + In −P j , and we have used

N †
−1, j

(In −P j )= N †
−1, j

−N †
−1, j

P j = 0n .

It is obvious that F j is positive definite, and satisfies F j P j = P j F j = P j F j P j . Hence P j F−1
j

=
F−1

j
P j = P j F−1

j
P j =C j , which is obviously positive semi-definite. It follows from (3.32) that

ϕ(x,λ j )C j =−ψ(x,λ j )N †
−1, j

,

which, together with (3.25) and (3.19), implies (3.22).

Using a similar method, one can prove (3.23). The proof is complete. ���
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4. Inverse problems

In this section, we consider the inverse problem. We will show that the Weyl matrix

uniquely determines the potential and the boundary conditions. Under the additional infor-

mation on the the boundary conditions (see (4.1) or (4.2)), we show that the eigenvalues and

the normalization matrices uniquely determine the potential and the matrices in the bound-

ary conditions. If A1 (or A2) is known to be invertible or to be zero matrix like the cases con-

sidered in [7, 8, 9, 24, 22, 23], then the addition conditions (4.1) (or (4.2)) obviously holds.

However, it is not clear that whether the results hold without these restrictions.

Together with the problem L(Q ,U1,U2), we consider the problem L(Q̃ ,Ũ1,Ũ2) of the same

form but with different Ũ1, Ũ2 and Q̃(x). We agree that if a certain symbol δ denotes an object

related to L(Q ,U1,U2), then δ̃ will denote an analogous object related to L(Q̃ ,Ũ1,Ũ2).

Lemma 4.1. If M (λ)= M̃(λ) then as |k |→∞ in C
+
δ

,

[i k A1−B1][i k Ã1− B̃1]−1 =O(1), [i k A†
1−B †

1]−1[i k Ã†
1− B̃ †

1] =O(1). (4.1)

If M1(λ) = M̃1(λ) then as |k |→∞ in C
+
δ

,

[i k A2−B2][i k Ã2− B̃2]−1 =O(1), [i k A†
2−B †

2]−1[i k Ã†
2− B̃ †

2] =O(1). (4.2)

Proof. We agree that the following "o(1)" and "O(1)" are under |k | →∞ in C
+
δ

. With the help

of (2.12) and (3.1), we get

∆(λ) =
e−i ka

2i k

[
i k A†

2−B †
2

]
[In +o(1)][B1 − i k A1]. (4.3)

It follows from (2.14) and the last equation in (3.19) that

M (λ)= [i k A1−B1]−1[In +o(1)][A1 + i kB1]. (4.4)

Similar, we also obtain

M1(λ) =−[i k A2−B2]−1[In +o(1)][A2 + i kB2]. (4.5)

We only prove (4.1) with the help of (4.4). Using (4.5), one can also prove (4.2).

Since (4.4), and M (λ) = M̃(λ), we have

[i k A1−B1]−1[In +o(1)][A1 + i kB1] = [i k Ã1− B̃1]−1[In +o(1)][Ã1 + i kB̃1],

which implies

In +o(1) = [i k A1−B1][i k Ã1− B̃1]−1[In +o(1)][Ã1 + i kB̃1][A1 + i kB1]−1. (4.6)
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Since A1 and B1 has the form of (1.3), there exists an unitary matrix N such that

N † A1N =diag

{
e2iθ1 +1

2
, . . . ,

e2iθs +1

2
, It ,0p

}
:=




Θs 0 0

0 It 0

0 0 0p


 ,

N †B1N =diag

{
i (e2iθ1 −1)

2
, . . . ,

i (e2iθs −1)

2
,0t ,−i Ip

}
:=




Γs 0 0

0 0t 0

0 0 −i Ip


 ,

where θ j ∈ (0, π2 )∪(π2 ,π) and s+t +p = n. The similar equations hold for Ã1 and B̃1 with θ̃ j , s̃, t̃

and p̃ satisfying s̃ + t̃ + p̃ = n. It follows that

[i k A1−B1][i k Ã1− B̃1]−1 = N




i kΘs −Γs 0 0

0 i k It 0

0 0 i Ip


N †Ñ




(i kΘ̃s̃ − Γ̃s̃ )−1 0 0

0 −i k−1I t̃ 0

0 0 −i I p̃


Ñ †, (4.7)

[Ã1 + i kB̃1][A1 + i kB1]−1 = Ñ




Θ̃s̃ + i kΓ̃s̃ 0 0

0 I t̃ 0

0 0 k I p̃


Ñ †N




(Θs + i kΓs)−1 0 0

0 It 0

0 0 k−1Ip


N † (4.8)

Let us first show s = s̃, t = t̃ , p = p̃ . Indeed, taking the determinants on both sides of (4.6),

and using (4.7) and (4.8), we see that

k t−t̃

k p−p̃
=O(1),

k p−p̃

k t−t̃
=O(1),

which implies t − t̃ = p − p̃. Since (4.4), we have

N †M (λ)N =




(i kΘs −Γs )−1 0 0

0 −i k−1It 0

0 0 −i Ip


 [In +o(1)]




Θs + i kΓs 0 0

0 It 0

0 0 k Ip


 . (4.9)

Letting |k |→∞ in (4.9) for k ∈C
+
δ

, we get that the rank of the limit of the matrix M (λ)k−1 is p .

