

#### **Characterizing Some Rings of Finite Order**

Jutirekha Dutta, Dhiren Kumar Basnet and Rajat Kanti Nath

**Abstract**. In this paper, we compute the number of distinct centralizers of some classes of finite rings. We then characterize all finite rings with n distinct centralizers for any positive integer  $n \leq 5$ . Further we give some connections between the number of distinct centralizers of a finite ring and its commutativity degree.

#### 1 Introduction

Finite abelian groups have been completely characterized up to isomorphism for a long time but finite rings have yet to be characterized. The problem of characterizing finite rings up to isomorphism has received considerable attention in recent years (see [2, 8, 10, 12, 13]) starting from the works of Eldridge [11] and Raghavendran [15]. In this paper we characterize finite rings in terms of their number of distinct centralizers. Given a ring R and an element  $r \in R$ , the subrings  $C(r) = \{s \in R : rs = sr\}$  and  $Z(R) = \{s \in R : rs = sr \text{ for all } r \in R\}$  are known as *centralizer* of r in R and *center* of R respectively. We write  $\operatorname{Cent}(R)$  to denote the set of all centralizers in R. Firstly we compute the order of  $\operatorname{Cent}(R)$  for some classes of finite rings R. Motivated by the works of Belcastro and Sherman [3] and Ashrafi [1], we define n-centralizer ring for any positive integer n. A ring R is said to be n-centralizer ring if  $|\operatorname{Cent}(R)| = n$ , for any positive integer n. We then characterize n-centralizer finite rings for all  $n \leq 5$ , adapting similar techniques that are used by Belcastro and Sherman [3] in order to characterize n-centralizer finite groups for  $n \leq 5$ . It is worth mentioning that  $n \in \mathbb{R}$ 0, the subrings have been characterized in [9].

Further, we conclude the paper by noting some interesting connections between d(R) and  $|\operatorname{Cent}(R)|$ , where d(R) is the probability that a randomly chosen pair of elements of R commute. For any finite ring R we have  $d(R) = \frac{1}{|R|^2} \sum_{r \in R} |C(r)|$ . This d(R) is also known as *commutativity* 

2010 Mathematics Subject Classification. 16U70.

Key words and phrases. Finite ring, centralizer, commutativity degree.

Corresponding author: Rajat Kanti Nath.

degree or commuting probability of R and it was introduced by MacHale [14] in the year 1976. Some characterizations of finite rings in terms of commutativity degree can be found in [14, 5, 6].

Throughout the paper R denotes a finite ring possibly non-associative and non-unital. For any subring S of R, R/S and  $\frac{R}{S}$  denote the additive quotient group and |R:S| denotes the index of the additive subgroup S in the additive group R. Note that the isomorphisms considered are the additive group isomorphisms. Also for any two non-empty subsets A and B of a ring R, we write  $A+B=\{a+b:a\in A,b\in B\}$ . We shall use the fact that for any non-commutative ring R, the additive group  $\frac{R}{Z(R)}$  is not a cyclic group (see [14, Lemma 1]).

# 2 Some computations of $|\operatorname{Cent}(R)|$

In this section, we compute  $|\operatorname{Cent}(R)|$  for some classes of finite rings. However, first we prove some results which are useful for subsequent results as well as for the next sections.

**Proposition 2.1.** R is a commutative ring if and only if R is a 1-centralizer ring.

*Proof.* The proposition follows from the fact that a ring R is commutative if and only if C(r) = R for each  $r \in R$ .

**Proposition 2.2.** Let R, S be two rings. Then

$$Cent(R \times S) = Cent(R) \times Cent(S).$$

*Proof.* It can be easily seen that  $C((r,s)) = C(r) \times C(s)$  for any  $r \in R$  and  $s \in S$ . This proves the proposition.

The following lemmas play an important role in finding lower bound of  $|\operatorname{Cent}(R)|$  for any non-commutative ring R.

**Lemma 2.1.** Let R be a ring. Then Z(R) is the intersection of all centralizers in R.

*Proof.* It is clear that  $Z(R)\subseteq \bigcap_{r\in R}C(r)$ . Now, for any  $s\in \bigcap_{r\in R}C(r)$  we have rs=sr for all  $r\in R$ . Therefore  $s\in Z(R)$ . Hence the lemma follows.  $\Box$ 

**Lemma 2.2.** If R is a ring, then R is the union of centralizers of all non-central elements of R.

Proof. It is clear that  $\bigcup_{r\in R-Z(R)} C(r) \subseteq R$ . Again, for any  $s\in Z(R)$ , we have by Lemma 2.1,  $s\in C(r)$  for all  $r\in R$ . So  $s\in\bigcup_{r\in R-Z(R)} C(r)$ . Also for any  $s\in R-Z(R)$ , we have  $s\in C(s)$  and so  $s\in\bigcup_{r\in R-Z(R)} C(r)$ . Hence the lemma follows.  $\square$ 

