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INVERSE PROBLEM FOR STURM–LIOUVILLE OPERATORS

ON A CURVE

ANDREY ALEXANDROVICH GOLUBKOV AND YULIA VLADIMIROVNA KURYSHOVA

Abstract. The inverse spectral problem for the Sturm–Liouville equation with a piecewise-

entire potential function and the discontinuity conditions for solutions on a rectifiable

curve γ ⊂ C by the transfer matrix along this curve is studied. By the method of a unit

transfer matrix the uniqueness of the solution to this problem is proved with the help of

studying of the asymptotic behavior of the solutions to the Sturm-Liouville equation for

large values of the spectral parameter module.

1. Introduction and main results

Inverse problems for the classical Sturm–Liouville equation

u′′(z)+ (Q(z)−λ2)u(z)= 0 (1)

in the case when z is real are well studied in various statements [1, 2, 4, 3, 5, 6]. Inverse spectral

problems for the Sturm–Liouville equations with three independent complex-valued coeffi-

cients appear in the spectroscopy of planar inhomogeneous media [7, 8]. These problems

have not been studied enough [9].

The Sturm–Liouville equation with three independent coefficients on a line segment can

be transformed into the classical Sturm–Liouville equation on a curve in the complex plane

by corresponding substitution [10]. Such a transformation could be one of the effective meth-

ods for studying the inverse problems for the Sturm-Liouville equations of different forms on

a segment [11]. Unfortunately, even the direct problems for the Sturm–Liouville equations on

curves are studied in very limited cases [14, 15, 11, 12, 13]. Up to recently among the inverse

problems on curves only the problem of monodromy-free classical Sturm–Liouville equations
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with a integrable potential function on a piecewise smooth closed curve, which is the bound-

ary of a convex bounded domain, has been studied quite fully [16]. However, the requirement

of convexity of a closed curve significantly limits the scope of possible application of the re-

sults obtained in [16].

The first results in removing restrictions on the shape of the curve when considering the

classical Sturm–Liouville operators on the curves were obtained in the paper [17] by constric-

tion of the potential functions class under consideration to piecewise-entire functions, i.e.,

functions that on different parts of the curve coincide with different entire functions of the

complex variable z almost everywhere . This constriction allowed to set the inverse prob-

lem of recovering of the potential function in the classical Sturm–Liouville equation on an

unspecified continuous rectifiable curve of arbitrary shape (including self-intersecting) from

given column or row of the transfer matrix and to formulate the conditions for the unique-

ness of its solution. For this purpose, along with the traditional study of the asymptotic of

solutions to the Sturm–Liouville equation at a large value of the spectral parameter module,

the unit matrix method was used for the first time.

In this paper, the results obtained in [17, 18] are partially generalized to the case where

on an arbitrary continuous rectifiable curve γ there exists a finite number of points at which

the solution to equation (1) with piecewise-entire potential function Q and/or the solution

derivative along the curve undergo discontinuities independent of the spectral parameter

ρ := λ2. The case when the curve, the potential function, the position of the solution jump

points on the curve and the transition matrices in them are unknown is considered.

Denote: Î :=

(
1 0

0 1

)
, σ̂3 :=

(
1 0

0 −1

)
.

Let a piecewise-entire function Q is defined on a continuous rectifiable curve γ ⊂ C,

which specified parametrically by the function z = V (t ) (t ∈ [t0, t f ]), and points are given at

which the solutions to classical Sturm–Liouville equation (1) and (or) their derivatives have

discontinuities independent of the parameter ρ :=λ2.

In other words, let the potential function Q be bounded on the curve γ, and there exist

an integer N ≥ 0 and a set of numbers T = {t j }N+1
0 : t0 < t1 < . . . < tN+1 ≡ t f such that

Q(z)
a.e.
= Qm(z), for z =V (t ), t ∈ [tm, tm+1] (m = 0, N ), (2)

where all Qm are entire functions. Furthermore, let the functions u(z) and u′(z) satisfy the
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discontinuity conditions at the points z j :=V (t j ) ( j = 0, N +1) of the curve γ:





(
u(V (t0 +0))

u′(V (t0 +0))

)
= η̂(0)

(
u(V (t0))

u′(V (t0))

)
,

(
u(V (tn +0))

u′(V (tn +0))

)
= η̂(n)

(
u(V (tn −0))

u′(V (tn −0))

)
(n = 1, N for N ≥ 1),

(
u(V (tN+1))

u′(V (tN+1))

)
= η̂(N+1)

(
u(V (tN+1 −0))

u′(V (tN+1 −0))

)
,

(3)

where transition matrices η̂( j ) ( j = 0, N +1) are independent of the spectral parameter ρ.