Since M (λ)= M̃(λ), we conclude p = p̃ , and so t = t̃ and s = s̃.

Denote

N †Ñ :=




n11 n12 n13

n21 n22 n23

n31 n32 n33


 ,

where n11,n22 and n33 are, respectively, s × s, t × t and p ×p matrices. Then we have

N †[i k A1 −B1][i k Ã1− B̃1]−1Ñ
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=




(i kΘs −Γs )n11 (i kΘs −Γs )n12 (i kΘs −Γs )n13

i kn21 i kn22 i kn23

i n31 i n32 i n33







(i kΘ̃s̃ − Γ̃s̃ )−1 0 0

0 −i k−1I t̃ 0

0 0 −i I p̃




=




(i kΘs −Γs )n11(i kΘ̃s̃ − Γ̃s̃ )−1 −i k−1(i kΘs −Γs )n12 −i (i kΘs −Γs )n13

i kn21(i kΘ̃s̃ − Γ̃s̃ )−1 n22 kn23

i n31(i kΘ̃s̃ − Γ̃s̃ )−1 k−1n32 n33


 , (4.10)

and

Ñ †[Ã1 + i kB̃1][A1 + i kB1]−1N

=




(Θ̃s̃ + i kΓ̃s̃)n†
11(Θ̃s̃ + i kΓ̃s̃)n†

21 (Θ̃s̃ + i kΓ̃s̃)n†
31

n†
12 n†

22 n†
32

kn†
13 kn†

23 kn†
33







(Θs + i kΓs)−1 0 0

0 It 0

0 0 k−1Ip




=




(Θ̃s̃ + i kΓ̃s̃)n†
11(Θs + i kΓs)−1(Θ̃s̃ + i kΓ̃s̃)n†

21 k−1(Θ̃s̃ + i kΓ̃s̃)n†
31

n†
12(Θs + i kΓs)−1 n†

22 k−1n†
32

kn†
13(Θs + i kΓs)−1 kn†

23 n†
33


 . (4.11)

Together with (4.6), (4.10) and (4.11), and letting |k | →∞ in C
+
δ

, we get n13 = 0,n21 = 0,n23 =
0, which implies from (4.10) and (4.11) that [i k A1 − B1][i k Ã1 − B̃1]−1 = O(1) and [i k A†

1 +
B †

1][i k Ã†
1+ B̃ †

1]−1 =O(1), respectively. Using a similar method, one can prove the equations in

(4.2). The proof is complete. ���

Theorem 4.2. If either M (λ) = M̃ (λ) or M1(λ) = M̃1(λ), then U1 = Ũ1, U2 =Ũ2 and Q(x)=Q(x)

a.e. on [0, a].

Proof. We only give the proof for M (λ), and the proof for M1(λ) is similar. Using (2.13) and

(3.2), we get

∆(λ̄)† =
e−i ka

2i k
[B †

1 − i k A†
1][In +o(1)] [i k A2−B2] , |k |→∞, k ∈C

+
δ , (4.12)

which implies from (2.13) and (3.18) that

Φ
(v)(x,λ) = (i k)v e i kx[In +o(1)][i k A†

1 −B †
1]−1, x ∈ [0, a), v = 1,2. (4.13)

Using (2.4) and (2.5), it is easy to check that

[ϕ(x, λ̄)†;Φ(x,λ)] =−[Φ(x, λ̄)†;ϕ(x,λ)] = In , [Φ(x, λ̄)†;Φ(x,λ)] = 0n . (4.14)

This, together with (2.4), implies that

[
ϕ(x,λ) Φ(x,λ)

ϕ′(x,λ) Φ′(x,λ)

]−1

=
[
Φ

′(x, λ̄)† −Φ(x, λ̄)†

−ϕ′(x, λ̄)† ϕ(x, λ̄)†

]
. (4.15)
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Define the 2n ×2n matrix
[

P11(x,λ) P12(x,λ)

P21(x,λ) P22(x,λ)

]
:=

[
ϕ(x,λ) Φ(x,λ)

ϕ′(x,λ) Φ′(x,λ)

][
ϕ̃(x,λ) Φ̃(x,λ)

ϕ̃′(x,λ) Φ̃′(x,λ)

