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Boundedness and Stability Properties of Solutions of
Mathematical Model of Measles

James Akinsuyi Akingbade and Babatunde Sunday Ogundare

Abstract. In this paper, asymptotic stability and global asymptotic stability of solutions to
a deterministic and compartmental mathematical model of measles infection is considered
using the ideas of the Jacobian determinant as well as the second method of Lyapunov, crite-
ria/conditions that guaranteed asymptotic stability of disease free equilibrium and endemic
equilibrium were established. Also the basic reproductive numberR0 was obtained. The re-
sults in this work compliments existingwork and provided further information in controlling
the disease in an open population.

1 Introduction

Ever since the day of creation, epidemic has been wiping out human existence, thus understand-
ing their chain of causation is important to curtail its spread. In this article the main focus is
on measles infection which is highly transmissible disease caused by the measles virus called
paramyxovirus family from the morbillivirus genus.

Measles is one of themost andbest knowndeadly infectious diseases of all childhood rash/fever
illnesses. It resides in themucus in the nose and throat of an infected person, so transmission nor-
mally occurs through coughing and sneezing via direct contactwith emissions [42, 45]. Symptoms
of measles usually develop from 8-12 days after exposure to an infectious person [47]. The infec-
tion of measles is so serious that mother says never count your children until after the measles
in the developing world[45]. Measles only survive on the object, surfaces and in the air under
2 hours. Almost all those infected with the virus recovered if care is being taken on time, but
measles snags can be incurable or very risky . Some effect of measles include the following: ear
infections, diarrhea, pneumonia, and encephalitis - this is rare, but can cause permanent brain
damage or death. Till today measles is still a dangerous disease in the whole world. World Health
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Organization (WHO), in the year 2012 released a report on complication of measles that about
122,000 people have died globally through the measles infection[58]. Since the disease occurs
once in a life time, therefore it confers life long immunity from further attacks ([40],[46]).

Mathematical epidemiology has contributed to the understanding of the behavior of infec-
tious diseases, its effects and predictions of possible way out on its spreading. Mathematical mod-
els are used as a way of comparing, planning, implementing and evaluating various detection,
prevention and control programs for measles transmission[2, 13, 28, 55, 56, 59]. Numerous ideas
have been contributed by mathematical and non-mathematical researchers, and these works have
helped immensely in the area of checking the behavior and control intervention strategy for the
transmission of infectious diseases in the society at large by public health workers. These include:
Graunt (1662)[12], Bernoulli (1760)[22], D’Alembert [11] and Hamer [20].

The Vibrant sketch of measles dynamics and its mathematical formulation has been done by
many researchers for example: (see [18, 25, 27, 36, 41, 45, 46, 50, 51]) among others. However
study via S, I,R type in an open population using the direct Lyapunov methods to check its be-
havior and control, little or nothing has been done yet. In 1892, Russianmathematician Lyapunov
developed a method for the analysis of the stability of ordinary differential equations [38]. This
method, known as the ”Direct Lyapunov Method”, is one of the powerful tools for a qualitative
analysis of a dynamical system.

Kermack-Mckendrick[29], created awell known basic compartmentalmodel onwhichmany
researchers built upon, for instanceAtkins[3],Weiss[57] andmanymore (see [10, 26, 43, 49]). The
model considered a closed population with three compartments S-I-R. The threshold result
shows that for an epidemic to occur the density of susceptible must surpass a critical point.

In his own study, Bartlett [4] gave an estimate of the critical community size for measles for
theUnited States in terms of total population. Since then, variousmathematical models have been
developed to investigate the transmission dynamics of measles in different countries and regions
[9, 15, 17].

Liuyong et al (in [37]) proposed an S-E-I-R model for measles epidemic and investigated
the effect of vaccination in controlling its spread. They obtained two critical threshold values,
uc1 and uc2 . They concluded that Measles will be extinct when the vaccination ratio u > uc1 ,
endemic when uc2 < u < uc1 , and outbreak periodically when u < uc2 . Momoh et al [39] also
investigated SEIR epidemic model to ascertain the impact of exposed individuals at latent period
on the transmission dynamics of measles using stability analysis.