**Lemma 2.3.** A ring R cannot be written as a union of two of its proper subrings.

*Proof.* The lemma follows from the well-known fact that a group can not be written as a union of two of its proper subgroups.  $\Box$ 

**Theorem 2.1.** For any non-commutative ring R,  $|\operatorname{Cent}(R)| \ge 4$ .

*Proof.* Since R is non-commutative, so  $|\operatorname{Cent}(R)| \geq 2$ . If  $|\operatorname{Cent}(R)| = 2$ , then, by Lemma 2.2, R is equal to a proper subset of itself, which is not possible. Also by Lemma 2.3,  $|\operatorname{Cent}(R)| \neq 3$ . Hence the theorem follows.

Note that the ring  $R = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$ , where  $0, 1 \in \mathbb{Z}_2$ , has 4 distinct centralizers. So the above result is the best one possible.

At this point, the following question, similar to the question posed by Belcastro and Sherman [3, p. 371], arises naturally.

**Question 2.2.** Does there exist an n-centralizer ring for any positive integer  $n \neq 2, 3$ ? Can we characterize an n-centralizer ring?

The following results show the existence of n-centralizer rings for some values of n.

**Proposition 2.3.** There exists a (p+2)-centralizer ring for any prime p.

*Proof.* We consider the ring

$$R = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : a, b \in \mathbb{Z}_p \right\}.$$

For any element  $\begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix}$  of  $C \begin{pmatrix} \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \end{pmatrix}$  we have xb - ay = 0.

Clearly,  $C \begin{pmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} = R$ . Using simple calculations, we have for any  $a \neq 0$  and  $l \in \mathbb{Z}_p$ ,

$$C\left(\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}\right) = \left\{\begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} \ : \ x \in \mathbb{Z}_p \right\} \text{ and } C\left(\begin{bmatrix} la & a \\ 0 & 0 \end{bmatrix}\right) = \left\{\begin{bmatrix} lx & x \\ 0 & 0 \end{bmatrix} \ : \ x \in \mathbb{Z}_p \right\}.$$
 Hence  $|\operatorname{Cent}(R)| = p + 2$ .

The above proposition is a particular case of the following theorem.

**Theorem 2.3.** Let R be a non-commutative ring of order  $p^2$ , where p is a prime. Then  $|\operatorname{Cent}(R)| = p + 2$ .

*Proof.* For any  $x \in R - Z(R)$ , we consider C(x). As C(x) is an additive subgroup of R we have |C(x)| = 1, p or  $p^2$ . Clearly,  $|C(x)| \neq 1$ ,  $p^2$ , as x,  $0_R \in C(x)$  and R is non-commutative, where  $0_R$  is the additive identity in R. Hence C(x) is additive cyclic group of order p and so  $Z(R) = \{0_R\}$ .

Let  $x,y\in R-Z(R)$ . If there exists an element  $t\ (\neq 0_R)\in C(x)\cap C(y)$  then C(x)=C(y), as C(x),C(y) are additive cyclic groups of order p. Thus for any  $x,y\in R-Z(R)$  we have either  $C(x)\cap C(y)=\{0_R\}$  or C(x)=C(y). Therefore the number of centralizers of non-central elements is

$$\frac{|R| - |Z(R)|}{p - 1} = \frac{p^2 - 1}{p - 1} = p + 1.$$

Hence  $|\operatorname{Cent}(R)| = p + 2$ .

**Theorem 2.4.** Let p be a prime number and R be a non-commutative ring of order  $p^3$  with unity  $1_R$ . Then  $|\operatorname{Cent}(R)| = p + 2$ .

*Proof.* Let x be an arbitrary element of R-Z(R). Then C(x) is an additive subgroup of R and so  $|C(x)|=1, p, p^2$  or  $p^3$ . Here  $|C(x)|\neq 1, p^3$  as  $x, 0_R\in C(x)$ , where  $0_R$  is the additive identity in R and R is non-commutative. If |C(x)|=p then |Z(R)|=1, which is not possible as  $0_R, 1_R\in Z(R)$ . So  $|C(x)|=p^2$  and this gives |Z(R)|=p.