Moreover, if N ≥ 1, then the following conditions are valid for any numbers n ∈ {1, . . . , N }:

η̂(n)
6= Î or (and) Qn 6=Qn−1 (n = 1, N for N ≥ 1). (4)

Definition 1. If the conditions (2) and (4) are valid, equation (1) considered on the contin-

uous rectifiable curve γ, supplemented by the conditions (3) of solution discontinuities, will

be called equation of class D on the curve γ, and the points z j = V (t j ) ( j = 0, N +1) — the

characteristic points of the curve γ and equation (1) of class D on the curve γ. In this case, the

ordered set

W := {N , {z j , η̂( j )}N+1
0 , {Qm}N

0 } (5)

will be called the set of characteristic data of the curve γ and equation (1) of class D on γ.

Note that the prime symbol in equation (1) and further denotes the derivative with re-

spect to z along a certain rectifiable curve γ given parametrically by the function z = V (t ),

i.e., it is assumed that f ′(z) ≡ f ′(V (t )) := limδ→0[ f (V (t +δ))− f (V (t ))]/[V (t +δ)−V (t )]. In

addition, in the relations (3) f (V (t ±0)) := limδ→0,δ>0 f (V (t ±δ)). It is easy to make sure that

if the function f (z) is analytic in some domain of the complex plane, then at any point of

that domain it has derivatives along any rectiable curve passing through this point, and these

derivatives coincide with each other and are equal to the usual derivative d f (z)/d z of the

function f (z) at this point.

We emphasize that if the curve γ has points (parts) that are passed more than once, that

is, correspond to two or more values (intervals of values) of the parameter t , then such points

(parts) differ in the order of passage, and geometrically coinciding curves with different order

of passage of the parts are considered different.

Definition 2. We will call u(z) the solution to equation (1) of class D on a curve γ if the func-

tion u(z) satisfies equation (1) almost everywhere on γ, is continuously differentiable at all its

points except possibly characteristic, and satisfies all jump conditions (3).
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Definition 3. Let u1(z),u2(z) be solutions to equation (1) of class D on a curve γ with charac-

teristic points z j ( j = 0, N +1) and

u1(zb) = 1, u′
1(zb)= 0, u2(zb) = 0, u′

2(zb) = 1 (zb ∈ γ, zb ∉ {z j }N
1 for N ≥ 1). (6)

The transfer matrix of equation (1) of class D between points zb and z of the curve γ is said to

be the matrix

P̂(γ, z, zb) =

(
u1(z) u2(z)

u′
1(z) u′

2(z)

)
(z ∈ γ, z ∉ {z j }N

1 for N ≥ 1).

The transfer matrix between the start and end points of the curve will be called the transfer

matrix along this curve.

Definition 4. The set of characteristic data (5) of equation (1) of class D will be called regular

if det η̂(0) 6= 0, det η̂(N+1) 6= 0, and the following conditions are met

det η̂(n)
= 1, η̂(n)

∉ {±i σ̂3} (n = 1, N for N ≥ 1), (7)

∆zm := zm+1 − zm 6= 0 (m = 0, N ). (8)

Definition 5. A curve γ is called regular if equation (1) of class D with a regular set of charac-

teristic data is given on γ.

Theorem 1. Each element of the transfer matrix P̂ of equation (1) of class D on a regular curve

is entire function of parameter ρ of order 1/2 and of normal type.

Theorem 1 is proved in Section 3

Definition 6. The regular set of characteristic data (5) of equation (1) of class D will be called

standard if det η̂(0) = 1, η̂(0) ∉ {±i σ̂3} and the following conditions are met

ℜ{η(n)
11 } > 0, ℑ{η(n)

11 } ≥ 0 or η(n)
11 = 0, ℜ{η(n)

12 } > 0, ℑ{η(n)
12 } ≥ 0 (n = 0, N ). (9)

Lemma 1. If the matrices η̂ and η̂1 satisfy the conditions (7) and (9), then the matrix η̂1η̂
−1

satisfies the conditions (7).