To this end we have great motivation to understand the history, spread andmeans of control-
ling infection of measles and their transmission characteristics. Valuable information on trans-
mission and effective control of the measles epidemics as well as appropriate policies are very im-
portant. In this article, we study and analyze the behavior of solutions of transmission and control
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of measles infection by deterministic mathematical model; analyze the condition that determine
the level of the effective prevention of the spread of measles using S-I-R-type compartmental
model [29, 48] in an open population; adapt ([33, 34, 35, 38, 44, 53, 54]) to analyze the qualita-
tive properties of solutions of our model and give sufficient conditions for the model to be stable.
For the S-I-R model to be fitting, once a person has recovered from the disease, they would
acquire permanent immunity.

This paper is arranged as follows: Section 2 introduces the model formulation to study the
dynamics ofmeasles infection in an open population. In section 3, stability of themodel equilibria
was analyzed while conclusion and recommendations are given in the last section.

The following are the notations adopted in this work.

Table 1: Variables/Parameters used in the model and their meaning

Variables/parameter Meaning
S(t) The Susceptible population at time (t)
I(t) The Infected population at time (t)
R(t) The Recovered population at time (t)
N(t) Total population at time (t)
β Infection/contact rate
µ Natural death rate
K Recruitment rate
γ Recovery rate
ψ Mortality rate due to measles infection
σ Rate of recovery from susceptible to recovered or immunity gain rate
R0 Reproductive Number
Ω Bounded domain in ℜ3 for S-I-R Model
V Continuous Lyapunov function
A,B, δ Arbitrary constants

2 Measles Model Formulation

In this section, we formulatemathematicalmodel to describe the transmissiondynamics ofmeasles.
The progression ofmeasles within the total population can be simplified to three differential equa-
tions. These three equations represent three different groups of people:

• the susceptible, (S) are member of the population who have never contacted measles;

• the infective, (I) are member of the population who have been infected with measles and
are able to transmit the disease; and

• the recovered, (R) are member of the population that have recovered from measles.
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2.1 Measles Model Description and Formulation

Themodel considers threemutually exclusive compartments ofS(t), I(t), R(t) of a deterministic
ordinary differential equation (ODE), in a mixed homogeneous population. The total population
at any time (t), denoted byN(t), is the sumof individual populations in each compartment. Thus,
N(t) = S(t) + I(t) + R(t). The model maintains the basic intuition of basic compartmental
model [29], with the exception of the introduction of the recruitment in an open population.

In this model, we assume that the new recruits enter the susceptible class at a constant rateK ,
either immunized or not. The susceptible compartment of the population also decreases due to
natural death rate ofµ and infection of individuals at the rate of β. It also reduces due to the rate of
recovery from susceptible to recovered compartment at rate of σ. The population of the infectious
compartment increases due to the progression of susceptible individuals who are infected with
measles disease at the rate of β. Also the compartment reduces as a result of successful cure
of measles patient at the rate of γ, natural death at the rate of µ and also the death that occur
with the infection of measles disease. The recovered compartment grows as a result of uninfected
individual moving from susceptible at rate of σ and successful treatment with cure of infected
patient at rate of γ, while the compartment decreases due to natural death at the rate of µ. Total
per capita removal rate is defined by θ and it is a composition of mortality natural death rate µ,
measles disease death rate ψ, and recovery rate γ, That is, θ = µ+ ψ + γ.

2.2 Assumptions of the Model

The model is based on the following assumptions:

(i) The entry into the population is open (either immunized or not) and the way of exit is
through mortality by natural cause or death caused by measles infection.

(ii) The population is heterogeneous, that is, the individuals that make up the population can
be grouped into different compartment or groups according to their epidemiological state.

(iii) The population size in a compartment is differentiable with respect to time (t) and also
mixes homogeneously.

(iv) The immunity conferred on the individuals that are immunized by vaccination expires
within a given rate and those that are not immunized which have partial immunity or low
immunity undergo the same condition.

(v) The people with active immunity in susceptible compartment moved directly to recovered
compartment without being infected.



Mathematical Model of Measles 95

(vi) Measles infection confers permanent immunity. Therefore individuals in this category re-
covered completely or die.

(vii) The people in each compartment have equal mortality or natural death rate µ.

Taking into account the above considerations, the schematic flow diagram for measles model is
shown in Figure 1.

Figure 1: The flowchart showing the dynamics of the model

2.3 Mathematical Formulation of the Model

Applying the descriptions, assumptions and biological flow chart in Figure 1, we obtained the
following system of ordinary differential equations.

dS

dt
= K − βSI − µS − σS,

dI

dt
= βSI − γI − µI − ψI,

dR

dt
= γI − µR+ σS.