Now, we suppose that  $y\in R-Z(R)$  and  $y\in C(x)$ . Let  $z\in C(x)$  be an arbitrary element. We know that  $Z(R)\subset Z(C(x))$  and so |Z(C(x))|>1. Therefore |C(x):Z(C(x))|=1 or p and so C(x) is commutative. Thus  $z\in C(y)$ , as  $y\in C(x)$ . So  $C(x)\subseteq C(y)$ . Also |C(x)|=|C(y)|. Hence, C(x)=C(y); and if  $y\notin C(x)$  then  $C(x)\cap C(y)=Z(R)$ . Therefore the number of centralizers of non-central elements of R is

$$\frac{|R| - |Z(R)|}{|C(x)| - |Z(R)|} = \frac{p^3 - p}{p^2 - p} = p + 1.$$

Thus  $|\operatorname{Cent}(R)| = p + 2$ .

As an application of the above theorem, it follows that the ring

$$R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in \mathbb{Z}_p \right\}$$

having order  $p^3$  is a (p+2)-centralizer ring. The following theorem, which is a generalization of Theorem 2.3, gives another class of (p+2)-centralizer rings .

**Theorem 2.5.** Let R be a ring and  $\frac{R}{Z(R)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$ , where p is a prime. Then  $|\operatorname{Cent}(R)| = p + 2$ .

*Proof.* We write Z := Z(R). Since  $R/Z \cong \mathbb{Z}_p \times \mathbb{Z}_p$  we have

$$\frac{R}{Z} = \langle Z+a, Z+b : p(Z+a) = p(Z+b) = Z; a, b \in R \rangle.$$

If S/Z is additive non-trivial subgroup of R/Z then |S/Z| = p. Therefore any additive proper subgroup of R properly containing Z has p disjoint right cosets. Hence the proper additive subgroups of R properly containing Z are

$$\begin{split} S_m &= Z \cup (Z + (a + mb)) \cup (Z + 2(a + mb)) \cup \dots \cup (Z + (p - 1)(a + mb)), \\ &\text{where } 1 \leq m \leq (p - 1), \\ S_p &= Z \cup (Z + a) \cup (Z + 2a) \cup \dots \cup (Z + (p - 1)a) \text{ and } \\ S_{p+1} &= Z \cup (Z + b) \cup (Z + 2b) \cup \dots \cup (Z + (p - 1)b). \end{split}$$

Now for any  $x\in R-Z$ , we have Z+x is equal to Z+k for some  $k\in\{ma,mb,a+mb,2(a+mb),\ldots,(p-1)(a+mb):1\leq m\leq (p-1)\}$ . Therefore C(x)=C(k). Again, let  $y\in S_j-Z$  for some  $j\in\{1,2,\ldots,(p+1)\}$ , then  $C(y)\neq S_q$ , where  $1\leq q\ (\neq j)\leq (p+1)$ . Thus  $C(y)=S_j$ . Hence  $|\operatorname{Cent}(R)|=p+2$ .

Further, we have the following theorem analogous to Lemma 2.7 of [1, p. 142].

**Theorem 2.6.** Let R be a non-commutative ring whose order is a power of a prime p. Then  $|\operatorname{Cent}(R)| \ge p+2$ , and equality holds if and only if  $\frac{R}{Z(R)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$ .

*Proof.* Let R be a non-commutative ring whose order is a power of a prime p. Suppose  $k = |\operatorname{Cent}(R)|$ . Let  $A_1, \ldots, A_k$  be the distinct centralizers of R such that  $|A_1| \ge \cdots \ge |A_k|$  and  $A_1 = R$ . So  $R = \bigcup_{i=2}^k A_i$  and by Cohn's Theorem in [7, p. 44], we have  $|R| \le \sum_{i=3}^k |A_i|$  (as  $A_i$ 's are additive groups). Also  $|A_i| \le \frac{|R|}{p}$ , where  $i \ne 1$ . Hence

$$|R| \le \frac{|R|}{p} + \dots + \frac{|R|}{p}$$
 $(k-2)$ -times

which implies  $|R| \leq (k-2)\frac{|R|}{p}$  and so  $k \geq p+2$ . That is  $|\operatorname{Cent}(R)| \geq p+2$ .

For the equality, if  $\frac{R}{Z(R)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$  then by Theorem 2.5, we have  $|\operatorname{Cent}(R)| = p + 2$ . Conversely, we assume that  $l = |\operatorname{Cent}(R)| = p + 2$ . Suppose  $A_1, A_2, \ldots, A_l$  are distinct centralizers of R such that  $|A_1| \geq \cdots \geq |A_l|$  and  $A_1 = R$ . So  $R = \bigcup_{i=2}^{l} A_i$  and by Cohn's Theorem in [7, p.