Proof. By virtue of the first condition in (7) we have: det
(
η̂1η̂

−1
)
= det η̂1/det η̂= 1.

Suppose that η̂1η̂
−1 = ±i σ̂3 and hence η̂1 = ±i σ̂3η̂, i.e., η1,11 = ±iη11, η1,12 = ±iη12. But

the last two relations contradict the fact that both matrices η̂ and η̂1 satisfy the conditions (9).

This contradiction proves the Lemma. ���

Definition 7. A curve with a given equation (1) of class D with standard set of characteristic

data will be called the standard one.
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The following Theorem contains the main result of the paper.

Theorem 2. Let two equations (1) of class D have, respectively, standard sets of characteristic

data W (1), W (2) and transfer matrices P̂ (1), P̂ (2) along two curves γ(1), γ(2) with a common

starting point. Then P̂ (1)(ρ) ≡ P̂ (2)(ρ) if and only if W (1) =W (2).

The proof of Theorem 2 is given in Section 4

2. Asymptotics of the transfer matrix along a regular curve

Lemma 2. The elements of the transfer matrix P̂ of equation (1) of class D along the curve γ are

uniquely determined by specifying the set of characteristic data (5) of this curve; they are entire

functions of the spectral parameter ρ (ρ =λ2); det P̂ =
N+1∏
j=0

det η̂( j ) and

P̂ (γ, zN+1, z0) = η̂(N+1)P̂ (N)η̂(N) . . . P̂ (0)η̂(0), (10)

where P̂ (m) := limδ→0,δ>0 P̂(γ,V (tm+1 −δ),V (tm +δ)) (m ∈ {0, . . . , N }) is the transfer matrix of

equation (1) between points zm and zm+1 of the curve γ in the absence of solutions discontinu-

ities. If, moreover, det η̂( j ) 6= 0 ( j = 0, N +1), then

P̂(γ, z0, z) = P̂−1(γ, z, z0) =

(
u′

2(z) −u2(z)

−u′
1(z) u1(z)

)
.

Proof. Let u(m)
α (z) (α ∈ {1,2}, m ∈ {0, . . . , N }) be entire solutions to the auxiliary Sturm–Liouville

equation

d 2u(m)

d z2
+ (Qm −λ2)u(m)

= 0 (z ∈ C) (11)

with initial conditions (6) at the point zm . We define the functions v (s)
α (z) (s ∈ {−1,0, . . . , N })

and ṽ
(p)
α (z) (p ∈ {−1,0, . . . , N −1}) by the following recurrent relations





v (−1)
α (z) :=u(0)

α (z),



ṽ (m−1)
α (z)

d ṽ (m−1)
α (z)

d z


= η̂(m)




v (m−1)
α (z)

d v (m−1)
α (z)

d z


 (m ∈ {0, . . . , N }),

v (m)
α (z) := ṽ (m−1)

α (zm)u(m)
1 (z)+

d ṽ (m−1)
α (z)

d z
|

z=zm

u(m)
2 (z).

(12)

Then, if γm (m ∈ {0, . . . , N }) is a part of the curve γ connecting the points zm and zm+1, then,

by definition 1, 2, the functions uα(z), such that




u1(z0) = 1, u′
1(z0)= 0, u2(z0) = 0, u′

2(z0) = 1,

uα(z) := v (m)
α (z), z ∈ γm\{zm , zm+1} (m ∈ {0, . . . , N }),

(
uα(zN+1)

u′
α(zN+1)

)
= η̂(N+1)




v (N)
α (zN+1)

d v (N)
α (z)

d z
|

z=zN+1


 ,

(13)
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are solutions to equation (1) of class D on γ, satisfying conditions (6) at the point z0. Then

formula (10) follows from definition 3 of the transfer matrix and relations (12), (13), and the

remaining statements of Lemma 2 follow from (10) and the corresponding properties of solu-

tions to linear differential equations with holomorphic coefficients [14] (§2, 24). ���

Lemma 3. For any m ∈ {0, . . . , N } and K ∈ N, there exist positive numbers λm,K ,C (0)
m,K

and two

continuously differentiable solutions F (m)
±K

(z,λ) to corresponding equation (11), which for all

λ 6= 0 and z ∈ C can be represented as:

F (m)
±K

= C (m)
±K

(z,λ)exp{±λ(z − zm)},
dF (m)

±K

d z
=±λE (m)

±K
(z,λ)exp{±λ(z − zm)}, (14)

C (m)
±K

(z,λ) := 1+
K∑

k=1

(
±

1

λ

)k

Cm,k (z)+
B (m)
±K

(z,λ)

λK+1
, (15)

E (m)
±K

(z,λ) := 1+
K∑

k=1

(
±

1

λ

)k (
Cm,k (z)+

dCm,k−1(z)

d z

)
+

H (m)
±K (z,λ)

λK+1
, (16)

where B (m)
±K

(z,λ), H (m)
±K

(z,λ) and all Cm,k (z) are entire functions of z, Cm,0(z) := 1,

Cm,k (zm) := 0,
dCm,k

d z
:=−

1

2

(
d 2Cm,k−1

d z2
+Qm(z)Cm,k−1(z)

)
(k = 1,K ). (17)

Moreover, if |λ| ≥λm,K , then F (m)
±K

(z,λ) are linearly independent solutions to equation (11) in C

and the following inequalities are valid for any z ∈ Lm (Lm — the line segment connecting the

points zm and zm+1):

|B (m)
±K (z,λ)| ≤C (0)

m,K , |H (m)
±K (z,λ)| ≤C (0)

m,K . (18)

Proof. Formulas (14) – (17) are checked by substituting into (11), and estimates (18) on the

line segment Lm follow from the well-known results on asymptotic expansions of solutions to

equations of the form (11) on a segment of real axis for large values of the parameter λ [19].���

The symbols O(1) and Ô(1) denote, respectively, the functions and matrices of the func-

tions of the parameter λ, the form of which is not important to us, bounded for |λ| > λcr ,

where λcr is a finite value different for different functions and matrices.

Lemma 4. Let P̂(γ, zN+1, z0) be the transfer matrix of equation (1) of class D along the curve

γ with the set of characteristic data (5) satisfying conditions (7). Then there exists an integer

K0 ≥ 2 such that for any integer K ≥ K0 there exists a finite number λK > 0 such that for |λ| ≥λK

the matrix P̂ can be written as

P̂ (γ, zN+1, z0) = η̂(N+1)Ĉ ( f )T̂ (N)T̂ (N−1) . . . T̂ (2)T̂ (1)T̂ (0) Â(0)η̂(0), (19)
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where T̂ (0) := Î (unit matrix),

Â(0) := −
1

D(0)
K

(
λE (0)

−K (z0,λ) C (0)
−K (z0,λ)

λE (0)
+K (z0,λ) −C (0)

+K (z0,λ)

)
, (20)

Ĉ ( f ) :=

(
C (N)
+K

(zN+1,λ)exp(λ∆zN ) C (N)
−K

(zN+1,λ)exp(−λ∆zN )

λE (N)
+K

(zN+1,λ)exp(λ∆zN ) −λE (N)
−K

(zN+1,λ)exp(−λ∆zN )

)
, (21)

T̂ (n) :=

(
t (n)

1+ exp(λ∆zn−1) t (n)
− exp(−λ∆zn−1)

t (n)
+ exp(λ∆zn−1) t (n)

1− exp(−λ∆zn−1)

)
(n = 1, N f or N ≥ 1). (22)

Here ∆zm (m = 0, N ) are defined in (8), D(0)
K

=−λ(C (0)
+K

(z0,λ)E (0)
−K

(z0,λ)+C (0)
−K

(z0,λ) E (0)
+K

(z0,λ))

=−2λ(1+O(1)/λ) 6= 0, and if N ≥ 1, then for t (n)
1± , t (n)

± (n = 1, N ) the following relations are valid:

t (n)
1± = ±η(n)

12 λ

(
1

2
+

O(1)

λ

)
+

(
η(n)

11 +η(n)
22

)(
1

2
+

O(1)

λ

)
±
η(n)

21

λ

(
1

2
+

O(1)

λ

)
, (23)

t (n)
± =





±η(n)
12 λ

(
1

2
+

O(1)

λ

)
∓
η(n)

21

λ

(
1

2
+

O(1)

λ

)
+

+(η(n)
11 −η(n)

22 )

(
1

2
+

O(1)

λ

)
, η̂(n) 6= Î ;

−

(
∓

1

2λ

)mn+2

δn

(
1+

O(1)

λ

)
, η̂(n) = Î ,

(24)

where the integers mn ∈ [0,K0 −2], the complex numbers δn 6= 0 and don’t depend on λ.