(2.1)
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2.4 Dynamics of the model

Let a total population N(t) = S(t) + I(t) + R(t) and taking the time derivative of N(t) along
solutions of model the equation (2.1), we obtain

dN

dt
= K − µN − ψI. (2.2)

Hence, equation (2.2) is where there are changes in the population known as population dynamics.

2.5 Basic Properties of the model

In this subsection, we investigate the feasibility and positivity of the solution of the measles model

2.5.1 Feasibility of the Model

The feasibility of the model describes the region in which the solution of the system of equation
(2.1) is biologically meaningful.

Theorem 2.1. Suppose equation (2.2) holds, every solution of the model in system of equation (2.1)
with initial conditions in ℜ3

+ approaches and stays in the compact set (Ω) as t → ∞ . Then, the
feasible solution which is a positively invariant set of the model is given by

Ω =
{
(S, I,R) ∈ ℜ3

+ : N(t) ≤ K
µ

}
.

Proof. From the equation (2.2) where changes of N leads to change of all variables in the popu-
lation (i.eN = S + I +R) we have

dN

dt
= K − µN(t)− ψI, (2.3)

In the absence of disease (ψ = 0), the equation (2.3) reduces to

dN

dt
= K − µN(t). (2.4)

From the equation (2.4) we observe that,

dN

dt
≤ 0 if N(t) ≥ K

µ
.

Therefore,
dN

dt
≤ K − µN(t), (2.5)
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Applying Birkhoff and Rota’s theorem [7] on differential inequalities and method of integrating
factor (IF ) on the inequality (2.5) we will have

d

dt
[eµtN(t)] ≤ eµtK. (2.6)

Integrating the inequality (2.6) on both sides along with the initial condition t = 0 we obtain

N(t) ≤ N(0)e−µt +
K

µ
(1− e−µt) (2.7)

Hence, at lim t→∞
N(t) ≤ K

µ
(2.8)

which implies that 0 ≤ N ≤ K
µ , then trajectories of the model equation (2.1) are bounded in the

region Ω. This completes the proof.

Hence, the feasible solution which is given by

Ω =
{
(S, I,R) ∈ ℜ3

+ : N(t) ≤ K
µ

}
,

is a compact forward invariant set for the system in the equation (2.1). This implies that, Ω is
positively invariant. The solution of the system of equation (2.1) remains in Ω for all t > 0 and
thus the model is biologically meaningful and epidemiologically well posed in the domain Ω.

2.5.2 Positivity of solutions

The positivity of solution describes non-negativity of the solutions of model equation (2.1). For
model in equation (2.1) to be epidemiologically meaningful, it is important to prove that all its
state variables are non negative for all time t.We considered the lemma below.

Lemma2.1. Let the initial value of the system in equation (2.1) be {(S(0), I(0), R(0)) ≥ 0} ∈ Ω.
Then, the solution set {S(t), I(t), R(t)} of equation (2.1) is positive for all t > 0.

Proof. From the first equation in system of equation (2.1), it is assumed that

dS

dt
= K − βSI − (µ+ σ)S ≥ −(µ+ σ)S, for β ∈ [0, 1) and β ≤ K

SI

dS

dt
≥ −(µ+ σ)S. (2.9)

Integrating inequality (2.9) by separating variables gives

S(t) ≥ S(0)e−(µ+σ)t, since (µ+ σ) > 0. (2.10)
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Similarly, the solutions of second and third equations in the system of equation (2.1) are obtained
as

dI

dt
= βSI − (γ + µ+ ψ)I ≥ −(γ + µ+ ψ)I. (2.11)

The solution of the inequality (2.11) is

I(t) ≥ I(0)e−(γ+µ+ψ)t ≥ 0, since (γ + µ+ ψ) > 0. (2.12)

dR

dt
= γI − µR+ σS ≥ −µR. (2.13)

The solution of the inequality (2.13) is

R(t) ≥ R(0)e−µt ≥ 0, since µ > 0. (2.14)

The inequalities in (2.10), (2.12) and (2.14) show that the variables S(t), I(t) and R(t) are positive
for all t > 0.

3 Stability Analysis of the Model Equilibria

In this section, we shall determine the equilibria states and analyze the stability of these state. Fur-
ther, we shall derive the basic reproductive number (R0) which determines the threshold quantity
for the investigation of the asymptotic stability of the equilibria states and the prediction value
needed for disease eradication.