44], we have  $|R| \leq \sum_{i=3}^{l} |A_i|$ . Also  $|A_i| \leq \frac{|R|}{p}$ , where  $i \neq 1$ . Suppose, there exists an  $A_i$  such that  $|A_i| < \frac{|R|}{p}$  for  $3 \leq i \leq l$  then

$$|R| < \underbrace{\frac{|R|}{p} + \dots + \frac{|R|}{p}}_{(l-2)-\text{times}} = (l-2)\frac{|R|}{p} = |R|,$$

a contradiction. Hence  $|A_3|=\frac{|R|}{p},\ldots,|A_l|=\frac{|R|}{p}.$  Also  $|A_2|\geq\cdots\geq |A_l|,$  so  $|A_i|=\frac{|R|}{p},$  where  $2\leq i\leq l.$  Hence  $\sum\limits_{i=3}^{l}|A_i|=(l-2)\frac{|R|}{p}=|R|.$  Therefore  $\sum\limits_{i=3}^{l}|A_i|=|R|$  if and only if  $A_2+A_m=R,$  for all  $m\neq 2$  and  $A_k\cap A_l\subseteq A_2$  for all  $k\neq l$  (By Cohn's Theorem in [7, p. 44]). Interchanging  $A_i$ 's we have  $A_2\cap A_3=Z(R).$  Thus

$$|R| = |A_2 + A_3| = \frac{|A_2||A_3|}{|A_2 \cap A_3|} = \frac{|R|^2}{p^2|Z(R)|}$$

which gives  $|R:Z(R)|=p^2$ . Hence  $\frac{R}{Z(R)}\cong \mathbb{Z}_p\times \mathbb{Z}_p$ , since R is non-commutative. This completes the proof.

#### 3 4-centralizer rings

In this section, we give a characterization of finite 4-centralizer rings analogous to Theorem 2 of [3, p. 367]. The following lemma is useful in characterization of 4-centralizer rings.

**Lemma 3.1.** Let R be a 4-centralizer finite ring. Then at least one of the centralizers of non-central elements has index 2 in R.

*Proof.* Let A,B,C be the three proper centralizers of R. Suppose none of A,B,C has index 2, that is  $|R:A| \geq 3, |R:B| \geq 3, |R:C| \geq 3$ . Then as  $R=A \cup B \cup C$ , we have

$$|R| \le |A| + |B| + |C| - 2|Z(R)| \le \frac{|R|}{3} + \frac{|R|}{3} + \frac{|R|}{3} - 2|Z(R)| < |R|,$$

which is a contradiction. Hence the lemma follows.

We have the following characterization of finite 4-centralizer rings.

**Theorem 3.1.** Let R be a non-commutative finite ring. Then  $|\operatorname{Cent}(R)| = 4$  if and only if  $\frac{R}{Z(R)} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ .

*Proof.* If  $\frac{R}{Z(R)} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$  then by Theorem 2.5, we have  $|\operatorname{Cent}(R)| = 4$ .

Conversely, let  $|\operatorname{Cent}(R)| = 4$  then R has exactly four distinct centralizers, say R, A, B, C where A, B, C are three distinct centralizers of non-central elements of R.

By Lemma 2.3, R can not be written as the union of two of its proper subrings of R. Therefore we may choose  $a \in A - (B \cup C)$ ,  $b \in B - (C \cup A)$  and  $c \in C - (A \cup B)$  respectively. It can be easily seen that C(a) = A, C(b) = B and C(c) = C. By Lemma 3.1, at least one of the centralizers A, B, C, say A has index 2 in R, that is |R:A| = 2.

Now, let  $x \in (A \cap B) - Z(R)$  then  $C(x) \neq R$ . If C(x) = A then  $a,b \in C(x)$ . So,  $C(x) \neq A$ . Similarly it can be seen that  $C(x) \neq B$ . If C(x) = C then  $x \in A \cap B \cap C = Z(R)$  (using Lemma 2.1), which is a contradiction. Therefore  $|\operatorname{Cent}(R)|$  must be at least 5, which is again a contradiction. So  $A \cap B = A \cap B \cap C = Z(R)$ . Similarly it can be seen that  $B \cap C = Z(R)$ ,  $A \cap C = Z(R)$ . Again A, B, C are additive subgroups of R, therefore

$$|R| \ge |A + B| = \frac{|A||B|}{|A \cap B|} = \frac{|A||B|}{|Z(R)|}$$

which gives  $|B| \le 2|Z(R)|$ . Since  $Z(R) \subset B$ , so  $\frac{|B|}{2} \le |Z(R)| < |B|$ . Hence |B| = 2|Z(R)|. Similarly |C| = 2|Z(R)|. Therefore

$$|R| = |A| + |B| + |C| - 2|Z(R)| = \frac{|R|}{2} + 2|Z(R)|$$

which gives |R:Z(R)|=4 and hence  $\frac{R}{Z(R)}\cong \mathbb{Z}_2\times \mathbb{Z}_2$ .