Proof. By Lemma 3, for any integer K ∈ N and m ∈ {0, . . . , N } there exist numbers λm,K > 0

such that for |λ| ≥ λm,K the solutions u(m)
1 (z),u(m)

2 (z) to corresponding equation (11) can be

represented as a linear combination of functions F (m)
±K

(z,λ). Therefore, for

|λ| ≥ λK := max{λm,K ,m = 0, N }, formula (10) can be written as (19), where the matrices

T̂ (n)(n = 1, N for N ≥ 1), Â(0), Ĉ ( f ) satisfy formulas (20) – (22), and

D(n)
K

:=−λ(C (n)
+K

(zn ,λ)E (n)
−K

(zn ,λ)+C (n)
−K

(zn ,λ)E (n)
+K

(zn ,λ)),

(
t (n)

1+ t (n)
−

t (n)
+ t (n)

1−

)
= −

1

D(n)
K

(
C (n−1)
+K

(zn ,λ)τ(n)
1+ C (n−1)

−K
(zn ,λ)τ(n)

−

C (n−1)
+K

(zn ,λ)τ(n)
+ C (n−1)

−K
(zn ,λ)τ(n)

1−

)
+

Ô(1)

λK+1
, (25)

τ(n)
1± :=

(
±λ2η(n)

12 ϕ
(n−1)
± (zn)ϕ(n)

∓ (zn)+λη(n)
11 ϕ(n)

∓ (zn)+λη(n)
22 ϕ

(n−1)
± (zn)±η(n)

21

)
, (26)

τ(n)
± :=

(
±λ2η(n)

12 ϕ
(n−1)
± (zn)ϕ(n)

± (zn)+λη(n)
11 ϕ(n)

± (zn)−λη(n)
22 ϕ

(n−1)
± (zn)∓η(n)

21

)
, (27)

ϕ(n)
± (z) :=

E (n)
±K

(z,λ)

C (n)
±K

(z,λ)
= 1+

O(1)

λ2
(z ∈ {zn , zn+1}) . (28)

The last equality follows from relations (15) – (18) with K ≥ 1. From formulas (15), (16), (18)

we also have:

D(m)
K =−2λ

(
1+

O(1)

λ

)
6= 0 (m = 0, N ). (29)
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Taking into account conditions (7), we obtain that for N ≥ 1 substitution of formulas (26) —

(29) into relation (25) fully proves formula (23), as well as formula (24) for the case η̂(n) 6= Î

(n ∈ {1, . . . , N }). If η̂(n) = Î , then by definition 1 (by virtue of (4)) Qn 6= Qn−1, and relation (24)

follows from the comparison of formulas (19), (20) of paper [17] with formulas (22), (24) of

this paper. ���

Note that the numbers mn and δn included in formula (24) for the case η̂(n) = Î (n =

1, N for N ≥ 1) are equal, respectively, to the minimal order of the derivative of the potential

function along the curve γ, which has a jump at the point zn , and the magnitude of this jump

([18], formulas (18), (19))

Lemma 5. Let det η̂(0) 6= 0, det η̂(N+1) 6= 0. Then the elements c
( f )
η,αν (ν ∈ {1,2}) and a(0)

η,κβ
(κ ∈

{1,2}), respectively, of the matrices Ĉ
( f )
η := η̂(N+1)Ĉ ( f ) and Â(0)

η := Â(0)η̂(0) for large values of the

parameter λ can be represented as

c
( f )
η,αν(λ) = exp

{
−(−1)νλ∆zN

}[
η(N+1)
α1

(
1+

O(1)

λ

)
− (−1)νη(N+1)

α2 λ

(
1+

O(1)

λ

)]
6=0 (ν∈{1,2}), (30)

a(0)
η,κβ

(λ) =
η(0)

1β

2

(
1+

O(1)

λ

)
−

(−1)κ

2λ
η(0)

2β

(
1+

O(1)

λ

)
6= 0 (κ ∈ {1,2}). (31)

Proof. Taking into account Lemma conditions and relations (15), (16), (18), we find that for-

mulas (30) and (31) follow from formulas (21) and (20), (29), respectively. ���

We denote (N +1)-dimensional vectors by letters with an arrow on top, and their scalar

product by round brackets. For example,
−→
∆z := (∆z0,∆z1, . . . ,∆zN ); ~αs := (α(s)

0 ,α(s)
1 , . . . , α(s)

N
),

where α(s)
m ∈ {±1} (m = 0, N ), s = 1+

N∑
m=0

(1+α(s)
m )2m−1, i.e., s ∈ {1, . . . ,2N+1} (as in the binary

number system); (~αs ,
−→
∆z) :=

N∑
m=0

α(s)
m ∆zm .

