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INVERSE NODAL PROBLEM FOR NONLOCAL DIFFERENTIAL

OPERATORS

XIN-JIAN XU AND CHUAN-FU YANG

Abstract. Inverse nodal problem consists in constructing operators from the given zeros

of their eigenfunctions. The problem of differential operators with nonlocal boundary

condition appears, e.g., in scattering theory, diffusion processes and the other applicable

fields. In this paper, we consider a class of differential operators with nonlocal boundary

condition, and show that the potential function can be determined by nodal data.

1. Introduction

In this work, we investigate the boundary value problem

l (y) :=−y ′′(x)+v(x)y(1) =λy(x), x ∈ (0,1), (1.1)

subject to the boundary condition

y(0) = y ′(1)+ (y, v)L2 = 0, (1.2)

where the nonlocal potential function v ∈W 1
2 [0,1] := { f | f ∈ AC [0,1], f ′ ∈ L2[0,1]} and λ is the

spectral parameter.

Problems of nonlocal boundary condition (1.2), e.g., in the theory of diffusion processes,

where the generators of the Feller processes, or processes with Wentzell boundary conditions,

usually involve nonlocal interactions both in the equation and the boundary conditions (see

[12, 27] and the references therein). For some other applications and recently study of dif-

ferential operators with nonlocal boundary conditions were investigated (see, for example,

[2, 3, 6, 7, 9, 10, 16, 22, 32]).

In 2007, Albeverio, Hryniv and Nizhnik [1] considered the boundary value problem (1.1)

and (1.2), where the potential function v ∈ L2[0,1]. They proved that the differential opera-

tor corresponding to the boundary value problem (1.1) and (1.2) is self-adjoint and gave the
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asymptotic distribution of the eigenvalues: the eigenvalues λ1 ≤λ2 ≤ ·· · ≤ λn ≤ ·· · satisfy the

asymptotic distribution
√

λn =π
(
n −

1

2

)
+
µn

n
(1.3)

for some sequence {µn}n≥1 ∈ l 2. They also studied the inverse spectral problem and gave the

algorithm to reconstruct the nonlocal potential function by all eigenvalues. Later, Nizhnik

[24] considered the eigenvalue problem (1.1) with boundary conditions y(0) = y(1) and y ′(1)−

y ′(0)+(y, v)L2 = 0. In [25] Nizhnik also considered the eigenvalue problem −y ′′(x)+v(x)y(π) =

λy(x), x ∈ (0,2π), subject to the nonlocal boundary conditions similar to (1.2).

In this paper, we study the inverse nodal problem of the problem (1.1) and (1.2). Nodes

are the zeros of eigenfunctions. Inverse nodal problem is to reconstruct potential function

by nodal set, in some experiments, nodal set is easier to be observed and measured than

the other spectral data. Inverse nodal problem for Sturm-Liouville operators with Dirichlet

boundary conditions, see the original paper by McLaughlin [23]. and some generalizations

were made in [4, 5, 8, 11, 13, 14, 15, 21, 26, 28, 29, 30, 31] and so on. For the other applications

of nodal sets, for example, the paper [17] considered the zeros of Bessel functions and their

application to the uniqueness of inverse acoustic scattering problem; the papers [18, 19, 20]

showed that nodal sets of the Laplacian eigenfunctions play a critical role in establishing the

uniqueness results for the inverse scattering problems.

The paper is organized as follows. In the next section, we study the eigenvalue asymp-

totics of the boundary value problem (1.1) and (1.2), and Section 3, we deal with the inverse

nodal problem.

2. Eigenvalue asymptotics

Supposing λ= z2, we define

ϕ(x; z) :=
sin zx

z
−

sin z

z

∫1

0
G0(x, s; z)v(s)d s, (2.1)

where

G0(x, s; z) :=
1

z sin z





sin zx sin z(1− s) (s > x),

sin z(1−x)sin zs (s < x),

then ϕ(x; z), x ∈ [0,1], is a solution of equation l (y) = z2 y with the boundary condition y(0) =

0, and for fixed z, ϕ(x; z) is the unique solution up to a scalar multiple.