3.1 Equilibrium Solutions

LetE = (S, I,R) ∈ Ω be the equilibrium point of the system described by the system of equation
(2.1). The equilibrium states are obtained by setting the condition

dS

dt
=
dI

dt
=
dR

dt
= 0.

That is,

K − βSI − µS − σS = 0

βSI − γI − µI − ψI = 0

γI − µR+ σS = 0

(3.1)

Let Ω+ and Ω∗ represent the boundary and the interior of Ω in ℜ3 respectively. Then, by direct
calculation, it can be shown that the equation (3.1) has two equilibria in ℜ3

+: the disease-free
equilibrium E+(S+, I+, R+) ∈ Ω+ and a unique endemic equilibrium E∗(S∗, I∗, R∗) ∈ Ω∗
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3.2 Disease - free equilibrium (DFE) Point

The disease-free equilibrium (DFE) point is the point at which there are no infection in the pop-
ulation. At the DFE, all the classes will be denoted with a plus (+). Let E+ = (S+, I+, R+) be
the disease-free equilibrium state.
From model equation (2.1), we have

K − βS+I+ − µS+ − σS+ = 0,

βS+I+ − γI+ − µI+ − ψI+ = 0,

γI+ − µR+ + σS+ = 0.

(3.2)

Substituting I+ = 0 into the equation (3.2) gives

K − (µ+ σ)S+ = 0,

σS+ − µR+ = 0.
(3.3)

S+ =
K

µ+ σ
,R+ =

σK

µ(µ+ σ)
. (3.4)

Hence, the disease-free equilibrium state of the model is

E+ = (S+, I+, R+) =

(
K

µ+ σ
, 0,

σK

µ(µ+ σ)

)
. (3.5)

3.3 Local Stability of the Disease Free Equilibrium Point,E+

To determine the stability or otherwise of the disease - free equilibrium state E+, we examine
the behavior of the model population near the equilibrium solution. Here, we determine the
conditions that must be met for the disease-free equilibrium state to be stable andfor the disease
to be totally eradicated from the population.
Recall that at equilibrium state, the system of equation (2.1) reduces to

dS

dt
= K − βSI − µS − σS = 0,

dI

dt
= βSI − γI − µI − ψI = 0,

dR

dt
= γI − µR+ σS = 0.

(3.6)

To establish the stability of the equilibrium, the Jacobian matrix J of the equation (3.6) is com-
puted and evaluated around the equilibrium state E.
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Therefore, at disease-free equilibrium (E+), the Jacobian matrix J+ is

J+ =

−βI+ − µ− σ −βS+ 0

βI+ βS+ − γ − µ− ψ 0

σ γ −µ

 . (3.7)

Substituting S+ = K
µ+σ and I+ = 0 into the equation (3.7) gives

J+ =

−µ− σ −βK
µ+σ 0

0 βK
µ+σ − γ − µ− ψ 0

σ γ −µ

 . (3.8)

The determinant of the matrix in the equation (3.8) is

|J+ − Iλ| =

∣∣∣∣∣∣∣
−µ− σ − λ −βK

µ+σ 0

0 βK
µ+σ − γ − µ− ψ − λ 0

σ γ −µ− λ

∣∣∣∣∣∣∣ , (3.9)

The solution of |J+ − Iλ| = 0 in equation (3.9) i.e its eigenvalues are

λ1 = −µ, λ2 = −(µ+ σ), and λ3 =
βK − (µ+ σ)(γ + µ+ ψ)

µ+ σ
. (3.10)

Lemma 3.1. The disease-free equilibrium point (E+) in the equation (2.1) is asymptotically
stable if λ1, λ2, λ3 < 0 and unstable if at least one of λ1, λ2, λ3 is greater than zero for all
β, µ, γ, ψ, σ and K are positive.