The following corollary can be obtained from Lemmas 4, 5.

Corollary 3. Let γ be a regular curve. Then, under the conditions of Lemma 4, for K ≥ K0 and

|λ| ≥λK , all elements of the matrix P̂(γ, zN+1, z0) can be written as:

pαβ =

2N+1∑

s=1

d (s)
αβ

(λ)exp{λhs} (α,β ∈ {1,2}). (32)

Here the coefficients hs :=
(
~αs ,

−→
∆z

)
don’t depend on λ and functions d (s)

αβ
(λ) can be represented

as:

d (s)
αβ

(λ) =

(
1

λ

)m(s)
αβ

δ(s)
αβ

(
1+

O(1)

λ

)
6= 0 (α,β ∈ {1,2}, s = 1,2N+1),

where integers m(s)
αβ

∈ [−N −1, N K0 +1], complex numbers δ(s)
αβ

6= 0 and don’t depend on λ.
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The part of the exponential functions in the right-hand sides of equalities (32) may coin-

cide, and the question arises: are not the exponential functions that are most rapidly growing

with increasing |λ| mutually destroyed in (32)? The negative answer to this question for the

elements of the transfer matrix of equation (1) of class D along a regular curve is given by

Lemma 6, similar to Lemma 4 of the paper [18].

Lemma 6. Let hmax := max{|hs |, s = 1,2N+1}, where hs = (~αs ,
−→
∆z). In this case there exist at least

two different numbers s0 ∈ {1, . . . ,2N+1} such that |hs0
| = hmax , and if

−→
∆z 6=~0, then hmax > 0.

Moreover, if conditions (8) hold, then the inequality hs0
6= hs is valid for any coefficient hs0

such

that |hs0
| =hmax and for any number s ∈ {1, . . . ,2N+1}\{s0}.

3. Proof of Theorem 1

By the condition of the Theorem 1, the curve γ is regular. Corollary 3 and Lemma 6 im-

ply that in this case there exists at least one straight line passing through zero of the complex

plane of the parameter λ (and therefore, at least one ray going out of the zero of the complex

plane of the spectral parameter ρ), such that among the 2N+1 summands in (32) for each ele-

ment of the matrix P̂ there exists exactly one summand having for λ→∞ (ρ→∞) along this

line (ray) the greatest exponential growth with exponent hmax > 0. Therefore, each element of

the transfer matrix P̂ along a regular curve is entire function ρ of order 1/2 and of the normal

type [20] (Chapter I, §1).

4. Proof of Theorem 2

If W (1) =W (2), then P̂ (1) = P̂ (2) by Lemma 2.

Let P̂ (1) = P̂ (2) and W (1) :=
{

N (1), {z(1)
j

, η̂
( j )
1 }N (1)+1

0 , {Q (1)
m }N (1)

0

}
,

W (2) :=
{

N (2), {z(2)
j

, η̂
( j )
2 }N (2)+1

0 , {Q (2)
m }N (2)

0

}
. Since the curves γ(1) and γ(2) are standard, then

det η̂
( j )
1 6= 0 ( j = 0, N (1) +1) and det η̂

( j )
2 6= 0 ( j = 0, N (2) +1). Therefore, by Lemma 2, the transfer

matrix of equation (1) of class D along the curve γ obtained by successive walk first over the

curve γ(1) from the point z(1)

N (1)+1
to the point z0, and then over the curve γ(2) from the point z0

to the point z(2)

N (2)+1
, will be equal to

P̂ = η̂(N (2)+1)
2 P̂ (N (2))

2 η̂(N (2))
2 . . . P̂ (0)

2 η̂(0)
2

(
η̂(0)

1

)−1 (
P̂ (0)

1

)−1
. . .