Define

d (z) :=ϕ′
x (1; z)+ (ϕ, v)L2

=cos z +

∫1

0

sin zs

z
(v(s)+v(s))d s −

sin z

z

∫1

0

∫1

0
G0(x, s; z)v(s)v(x)d sd x.

(2.2)
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In fact, d (z) is often called the characteristic function of the boundary value problem (1.1)

and (1.2), if z̃ is a zero of d (z), then λ̃= z̃2 is an eigenvalue of the boundary value problem (1.1)

and (1.2), and vice versa (see [1]).

Lemma 2.1. Suppose {λn}n≥1 are eigenvalues of the boundary value problem (1.1) and (1.2),

then we have the following asymptotic expressions

√
λn =π

(
n −

1

2

)
+

2(−1)n+1Rev(0)

π2n2
+
ηn

n2
,

where {ηn}n≥1 is used for various sequences from l 2 in this paper, and Rev(0) denotes the real

part of the number v(0).

Proof. Note that

d (z) = cos z +

∫1

0

2sin zs

z
Rev(s)d s −

sin z

z

∫1

0

∫1

0
G0(x, s; z)v(s)v(x)d sd x. (2.3)

Integrating (2.3) by parts, one gets

∫1

0

2sin zs

z
Rev(s)d s = 2

Rev(0)−Rev(1)cos z

z2
+

2

z2

∫1

0
Rev ′(s)cos zsd s, (2.4)

and

sin z

z

∫1

0

∫1

0
G0(x, s; z)v(s)v(x)d sd x

=
1

z2

∫1

0

∫1

0





sin zx sin z(1− s)v(s)v(x)d sd x (s > x)

sin z(1−x)sin zsv(s)v(x)d sd x (s < x)

=
1

z2

∫1

0

{∫1

x
sin zxv(x)v(s)d

(cos z(1− s)

z

)

+

∫x

0
sin z(1−x)v(x)v(s)d

(
−

cos zs

z

)}
d x

=
1

z3

∫1

0

{
sin zxv(x)v(1)−sin zx cos z(1−x)v(x)v(x)

−

∫1

x
sin zx cos z(1− s)v ′(s)v(x)d s −cos zx sin z(1−x)v(x)v(x)

+sin z(1−x)v(x)v(0)+

∫x

0
cos zs sin z(1−x)v ′(s)v(x)d s

}
d x

=
1

z3
O(e |Imz|).

(2.5)

From (2.3) – (2.5), we know that as |z|→∞,

d (z) = cos z +2
Rev(0)−Rev(1)cos z

z2
+

2

z2

∫1

0
Rev ′(s)cos zsd s +

1

z3
O(e |Imz|). (2.6)
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In view of (1.3) we can suppose

zn :=
√

λn =π
(
n −

1

2

)
+εn , εn = o

( 1

n

)
, (2.7)

and zn is the zero of d (z), therefore

0 =d (zn)

=d
(
π
(
n −

1

2

)
+εn

)

=cos

(
π

(
n −

1

2

)
+εn

)
+2

Rev(0)−Rev(1)cos(π(n −
1
2

)+εn )

(π(n −
1
2 )+εn )2

+2

∫1
0 Rev ′(s)cos(π(n −

1
2

)+εn )sd s

(π(n −
1
2 )+εn)2

+
1

(π(n −
1
2 )+εn)3

O(1),

which can be simplified into

(−1)n sinεn +
2

(π(n −
1
2 )+εn )2

[Rev(0)−Rev(1)(−1)n sinεn +ηn] = 0,

where {ηn}n≥1 ∈ l 2. Then

sinεn = (−1)n+1 2

(π(n −
1
2

)+εn )2
[Rev(0)−Rev(1)(−1)n sinεn +ηn], (2.8)

which implies

sinεn =O
( 1

n2

)
,

that is,

εn =O
( 1

n2

)
.