### 4 5-centralizer rings

In this section, we give a characterization of finite 5-centralizer rings analogous to Theorem 4 of [3, p. 369]. The following lemmas are useful in this regard.

**Lemma 4.1.** Let R be a ring and  $R = A \cup B \cup C$ , where A, B, C are the proper distinct subrings. We put  $K = A \cap B \cap C$ ,  $L = A \cap B - K$ ,  $M = A \cap C - K$ ,  $N = B \cap C - K$  and  $A' = A - (B \cup C)$ ,  $B' = B - (A \cup C)$ ,  $C' = C - (A \cup B)$ . Then

- (a)  $L = M = N = \emptyset$ ,
- (b)  $A' + B' \subseteq C', B' + C' \subseteq A'$  and  $C' + A' \subseteq B'$ ,
- (c)  $A' + A' \subseteq K, B' + B' \subseteq K$  and  $C' + C' \subseteq K$ ,
- (d) |R:K|=4.

- *Proof.* (a) We consider  $l \in L$  and  $c' \in C'$ . Then  $c' + l \in A$  or B or C. If  $c' + l \in A$  then  $c' + l + (-l) = c' \in A$ , a contradiction. If  $c' + l \in B$  then  $c' + l + (-l) = c' \in B$ , a contradiction. If  $c' + l \in C$  then  $(-c') + c' + l = l \in C$ , a contradiction. Since  $C' \neq \emptyset$ , we must have  $L = \emptyset$ . Similarly  $M = N = \emptyset$ .
- (b) Let  $a' \in A'$ , then  $a' \in A \Rightarrow -a' \in A \Rightarrow -a' \in K$  or A'. If  $-a' \in K$  then  $a' \in K$ , a contradiction. Hence  $-a' \in A'$ . Similarly if  $b' \in B'$  then  $-b' \in B'$  and if  $c' \in C'$  then  $-c' \in C'$ . Suppose  $a' \in A', b' \in B'$  then  $a' + b' \in K$  or A' or B' or C'. If  $a' + b' \in A' \subseteq A$  then  $b' = -a' + a' + b' \in A$ , a contradiction. If  $a' + b' \in B' \subseteq B$ , then  $a' = a' + b' + (-b') \in B$ , a contradiction. If  $a' + b' \in K$ , then  $a' + b' \in A$ , a contradiction. Hence  $a' + b' \in C'$ . Thus  $A' + B' \subseteq C'$ . Similarly it can be seen that  $B' + C' \subseteq A'$  and  $C' + A' \subseteq B'$ .
- (c) Let  $a', a_1' \in A' \subseteq A$ . So  $a' + a_1' \in A \Rightarrow a' + a_1' \in A'$  or K. Let  $a' + a_1' \in A'$ . We consider  $b' + a' + a_1'$ , for some  $b' \in B'$ . Then by second part we have  $b' + (a' + a_1') \in C'$  and  $(b' + a') + a_1' \in B'$ . So  $b' + a' + a_1' \in B' \cap C'$ , a contradiction. Similarly we can show the other two.
- (d) From part (a), we have  $R=K\cup A'\cup B'\cup C'$ . Let  $k+a'\in K+a'$  where  $k\in K, a'\in A'$  then  $k+a'\in A=K\cup A'$ . If  $k+a'\in K$  then  $a'\in K$ , a contradiction. So  $K+a'\subseteq A'$ . Again  $x'\in A'$  gives  $x'+(-a')\in K$  (by part (c)). So,  $x'\in K+a'$ . Hence K+a'=A'. Similarly it can be seen that K+b'=B', K+c'=C', where  $b'\in B', c'\in C'$ . Therefore |R:K|=4.  $\square$

**Lemma 4.2.** Let R be a 5-centralizer finite ring and A, B, C, D be the four proper centralizers of R. Then

- (a) |R| = |A| + |B| + |C| + |D| 3|Z(R)|.
- (b) If S and T are distinct proper centralizers of R, then

$$\frac{|S||T|}{|R|} \le |Z(R)| \le \frac{|R|}{6}.$$

*Proof.* Let  $a \in A - (B \cup C)$ ,  $b \in B - (A \cup C)$  and  $c \in C - (A \cup B)$ . Suppose there does not exist any  $a \in A - (B \cup C)$  such that C(a) = A. Then C(a) = D for all  $a \in A - (B \cup C)$ . Therefore  $A - (B \cup C) \subseteq D - (B \cup C)$ . Interchanging the roles of A and D we get  $A - (B \cup C) = D - (B \cup C)$ , which gives  $A \cup B \cup C = D \cup B \cup C = R$ . Again, by Lemma 4.1(a), we have  $B \cap C = C \cap D$  and so  $Z(R) = A \cap B \cap C$ . Therefore, by Lemma 4.1(d), we have  $R/Z(R) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ . This gives  $|\operatorname{Cent}(R)| = 4$ , contradiction. Hence C(a) = A. Similarly C(b) = B and C(c) = C.