Proof. The disease-free equilibrium point (E+) is asymptotically stable if all the eigenvalues λi, i
= 1, 2, 3 of J+(E+) satisfy Routh-Hurwitz criterion [19]. Applying the Routh-Hurtwitz theorem,
from Eq. (3.10), we see that the first two eigenvalues λ1 and λ2 have negative real parts. We now
establish the necessary and sufficient condition for the λ3 to have negative real part in order for
the disease-free equilibrium to be stable and as well to be asymptotically stable.
From λ3 we obtain

−
[
(µ+ σ)(γ + µ+ ψ)− βK

]
µ+ σ

< 0, (3.11)

inequality (3.11) becomes

(µ+ σ)(γ + µ+ ψ) > βK, (3.12)

or

βK < (µ+ σ)(γ + µ+ ψ). (3.13)
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Dividing the equation (3.13) by (µ+ σ) we obtain

βK

(µ+ σ)
< (γ + µ+ ψ). (3.14)

The inequality (3.13) gives the necessary and sufficient condition for the disease-free equilibrium
state E+ of the model to be asymptotically stable.

The product of total contraction and total breakdown of infectious class given by (βK) must
be less than the total removal rate fromboth susceptible and infectious classes given by (µ+σ)(γ+
µ + ψ). Alternatively, the inequality (3.14) also gives the necessary and sufficient condition for
the stability of the disease-free equilibrium state. The sum of the rate of recovery of infectious
individuals in the population (i.e the total removal rate from infectious class) must have a lower
bound given by βK

(µ+σ) .

3.4 Basic Reproductive Number (R0) of the Model

The basic Reproductive Number (R0) is the average number of secondary infections caused by a
single infectious individual during their entire infectious lifetime [14, 13, 21]. It helps us to set the
threshold in the study of the disease both for predicting its outbreak and for evaluating its control
strategies. In the present work, we derived the threshold quantity known as reproductive number
(R0) from the largest eigenvalue λ3 of Jacobian matrix corresponding to equilibrium state.

Recall thatλ1 = −µ, λ2 = −(µ+σ), and λ3 = βK−(µ+σ)(γ+µ+ψ)
µ+σ , ∀ β, µ, σ, ψ, γ, andK

are all positive. Hence, λ3 is the largest eigenvalue in whichR0 will be derived.
If we let λ3 < 0 then, we have

βK − (µ+ σ)(γ + µ+ ψ)

µ+ σ
< 0, (3.15)

βK

(µ+ σ)(γ + µ+ ψ)
< 1. (3.16)

Hence, equation (3.16) allows the definition ofR0 for the S − I −Rmodel as

R0(S, I,R) =
βK

(µ+ σ)(γ + µ+ ψ)
, where (µ+ σ)(γ + µ+ ψ) ̸= 0 (3.17)

Remark 1. The threshold quantity R0, defined in the equation (3.17) is the basic reproduction
ratio of infection for the non linear autonomous ordinary differential equations in (2.1) ([8, 14,
13, 22]).

Remark 2. Epidemiologically,
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(i) ifR0 < 1, the occurrence of the disease will decrease.

(ii) ifR0 = 1, the disease occurrence will be constant.

(iii) ifR0 > 1 the occurrence of the disease will increase. Disease persist.

Thus, we have also establish the following result.

Theorem 3.1. Thedisease-free equilibriumE+ of the system in Eq. (2.1) is locally asymptotically
stable in Ω ifR0 < 1 and unstable ifR0 > 1 forK, β, γ, µ, σ and ψ are all positive.

Proof. . From Lemma 3.1 we see that, λ1, λ2 < 0, then the disease-free equilibrium pointsE+ is
locally asymptotically stable if λ3 < 0. By definition

R0 =
βK

(µ+ σ)(µ+ γ + ψ)
.

Using the inequality in Eq. (3.16)
R0 < 1,

Noting that λ3 < 0 if and only if R0 < 1. Therefore, disease-free equilibrium E+ of (2.1) is
locally asymptotically stable. Otherwise, if

R0 > 1,

λ3 is positive. Therefore, disease-free equilibrium point E+ of (2.1) becomes locally asymptoti-
cally unstable, the Theorem (3.1) is proven.

In view of remark (2) to our model, we have

Remark 3.

(i) if βK < (µ+ σ)(µ+ γ + ψ), the occurrence of the measles infection will decrease.

(ii) if βK = (µ+ σ)(µ+ γ + ψ), the occurrence of measles infection will be constant.

(iii) if βK > (µ+σ)(µ+γ+ψ) the occurrence of themeasles infection will increase. Infection
persist, each individual will produces more than one new infected.