Taylor’s expansion tells us

sinεn = εn −
1

6
ε3

n +·· · ,

that is,

sinεn = εn +O
( 1

n6

)
. (2.9)

From (2.8) and (2.9), we get

εn = 2(−1)n+1 Rev(0)+ (−1)n+1Rev(1)εn

(π(n −
1
2 )+εn )2

+
ηn

n2
,

thus

εn = 2(−1)n+1 Rev(0)

π2(n − 1
2

)2
+
ηn

n2
,

that is,

εn = 2(−1)n+1 Rev(0)

π2n2
+
ηn

n2
.



INVERSE NODAL PROBLEM 341

Submitting it into (2.7), we have

zn :=
√
λn =π

(
n −

1

2

)
+

2(−1)n+1Rev(0)

π2n2
+
ηn

n2
. (2.10)

3. Inverse nodal problem

In this section, we suppose v is a real valued function. First we give the asymptotic esti-

mation of eigenfunctions for the problem (1.1) and (1.2).

Lemma 3.1. When n is large enough, the eigenfunction corresponding to the eigenvalue λn of

the boundary value problem (1.1) and (1.2) satisfies the following asymptotic estimation

ϕ(x, zn) =
sinπ

(
n −

1
2

)
x

π(n − 1
2

)
+

1

π3n3

{
2(−1)n+1Rev(0)x cosπ

(
n −

1

2

)
x

−v(1)sinπ

(
n −

1

2

)
x −v(0)sinπ

(
n −

1

2

)
(1−x)− (−1)n v(x)

}
+o

( 1

n3

)
.

Proof. For simplicity, let cn = 2(−1)n+1Rev(0), then

zn =π
(
n −

1

2

)
+

cn

π2n2
+
ηn

n2
.

Plugging zn into (2.1), we obtain

ϕ(x; zn) =
sin zn x

zn
−

sin zn

zn

∫1

0
G0(x, s; zn)v(s)d s. (3.1)

First we note that

sin zn x = sinπ

(
n −

1

2

)
x +

cn x

π2n2
cosπ

(
n −

1

2

)
x +

ηn

n2
,

and

1

zn
=

1

π(n −
1
2 )

−
cn

π4n4
+
ηn

n4
.

Combining the above two asymptotic estimations, we have

sin zn x

zn
=

sinπ
(
n −

1
2

)
x

π(n −
1
2 )

+
cn x

π3n3
cosπ

(
n −

1

2

)
x +

ηn

n3
. (3.2)



342 XIN-JIAN XU AND CHUAN-FU YANG

Second we have

sin zn

zn

∫1

0
G0(x, s; zn)v(s)d s

=
1

z3
n

{
sin zn x

[
v(1)−cos zn(1−x)v(x)−

∫1

x
cos zn(1− s)v ′(s)d s

]

+sin zn(1−x)
[

v(0)−cos zn xv(x)+

∫x

0
cos zn sv ′(s)d s

]}

=
1

π3n3

{
sinπ

(
n −

1

2

)
x
[

v(1)−v(x)cosπ

(
n −

1

2

)
(1−x)

]

+sinπ

(
n −

1

2

)
(1−x)

[
v(0)−v(x)cosπ

(
n −

1

2

)
x
]}

+o
( 1

n3

)

=
1

π3n3

{
v(1)sinπ

(
n −

1

2

)
x +v(0)sinπ

(
n −

1

2

)
(1−x)

+ (−1)n v(x)
}
+o

( 1

n3

)
.

(3.3)

Combining (3.2) and (3.3), together with cn = 2(−1)n+1Rev(0), we have

ϕ(x, zn) =
sinπ

(
n − 1

2

)
x

π(n −
1
2 )

+
1

π3n3

{
2(−1)n+1Rev(0)x cosπ

(
n −

1

2

)
x

−v(1)sinπ

(
n −

1

2

)
x −v(0)sinπ

(
n −

1

2

)
(1−x) (3.4)

− (−1)n v(x)
}
+o

( 1

n3

)
. ���

Next, we provide the nodal asymptotic estimation by the above lemma. For convenience,

we set

u(x,n) :=2(−1)n+1v(0)x cosπ

(
n −

1

2

)
x −v(1)sinπ

(
n −

1

2

)
x

−v(0)sinπ

(
n −

1

2

)
(1−x)− (−1)n v(x).