(a) Let us assume without loss of generality that D is a subset of  $A \cup B \cup C$ . Then  $R = A \cup B \cup C$   $C \cup D = A \cup B \cup C$ . Now, by Lemma 4.1, we have |R:K| = 4 where  $K = A \cap B \cap C = Z(R)$ . Thus by Theorem 3.1,  $|\operatorname{Cent}(R)| = 4$ , which is a contradiction. Therefore no one of A, B, C or D is contained in the union of the other three.

Let  $r \in (A \cap B) - (C \cup D)$  then  $r \in C(a) \cap C(b)$  which gives  $a, b \in C(r)$ . But  $a \notin C(b)$ , so  $C(r) \neq A, B$ . Again  $r \notin C, D$ ; so  $C(r) \neq C, D$ . Also  $C(r) \neq R$ , since  $r \in R - Z(R)$ . Therefore  $|\operatorname{Cent}(R)|$  must be at least 6, a contradiction. Hence  $(A \cap B) - (C \cup D) = \emptyset$ . This shows that no element of R is in exactly two proper centralizers.

Let  $r \in (A \cap B \cap C) - D$  then  $r \in C(a) \cap C(b) \cap C(c)$ . Therefore  $a,b,c \in C(r)$ . But  $b \notin C(a),c \notin C(b)$ . So  $C(r) \neq A,B,C$ . Also  $C(r) \neq D,R$ ; as  $r \notin D$  and  $r \notin Z(R)$ . Therefore  $|\operatorname{Cent}(R)|$  must be at least 6, a contradiction. Hence  $A \cap B \cap C - D = \emptyset$ . Thus no element of R is in exactly three proper centralizers.

From above, it can be seen clearly that

$$|R| = |A \cup B \cup C \cup D| = |A| + |B| + |C| + |D| - 3|Z(R)|.$$

(b) Note that for any two proper centralizers S and T of R we have  $S\cap T=Z(R)$ , since no element of R is in exactly two as well as three proper centralizers. Also any proper centralizers of R are additive subgroups of R, so  $\frac{|S||T|}{|S+T|}=|S\cap T|=|Z(R)|$ . Since  $S+T\subseteq R$  we have  $|Z(R)|\geq \frac{|S||T|}{|R|}$ .

Again by part (a),

$$|R| = |A| + |B| + |C| + |D| - 3|Z(R)|$$
  
 
$$\geq 2|Z(R)| + 2|Z(R)| + 2|Z(R)| + 2|Z(R)| - 3|Z(R)|.$$

Thus 
$$|R:Z(R)| \geq 5$$
. If  $|R:Z(R)| = 5$  then  $\frac{R}{Z(R)} \cong \mathbb{Z}_5$ , a contradiction. Therefore  $|Z(R)| \leq \frac{|R|}{6}$ . So,  $\frac{|S||T|}{|R|} \leq |Z(R)| \leq \frac{|R|}{6}$ .

We would like to mention here that the group theoretic analogues of Lemma 4.1 and Lemma 4.2 can be found in [4, p. 52-53] and [3, p. 370] respectively. Now we prove the main theorem of this section which characterizes finite 5-centralizer rings.

**Theorem 4.1.** Let R be a finite ring. Then  $|\operatorname{Cent}(R)| = 5$  if and only if  $\frac{R}{Z(R)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ .

*Proof.* Let  $\frac{R}{Z(R)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ , then by Theorem 2.5, we get  $|\operatorname{Cent}(R)| = 5$ .