(
η̂(N (1))

1

)−1

(
P̂ (N (1))

1

)−1 (
η̂(N (1)+1)

1

)−1
= P̂ (2)(P̂ (1))−1.

(33)

On the other hand, by assumption P̂ (1) = P̂ (2) and hence P̂ = Î .

By the condition of the Theorem 2 z(1)
0 = z(2)

0 = z0. Therefore, there exists an integer

i0 ≥ 0 such that z(2)
i

= z(1)
i

= zi (i = 0, i0), Q (2)
i

= Q (1)
i

, η(i )
2 = η(i )

1 (i = 0, i0 −1 for i0 ≥ 1), and
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if i0 ≤ min{N (1), N (2)}, then the ordered sets {z(2)
i0+1

,Q (2)
i0

,η
(i0)
2 } and {z(1)

i0+1
,Q (1)

i0
,η

(i0)
1 } are differ-

ent. Further, for definiteness, we assume that N (1) ≤ N (2).

Suppose that i0 ≤ N (1), and the ordered sets {Q (2)
i0

,η
(i0)
2 } and {Q (1)

i0
,η

(i0)
1 } are different. Then

P̂ (i )
2 = P̂ (i )

1 (i = 0, i0 −1 for i0 ≥ 1), and the formula (33) after simplification takes the form:

P̂ = η̂(N (2)+1)
2 P̂ (N (2) )

2 η̂(N (2))
2 . . . P̂

(i0)
2 η̂

(i0)
2

(
η̂

(i0)
1

)−1

(
P̂

(i0)
1

)−1
. . .

(
η̂(N (1))

1

)−1 (
P̂ (N (1))

1

)−1 (
η̂(N (1)+1)

1

)−1
,

i.e., by Lemma 2, the matrix P̂ will be equal to the transfer matrix along the curve γmi n , which

first coincides with the part of the curve γ(1) from point z(1)

N (1)+1
to point zi0

, and then with the

part of curve γ(2) from point zi0
to point z(2)

N (2)+1
. Moreover, the transition matrix ˆ̃η(i0) at point

zi0
is equal to η̂

(i0)
2

(
η̂

(i0)
1

)−1
, and point zi0

is a characteristic point of the curve γmi n , since

ordered sets {Q (2)
i0

,η
(i0)
2 } and {Q (1)

i0
,η

(i0)
1 } are different by assumption. Since by the condition of

the Theorem 2 the sets of characteristic data W (1) and W (2) are standard and, by Lemma 1,

the transition matrix ˆ̃η(i0) at point zi0
satisfies conditions (7), then the curve γmi n is regular,

which by virtue of Theorem 1 contradicts the fact that P̂ = Î . So

Q (1)
i0

=Q (2)
i0

, η
(i0)
1 = η

(i0)
2 . (34)

Let i0 ≤ N (1), conditions (34) are valid, and z(2)
i0+1

6= z(1)
i0+1

. Then, by virtue of (34), point

zi0
will not be a characteristic point of a curve γmi n , and various points z(1)

i0+1
, z(2)

i0+1
will be its

successive characteristic points. Therefore, the curve γmi n will be standard and hence regular,

which contradicts the fact that P̂ = Î . Consequently,

z(1)
i0+1

= z(2)
i0+1

. (35)

If i0 ≤ min{N (1), N (2)}, then formulas (34), (35) contradict the definition of the number

i0 and hence i0 = N (1) +1. If, in addition, N (1) < N (2), then formula (33), after simplification,

takes the form:

P̂ = η̂(N (2)+1)
2 P̂ (N (2))

2 η̂(N (2))
2 . . . P̂ (N (1)+1)

2
ˆ̃η(N (1)+1).

where ˆ̃η(N (1)+1) = η̂(N (1)+1)
2

(
η̂(N (1)+1)

1

)−1
. By definitions 4, 6 we have: det ˆ̃η(N (1)+1) 6= 0. Thus, in

this case, by virtue of Lemma 2, the matrix P̂ will be equal to the transfer matrix along the

regular curve that coincides with the part of the curve γ(2) connecting the points z(1)

N (1)+1
=

z(2)

N (1)+1
and z(2)

N (2)+1
. By virtue of Theorem 1, this contradicts the fact that P̂ = Î and hence

N (1) = N (2), i0 = N (1)+1. So W (1) =W (2). Theorem 2 is proven.
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