Then Eq. (3.4) can be written as

ϕ(x, zn) =
sinπ

(
n −

1
2

)
x

π(n − 1
2

)
+

1

π3n3
u(x,n)+o

( 1

n3

)
. (3.5)

From the above equation, we have

ϕ(x, zn) =
sinπ

(
n −

1
2

)
x

π(n −
1
2 )

+O(
1

n3
).

For n large enough, we can see that

ϕ

(
k −

1
2

n −
1
2

)
ϕ

(
k +

1
2

n −
1
2

)
< 0,
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where k = 1,2, · · · ,n − 1. So ϕ(x, zn) have at least one zero in every interval

[
k− 1

2

n− 1
2

,
k+ 1

2

n− 1
2

]
, for

k = 1,2, · · · ,n −1. Then, we will calculate the asymptotic estimations of these zeros.

Suppose ϕ(x, zn) have a zero x̃n for the variable x, that is, ϕ(x̃n , zn) = 0, then

sinπ

(
n −

1

2

)
x̃n =−

1

π2n2
u(x̃n ,n)+o

( 1

n2

)
.

Note that u(x̃n ,n)=O(1), we obtain

sinπ

(
n −

1

2

)
x̃n =O

( 1

n2

)
.

Let

π
(
n −

1

2

)
x̃n = jπ+ξn ,

where ξn =O( 1
n2 ) and j is an integer. According to Taylor’s expansion,

sin( jπ+ξn) = (−1) j
(
ξn −

1

6
ξ3

n +·· ·

)

=−
1

π2n2
u(x̃n ,n)+o

( 1

n2

)
,

we obtain

ξn = (−1) j+1 1

π2n2
u(x̃n ,n)+o

( 1

n2

)
,

then

π

(
n −

1

2

)
x̃n = jπ+ (−1) j+1 1

π2n2
u(x̃n ,n)+o

( 1

n2

)
,

that is,

x̃n =
j

n −
1
2

+ (−1) j+1 u(x̃n ,n)

π3n3
+o

( 1

n3

)
.

From the above asymptotic expression, x̃n is related to j , so we can define the zeros as

x
j
n :=

j

n −
1
2

+ (−1) j+1 u(x
j
n ,n)

π3n3
+o

( 1

n3

)
.

Plugging x
j
n =

j

n− 1
2

+O( 1
n3 ) into u(x,n), we can obtain

u(x
j
n ,n)= u

( j

n −
1
2

+O
( 1

n3

)
,n

)

= 2(−1)n+ j+1v(0)
j

n − 1
2

+ (−1)n+ j v(0)− (−1)n v
( j

n − 1
2

)
+O

( 1

n2

)
,

which yields

x
j
n =

j

n −
1
2

+

(−1)n+1v(0)

[
1−

2 j

n− 1
2

]
+ (−1)n+ j v

(
j

n− 1
2

)

π3n3
+o

( 1

n3

)
. (3.6)
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It’s easy to see that for large enough n and 1 ≤ j ≤ n −1, the nodes x
j
n ∈ (0,1). So, for n

large enough, ϕ(x, zn) at least have n −1 zeros x
j
n(1 ≤ j ≤n −1) in the segment (0,1). Then we

can define the nodal subset XN = {x
j
n |n ∈ N,n > N , j = 1,n −1}, where N is large enough, and

obviously, XN is dense in [0,1].

Next, we give the uniqueness theorem of inverse nodal problem for the problem (1.1) and

(1.2).