Anderson and May [2] stated that, generally in epidemiological modeling if R0 < 1, the
disease-free equilibrium will be locally asymptotically stable (and the disease will be eradicated
from the community if the initial sizes of the three state variables are within the vicinity of E+)
and also if the equilibriumE+ is globally asymptotically stable, then the disease will be eradicated
from the population irrespective of the initial sizes of the three state variables.
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3.5 Global Stability of Disease-Free Equilibrium

In this subsection, we prove the global stability of the disease-free equilibriumE+ when the basic
reproductive number is less than or equal to unity.

Theorem3.2. Thedisease-free equilibriumE+, of the equilibrium (3.2) is globally asymptotically
stable in Ω ifR0 ≤ 1.

Proof. SinceR0 < 1, it follows that there exists a small ϵ0 > 0 such that

β

(
K

µ+ σ
+ ϵ0

)
− (γ + µ+Ψ) < 0. (3.18)

In view of the first equation in system (2.1), we see that

dS(t)

dt
≤ K − (µ+ σ)S.

which implies that there exists a t0 > 0 such that

S(t) ≤ K

µ+ σ
, ∀t ≥ t0 (3.19)

From (3.19) and the second equation in system (2.1), it follows that

dI(t)

dt
≤ β

(
K

µ+ σ
+ ϵ0

)
I − (γ + µ+Ψ) I

=

[
β

(
K

µ+ σ
+ ϵ0

)
− (γ + µ+Ψ)

]
I(t). (3.20)

In view of (3.18) and (3.20), it is to see that

lim
t−→∞

I(t) = 0. (3.21)

By (3.21) and the first equation in the system (2.1), it follows that S(t) is asymptotic to the fol-
lowing system

dS(t)

dt
= K − (µ+ σ)S.

Then by the theory of asymptotically autonomous semi flows (see Corollary 4.3 in [52]) implies
that

lim
t−→∞

S(t) =
K

µ+ σ
. (3.22)

By (3.21), (3.22) and the third equation in the system (2.1), it follows that R(t) is asymptotic to
the following system

dR(t)

dt
= µR

σK

µ+ σ
.
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Then by the theory for asymptotically autonomous semi flows (see Corollary 4.3 in [52]) implies
that

lim
t−→∞

R(t) =
σK

µ(µ+ σ)
. (3.23)

By (3.21), (3.22) and (3.23), we complete the proof.

3.6 Existence and Uniqueness of Endemic Equilibrium (EE)

Endemic equilibrium state is the state where the disease cannot be totally eradicated but persist
in the population. Let the endemic equilibrium be E∗ = (S∗, I∗, R∗). Then, the susceptible
class S, the infectious class, I and the recovered class, R, must not be zero at equilibrium state
i.e E∗ = (S∗, I∗, R∗) ̸= (0, 0, 0). In order to obtain the endemic equilibrium state, one solves
equation (2.1)

K − (βI∗ + µ+ σ)S∗ = 0,

βS∗I∗ − (γ + µ+ ψ)I∗ = 0,

γI∗ − µR∗ + σS∗ = 0.

(3.24)

The solution E∗ = (S∗, I∗, R∗) ̸= (0, 0, 0) of the above equation is

S∗ =
(γ + µ+ ψ)

β
,

I∗ =
βK − (µ+ σ)(µ+ γ + ψ)

β(γ + µ+ ψ)
,

R∗ =
βKγ − (µ+ γ + ψ)(γµ− σµ− σψ)

βµ(γ + µ+ ψ)
.

(3.25)

The vector representation of solution in equation (3.25) is

E∗ = (S∗, I∗,R∗) =

(
(γ + µ+ ψ)

β
,

βK − (µ+ σ)(µ+ γ + ψ)

β(γ + µ+ ψ)
,
βKγ − (µ+ γ + ψ)(γµ− σµ− σψ)

βµ(γ + µ+ ψ)

)
. (3.26)

Representing the endemic equilibrium state in term of reproductive number (R0) we obtain

E∗(S∗, I∗, R∗) =


S∗ =

K

(µ+ σ)R0

I∗ =
(µ+ σ)(R0 − 1)

β

R∗ =
γR0(µ+ σ)2(R0 − 1) + βσK

βµR0(µ+ σ)

(3.27)
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Clearly, it is evident from the above three equations that if R0 < 1, then the model has no
positive endemic equilibrium (since I∗ will assume negative values which are biologically unre-
alistic). Therefore, to ensure the existence of a positive endemic equilibrium, we require R0 > 1.
Since S∗, I∗,R∗ > 0 (whenR0 > 1), the endemic equilibriumE∗ is positive and I∗ > 0. This is
the condition for the existence and uniqueness of the endemic equilibrium for the system of Eq.
(2.1).