Conversely, let  $|\operatorname{Cent}(R)|=5$ . Let A,B,C,D be the four proper centralizers of R. Then by Lemma 4.2(b),  $\frac{|A||B|}{|R|} \leq |Z(R)| \leq \frac{|R|}{6}$ . Our aim is to get more near lower bound for |Z(R)|. We may assume without loss of generality that  $|A| \geq |B| \geq |C| \geq |D|$ . Suppose  $|A| < \frac{|R|}{3}$ , as  $1 < |A| \leq \frac{|R|}{2}$ . That is  $|A| \leq \frac{|R|}{4}$ . Now by Lemma 4.2(a),  $|R| \leq |R| - 3|Z(R)| < |R|$ , a contradiction. Hence  $|A| = \frac{|R|}{2}$  or  $|A| = \frac{|R|}{3}$ . If  $|A| = \frac{|R|}{2}$ , then |R| = |A| + |B| + |C| + |D| - 3|Z(R)| gives  $\frac{|R|}{2} < |B| + |C| + |D|$  and so  $\frac{|R|}{6} < |B|$ . Also, applying Lemma 4.2(b) on A and B we have  $\frac{|R|}{6} < |B| \leq \frac{|R|}{3}$ . So |B| is one of  $\frac{|R|}{3}$ ,  $\frac{|R|}{4}$  or  $\frac{|R|}{5}$ . Reapplying Lemma 4.2(b) on A and B we have,

$$\frac{|A||B|}{|R|} \leq |Z(R)| \leq \frac{|R|}{6}$$

which gives  $\frac{|R|}{10} \leq |Z(R)| \leq \frac{|R|}{6}$ . Thus |Z(R)| is one of  $\frac{|R|}{6}$ ,  $\frac{|R|}{7}$ ,  $\frac{|R|}{8}$ ,  $\frac{|R|}{9}$  or  $\frac{|R|}{10}$ . Let  $|Z(R)| = \frac{|R|}{7}$ ,  $\frac{|R|}{9}$  then 2 divides 7 and 9, which is not possible. If  $|Z(R)| = \frac{|R|}{6}$  then  $\frac{R}{Z(R)} \cong \mathbb{Z}_6$ , a contradiction. Let  $|Z(R)| = \frac{|R|}{8}$  then  $\frac{|R|}{8}$  divides |B|. If  $|B| = \frac{|R|}{3}$ ,  $\frac{|R|}{5}$  then 3, 5 divides 8, a contradiction. Therefore  $|B| = \frac{|R|}{4}$ . By Lemma 4.2(a), we have  $\frac{5|R|}{8} = |C| + |D|$ . Also  $|B| \geq |C| \geq |D|$ . So  $|C| + |D| \leq \frac{|R|}{2} < \frac{5|R|}{8} = |C| + |D|$ , a contradiction. If  $|Z(R)| = \frac{|R|}{10}$ , then  $\frac{|R|}{10}$  divides |B|. If  $|B| = \frac{|R|}{3}$ ,  $\frac{|R|}{4}$  then 3, 4 divides 10, a contradiction. Therefore  $|B| = \frac{|R|}{5}$ . Now Lemma 4.2(a) gives,  $|C| + |D| = \frac{6|R|}{10}$ . Also  $|B| \geq |C| \geq |D|$ , therefore  $|C| + |D| \leq \frac{2|R|}{5} < \frac{6|R|}{10} = |C| + |D|$ , a contradiction.

If  $|A|=\frac{|R|}{3}$  then Lemma 4.2(a) gives,  $\frac{2|R|}{3}<|B|+|C|+|D|$  which gives  $\frac{2|R|}{3}<3|B|$  and so  $|B|\geq\frac{|R|}{4}$ . Also  $|A|\geq|B|$ , so  $|B|=\frac{|R|}{3}$  or  $\frac{|R|}{4}$ . Again, applying Lemma 4.2(b) on A and B we get,

$$\frac{|A||B|}{|R|} \le |Z(R)| \le \frac{|R|}{6}$$

which gives  $\frac{|R|}{12} \leq |Z(R)| \leq \frac{|R|}{6}$ . Therefore |Z(R)| is one of  $\frac{|R|}{6}, \frac{|R|}{7}, \frac{|R|}{8}, \frac{|R|}{9}, \frac{|R|}{10}, \frac{|R|}{11}$  or  $\frac{|R|}{12}$ . Now if  $|Z(R)| = \frac{|R|}{7}, \frac{|R|}{8}, \frac{|R|}{10}, \frac{|R|}{11}$  then 3 divides 7, 8, 10, 11, a contradiction. Let  $|Z(R)| = \frac{|R|}{6}$  then as above we get a contradiction. Let  $|Z(R)| = \frac{|R|}{9}$  then  $\frac{R}{Z(R)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ . Let  $|Z(R)| = \frac{|R|}{12}$  and  $|B| = \frac{|R|}{3}$  then applying Lemma 4.2(b) on A and B we have,  $\frac{|R|}{9} \leq \frac{|R|}{12}$ , a contradiction. If  $|B| = \frac{|R|}{4}$  then Lemma 4.2(a) gives,  $|C| + |D| = \frac{4|R|}{6}$ . Also  $|C|, |D| \leq \frac{|R|}{4}$ , so  $|C| + |D| \leq \frac{3|R|}{6} < \frac{4|R|}{6} = |C| + |D|$ , which is not possible. Hence  $\frac{R}{Z(R)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ .

### 5 Relation between $|\operatorname{Cent}(R)|$ and d(R)

Note that d(R) = 1 if and only if R is commutative. Therefore, by Proposition 2.1, we have  $|\operatorname{Cent}(R)| = 1$  if and only if d(R) = 1. By Theorem 3.1 and Theorem 1 of [14, p. 31], we have the following result.

**Proposition 5.1.** Let R be a non-commutative finite ring. Then  $|\operatorname{Cent}(R)| = 4$  if and only if  $d(R) = \frac{5}{8}$ .

In [14, p. 31], MacHale also proved the following theorem:

**Theorem 5.1.** Let R be a non-commutative finite ring and p the smallest prime dividing the order of R. Then  $d(R) \leq \frac{1}{p^3}(p^2+p-1)$ , with equality if and only if  $|R:Z(R)| = p^2$ .

Now by Theorem 2.5 and Theorem 5.1, we have the following interesting connection between d(R) and  $|\operatorname{Cent}(R)|$ .

**Proposition 5.2.** Let R be a non-commutative finite ring and p the smallest prime dividing the order of R. If  $d(R) = \frac{1}{p^3}(p^2 + p - 1)$  then  $|\operatorname{Cent}(R)| = p + 2$ .

We conclude the paper by noting that the converse of Proposition 5.2 holds for some finite non-commutative rings. In particular, by Theorem 2.6 and Theorem 5.1, we have the following result.

**Proposition 5.3.** Let R be a non-commutative ring whose order is a power of a prime p. If  $|\operatorname{Cent}(R)| = p + 2$  then  $d(R) = \frac{1}{v^3}(p^2 + p - 1)$ .

## Acknowledgments

The authors would like to thank the referee for his/her valuable comments and suggestions. The first author is grateful to the Department of Mathematical Sciences, Tezpur University for its support while this investigation was carried out as a part of her Ph. D. thesis.

#### References

- [1] A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq., 7 (2000), 139–146.
- [2] M. Behboodi, R. Beyranvand, A. Hashemi and H. Khabazian, Classification of finite rings: theory and algorithm, Czechoslovak Math. J., **64** (2014), 641–658.
- [3] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Magazine, **67** (1994), 366–374.
- [4] M. Bruckheimer, A. C. Bryan and A. Muir, Groups which are the union of three subgroups, Amer. Math. Monthly, 77 (1970), 52–57.
- [5] S. M. Buckley, D. MacHale and A. Ní Shé, Finite rings with many commuting pairs of elements. Available from: http://archive.maths.nuim.ie/staff/sbuckley/Papers/bms.pdf.
- [6] S. M. Buckley and D. MacHale, Contrasting the commuting probabilities of groups and rings. Available from: http://archive.maths.nuim.ie/staff/sbuckley/Papers/bm\_g-vs-r.pdf.
- [7] J. H. E. Cohn, On *n*-sum groups, Math. Scand., **75** (1994), 44–58.
- [8] C. J. Chikunji, A Classification of a certain class of completely primary finite rings, Ring and Module Theory, Trends in Mathematics 2010, Springer Basel, pp 83–90.
- [9] J. Dutta, D. K. Basnet and R. K. Nath, A note on *n*-centralizer finite rings, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), **LXIV** (2018), 161–171.

- [10] J. B. Derr, G. F. Orr and P. S. Peck, Noncommutative rings of order  $p^4$ , J. Pure Appl. Algebra, **97** (1994), 109–116.
- [11] K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly, 75 (1968), 512–514.
- [12] B. Fine, Classification of finite rings of order  $p^2$ , Math. Magazine, **66** (1993), 248–252.
- [13] R. W. Goldbach and H. L. Claasen, Classification of not commutative rings with identity of order dividing  $p^4$ , Indag. Math., **6** (1995), 167–187.
- [14] D. MacHale, Commutativity in finite rings, Amer. Math. Monthly, 83 (1976), 30–32.
- [15] R. Raghavendran, A class of finite rings, Compositio Math., 22 (1970), 49–57.

**Jutirekha Dutta** Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India.

E-mail: jutirekhadutta@yahoo.com

**Dhiren Kumar Basnet** Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India.

E-mail: dbasnet@tezu.ernet.in

**Rajat Kanti Nath** Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India.

E-mail: rajatkantinath@yahoo.com