]−1

. (4.16)

Using (4.15) in (4.16), we get

{
P11(x,λ) =ϕ(x,λ)Φ̃′(x, λ̄)† −Φ(x,λ)ϕ̃′(x, λ̄)†,

P12(x,λ) =Φ(x,λ)ϕ̃(x, λ̄)† −ϕ(x,λ)Φ̃(x, λ̄)†.
(4.17)

It follows from (4.13) and (2.12) that as |k |→∞ in C
+
δ

,

P11(x,λ) =
1

2
[In +o(1)][i k A1−B1][i k Ã1− B̃1]−1[In +o(1)]

+
1

2
[In +o(1)][i k A†

1 −B †
1]−1[i k Ã†

1− B̃ †
1][In +o(1)], (4.18)

P12(x,λ) =
1

2i k
[In +o(1)][i k A†

1 −B †
1]−1[i k Ã†

1− B̃ †
1][In +o(1)]

−
1

2i k
[In +o(1)][i k A1−B1][i k Ã1− B̃1]−1[In +o(1)]. (4.19)

On the other hand, using (4.14) and (3.18), we have

M (λ̄)† = M (λ). (4.20)

Substituting (3.18) into (4.17) and using M (λ)= M̃(λ) and (4.20), we obtain

{
P11(x,λ) =−ϕ(x,λ)ϕ̃′

1(x, λ̄)† +ϕ1(x,λ)ϕ̃′(x, λ̄)†,

P12(x,λ) =−ϕ1(x,λ)ϕ̃(x, λ̄)† +ϕ(x,λ)ϕ̃1(x, λ̄)†,

which implies that P11(x,λ) and P12(x,λ) are both entire functions of λ of order 1/2. Note that

when k ∈C
+
δ

, we have λ ∈ {λ ∈C : argλ ∈ [2δ,2π−2δ]}. From Lemma 4.1, we see that

P11(x,λ) =O(1), P12(x,λ) =O

(
1

k

)
, |k |→∞, k ∈C

+
δ .

Thus, by the Phragmén-Lindelöf theorem, we conclude P11(x,λ) ≡C and P12(x,λ) ≡ 0n , which

implies from (4.16) that ϕ(x,λ) = C ϕ̃(x,λ), here C is some constant matrix. Using (1.3) and

(2.2), we have

U1 + In =C (Ũ1 + In), U1 − In =C (Ũ1 − In),

which implies that C = In and U1 = Ũ1. Thus, ϕ(x,λ) = ϕ̃(x,λ) and Q(x) = Q̃(x) a.e. on (0, a).

It follows from (4.16) that Φ(x,λ) = Φ̃(x,λ). Using the fact that T̃2(Φ̃) = 0n = T2(Φ), together

with (1.3), we obtain that

(Ũ †
2 −U †

2 )[Φ′(a,λ)− iΦ(a,λ)] = 0n . (4.21)

It is easy to show that the matrix Φ
′(a,λ)− iΦ(a,λ) is invertible (cf. [26]). Thus, U2 = Ũ2. The

proof is finished. ���
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Corollary 4.1. The characteristic matrix of the problem L(Q ,U1,U2), together with the char-

acteristic matrix of either the problem (1.1) with the boundary conditions T2(Y ) = 0n and

V1(Y ) = 0n or the problem (1.1) with the boundary conditions T1(Y ) = 0n and V2(Y ) = 0n ,

uniquely determines the unitary matricesU1 and U2 and the potential Q(x) a.e. on [0, a], where

T j (·) and V j (·) are respectively defined in (1.2) and (3.17), j = 1,2.

Theorem 4.3. If for all j ≥ 0, λ j = λ̃ j and either C j = C̃ j and (4.1) holds or C1, j = C̃1, j and (4.2)

holds, then U1 = Ũ1, U2 = Ũ2 and Q(x)=Q(x) a.e. on [0, a].

Proof. We only prove this theorem for C j and omit the proof for C1, j . From (4.17), we see that

P11(x,λ) and P12(x,λ) are analytic in λ ∈ C except for the simple poles {λ j } j≥0. Since C j = C̃ j

for j ≥ 0, by Theorem 3.1, we see that (4.17) implies





Res
λ=λ j

P11(x,λ) =ϕ(x,λ j )C j ϕ̃
′(x,λ j )† −ϕ(x,λ j )C j ϕ̃

′(x,λ j )† = 0n ,

Res
λ=λ j

P12(x,λ) =ϕ(x,λ j )C j ϕ̃(x,λ j )† −ϕ(x,λ j )C j ϕ̃(x,λ j )† = 0n .

It follows that P11(x,λ) and P12(x,λ) are entire matrix-valued functions of λ. Following the

proof of Theorem 4.1, we finish the proof of this theorem. ���
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