Theorem 3.2. If the following two boundary value problems





l (y) :=−y ′′(x)+v(x)y(1) =λy(x), x ∈ [0,1],

y(0)= y ′(1)+ (y, v)L2 = 0,
(I)





l̂ (y) :=−y ′′(x)+ v̂(x)y(1) =λy(x), x ∈ [0,1],

y(0)= y ′(1)+ (y, v̂ )L2 = 0
(II)

have the same nodal subset, that is, XN = X̂N , where N is large enough, then v(x) ≡ v̂(x), x ∈

[0,1].

Proof. First we shall proof v(0) = v̂(0).

Choose the nodal set of the boundary value problem (I): {x1
n |n > N }⊂ XN , when n →∞,

x1
n → 0.

By (3.6) we have

(−1)n+1

[
x

j
n −

j

n − 1
2

]
π3n3

= v(0)

[
1−

2 j

n − 1
2

]
+ (−1) j+1v

( j

n − 1
2

)
+o(1),

therefore, adopting {x1
n |n > N } and taking the limit in the above equation as n →∞, we have

lim
n→∞

(−1)n+1

[
x1

n −
1

n −
1
2

]
π3n3

= 2v(0). (3.7)

Similarly, for the problem (II), choose {x̂1
n |n > N }⊂ X̂N , we also have

lim
n→∞

(−1)n+1

[
x̂1

n −
1

n − 1
2

]
π3n3

= 2v̂(0). (3.8)

Since XN = X̂N , we have

x
j
n = x̂

j
n , f or n > N and j = 1,n −1. (3.9)

Combining (3.7), (3.8) and (3.9), then

v(0) = v̂(0). (3.10)
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Second, since X = [0,1], for all x ∈ [0,1], there exists {x
j (n)
n } ⊂ XN such that

lim
n→∞

x
j (n)
n = x.

Then, by (3.6), and taking into account v being continuous we obtain

lim
n→∞

(−1)n+ j (n)
{[

x
j (n)
n −

j (n)

n − 1
2

]
π3n3

+ (−1)n v(0)
[

1−
2 j (n)

n − 1
2

]}

= lim
n→∞

[
v
( j (n)

n −
1
2

)
+o(1)

]

= v(x).

(3.11)

Combining (3.9), (3.10) and (3.11), we have

v(x)= lim
n→∞

(−1)n+ j (n)
{[

x
j (n)
n −

j (n)

n − 1
2

]
π3n3

+ (−1)n v(0)
[

1−
2 j (n)

n − 1
2

]}

= lim
n→∞

(−1)n+ j (n)
{[

x̂
j (n)
n −

j (n)

n − 1
2

]
π3n3

+ (−1)n v̂(0)
[

1−
2 j (n)

n − 1
2

]}

= v̂(x).

Therefore, we get v(x)≡ v̂(x). ���

From the above theorem, we can give a reconstruct algorithm of inverse nodal problem.

Corollary 3.3. Given the nodal subset XN of the boundary value problem (1.1) and (1.2), where

N is large enough, we can reconstruct the potential function v.

Reconstruct algorithm consists of the two steps as follows.

(1) Choose the nodal subset {x1
n |n > N }⊂ XN , reconstruct v(0):

v(0)=
1

2
lim

n→∞
(−1)n+1

[
x1

n −
1

n − 1
2

]
π3n3.

(2) For all x ∈ [0,1], choose a nodal subset {x
j (n)
n |n > N } such that

lim
n→∞

x
j (n)
n = x.

Then reconstruct v(x):

v(x)= lim
n→∞

(−1)n+ j (n)
{[

x
j (n)
n −

j (n)

n −
1
2

]
π3n3

+ (−1)n v(0)
[

1−
2 j (n)

n −
1
2

]}
.

Remark 3.1. In fact, if Y ⊂ XN satisfies

(1) Y = [0,1];
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(2) ∃ {x
j (n)
n | j (n) i s odd }⊂ Y such that

lim
n→∞

x
j (n)
n = 0.

Then, similar to the proof of Theorem 3.2, Y is sufficient to recover the potential function v .
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