3.7 Global Stability of Endemic Equilibrium

Herein, we study the global behavior of the endemic equilibrium E∗ for the model Eq. (2.1),
where we use the same Lyapunov functions used in [1, 6, 24, 30, 31, 32, 8], to demonstrate the
global stability of the endemic equilibrium of S-I-Rmodel. We have the following results.

Theorem 3.3. IfR0 > 1, the unique endemic equilibriumE∗ is globally asymptotically stable on
Ω.

Proof. Consider the following Lyapunov function candidate

V (S, I,R) = S − S∗ lnS + C1(I − I∗ ln I) + C2(R−R∗ lnR) (3.28)

defined and continuous for all S, I,R > 0 and satisfies

dV

dt
=
∂V

∂S

dS

dt
+
∂V

∂I

dI

dt
+
∂V

∂R

dR

dt
,

which becomes

V̇ (S, I,R) =

(
1− S∗

S

)
Ṡ + C1

(
1− I∗

I

)
İ + C2

(
1− R∗

R

)
Ṙ. (3.29)

=

(
1− S∗

S

)
(K − (βSI + µS + σS)) + C1

(
1− I∗

I

)
(βSI − (γI + µI + ψI))+

C2

(
1− R∗

R

)
(γI − µR+ σS).

(3.30)

By considering equation (2.1) at endemic equilibrium, we have

K = βS∗I∗ + µS∗ + σS∗.

βS∗ = γ + µ+ ψ.

µ =
γI∗ + σS∗

R∗ .
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Substituting the values ofK , βS∗ and µ into equation (3.30), after simplification, we have

V̇ ≤ −
(
(µ+ σ)

S
(S − S∗)2 + β

(
1− S∗

S

)
(SI − S∗I∗) +Aβ(I∗ − I)(S − S∗)

+B(γI∗ + σS∗)

(
R

R∗ − 1

)
+B(γI + σS)

(
R∗

R
− 1

))
.

(3.31)

Hence, V̇ < 0 for A,B > 0. Note that, V̇ = 0 if and only if S = S∗, I = I∗ and R =

R∗. Therefore the largest compact invariant set in (S, I,R) ∈ Ω : V̇ = 0 is the singleton E∗,
whereE∗ is the endemic equilibrium, LaSalle’s invariant principle then implies thatE∗ is globally
asymptotically stable in the interior of Ω.

4 Conclusion and Recommendation

4.1 Conclusion

This work analyzed mathematical models to study the transmission and recovery dynamics of
measles infections using deterministic of ordinary differential equations (ODEs) to discussed its
boundedness and stability. In this paper we have established the existence of non-negative so-
lutions of the mathematical model. Having shown that the disease-free equilibrium point (E+)

is asymptotically stable if and only if all the eigenvalues have negative real part, which serve as
the necessary and sufficient condition using Routh-Hurwitz theorem. It is also shown that the
disease-free equilibrium point (E+) will be locally asymptotically stable when the basic repro-
duction number R0 < 1, otherwise, unstable. The model has a unique endemic equilibrium
which is locally asymptotically stable if R0 > 1. Global asymptotic stability of both disease-free
equilibrium and endemic equilibrium are establish using second Lyapunov’s method. It is fur-
ther shown that the product of total contraction and total breakdown of infectious class from the
model must be less than the total removal rate from both susceptible and infectious classes. That
is βK < θ(µ+ σ)

4.2 Recommendations

(i) there should be a vaccine therapy against measles infections;

(ii) and also that future research work should incorporate vaccination and treatment on differ-
ent data of measles infection from different regions;

(iii) prompt and timely intervention of Government, and public enlightenment should bemade,
so people in the country could get educated about the wide spread nature of the measles
infection;
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(v) R0 can be reduced through a decrease in the contact rate, β through behavior change, med-
ication or through an increase in the recovery rate, γ

(vi) The principles of control and prevention should be geared towards attacking the source of
the disease causing organism, interrupting the transmission cycle and protecting the sus-
ceptible host.

Acknowledgment: The authors wish to express their profound gratitude to the anonymous ref-
erees for their painstaking efforts to offer constructive criticism that greatly improved the quality
of this article.
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