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A New Fuzzy Information Inequalities and its Applications in

Establishing Relation among Fuzzy f-Divergence Measures
Sapna Gahlot and Ram Naresh Saraswat

Abstract. There are many fuzzy information and divergence measures exist in the literature of
fuzzy Information Theory. Inequalities play important role for finding the relations. Here, we
will introduce some new information inequalities on fuzzy measures and their applications in
pattern recognition. Also established relations between new and well known fuzzy divergence
measures with help of the fuzzy f-divergence measures and jensen’s inequality.

1 Introduction

In information theory, Shannon [28] defined the entropy measure for a probability distribution.
Fuzzy entropy, a fuzziness measure (cf. [21]) often used and cited in many literatures, was intro-
duced by Zadeh [34, 35]; then De Luca and Termini [20] defined an entropy of a fuzzy set based
on Shannon’s function. Later on, many other researchers made more effort in this particular area.
In 1975, Kaufmann [18] proposed a new fuzziness measure of fuzzy set by a distance between its
membership function and its nearest Classical(Ordinary) sets. It has broad applications in many
areas such as Pattern recognition, image processing, fuzzy clustering, speech recognition, feature

selection, fuzzy aircraft control, bio-informatics etc.

Afterwards, a number of other researchers have studied the fuzzy divergence measures in dif-
ferent ways [26] and provide their applications in different areas. The fuzzy divergence measure
introduced by Fan and Xie [8] is based on exponential operation and its relation with fuzzy diver-
gence measures [2]. Prakash et al. [23] proposed two fuzzy divergence measures corresponding
to Ferreri [11] probabilistic measure of directed divergence. Ghosh et al. [14] gave its application
in the area of automated leukocyte recognition. The study submitted by Montes et al. [22] in 2002
was based on special classes of divergence measures and used the link between fuzzy and proba-
bilistic uncertainty. Bhatia and Singh [4] proposed the fuzzy divergence measure corresponding

to Taneja [30]. Tomar and Ohlan [32] studied a sequence of fuzzy mean difference divergence
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measures by establishing inequalities among them and provided their applications in the context

of consistency in linguistic variables and pattern recognition.

Entropy is the important concept of Information Theory. Shannon [28] use the entropy to

measure a degree of uncertainty of randomness in a p.d. Let
n
Fn = {P == (p17p27p37 o 7pn) - Di Z Oyzp’b = ]-7 }
i=1

be a set of complete finite discrete p.d., and

n

H(P) =Y —pilogp;.
=1

Directed divergence is a cross entropy measure which provides a distance between the two
p.d. Kullback and Leibler [19] proposed a measure of directed divergence between the two dis-
tributions P = (p1,p2, -+ ,pn) and Q = (¢1,92, - ,qn) as:

D(P @)= pilog())
i=1 !

The Csiszar’s f-divergence measure and new f-divergence measure contains divergences

used in determining the affinity between two p.d using a convex function f, defined on (0, 00).

Cr(P.Q) =Y af(%)
=1

qi

and

S (P.Q) = Y a5,
i=1 !

2 Fuzzy Sets and Fuzzy Measures of Information

Fuzziness is a feature of uncertainty, results from the lack of sharp difference of being or not being

a member of the set. A fuzzy set A defined on a universe of discourse X is given as Zadeh [34]

A= {(z,paz)/z € X)},

where pia(z) : X — [0, 1] is the membership function of A. The membership value describes
the degree of belongingness of X in A.

Fuzzy entropy corresponding to Shannon’s entropy given as
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n

H(N) = Y —(na(ai) log palws) + (1 = pa(a:)) log(1 - pa(a))).
i=1
This idea of divergence measure was extended from probabilistic to fuzzy set theory by giving
a fuzzy information measure for discrimination of a fuzzy set B relative to some other fuzzy set A.
Let A and B be two fuzzy sets defined in universe of discourse X = {x1,x9, - , 2, } having the
membership values 4 (x;) and pp(z;), i = 1,2, -- - , n respectively. Then the fuzzy divergence
measures : (Here p4(x;) and pp(z;) are denoted by 14, and pp,.)

(i) Fuzzy K-L Divergence [19]-

K(AB) =Y [M log <Z2> +(1—pa,)log (1““‘)] 2.1)

i=1 i — KB;

(ii) Fuzzy Relative Information of type n [31] :-

D,(A,B) = (n(n — 1))71 [zn: <(MAZ~)”(MB¢)1_” + (1= pa)" (1 - “Bi)l_n> - 1} ’
=1
(2.2)

wheren #£ 0, 1.

(iii) Fuzzy Chi-Square Divergence [24]:-

2 - . (MA1)2 (1 _MAi)Q
X(A,B)—;[ VT }1, (2.3)

(iv) Fuzzy Relative Jensen-Shannon Divergence [33]:-

$4,3) = 3 [naton (20 ) 11— tog (202 )] o
i=1 g g i i

(v) Fuzzy Relative Arithmetic-Geometric Divergence [5]:-

)= 1[5 e (M)

(g ()] s

(vi) Fuzzy Unified Relative Jensen-Shannon and Arithmetic-Geometric Divergence of type

1=

n

MGy (A, B) = <n(n - 1)>1(ZH: [MAZ. (M)n+

2pB;
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(1- MA)(H‘—_“B)H} _ 1), (2.6)

n # 0,1
(vii) Fuzzy Hellinger Discrimination [1]:-

M(A,B) =1—T(A,B)

- ;é [(M_ \/‘TBi)Z + (\/<1 —a;) — \/(1 - MBJ)?], (2.7)

where T(4, B) = 3 [/iais: + /(= ) (1= )]

(viii) Fuzzy Triangular Discrimination [10]:-

_ - (,uAi — :uBi)Q (MBi — :uAi)Q
A(A’B) N z—zl [ (MAi + :u‘Bi) - (2 — kA, — ,uBi)}’ (28)

(ix) Fuzzy Symmetric Chi-Square Divergence [9]:-

@(Av B) - XQ(Aﬂ B) + XQ(BvA>

+

_ n (,UJAZ' - /‘Bi)Q(MAi + MBi) (MBZ» _ NAi)2(2 s, — NBi)
= ZZ; [ (pa;1B;) (1= pa)((1 = pa,) (2.9)

(x) Fuzzy Symmetric J-Divergence Measure [7]:-

N(A, B) = K(A, B) + K(B, A)

= Z |:<:UA1' — pB;) log <Z21> + (MBi — pa,) log <1 : Zgi)] . (2.10)

=1 t

(xi) Fuzzy Relative J-Divergence Measure [29]:-

I (A, B) = f: [(MA,-, — ;) log (W)Jr

i=1 i

(2 — pa, —u&))] (2.11)

(1B, — pa;)log ( 2(1— pg,)

(xii) Fuzzy Symmetric Arithmetic-Geometric Divergence [30] -

F(A,B) = %(H(A, B)+ H(B,A)) = i [(M) log (M e )*

=L 2VA B,
=52 o s 2] e
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(xiii) Fuzzy Symmetric Chi-Square, Arithmetic and Geometric Mean Divergence Measure
[17]:-

NE

: .~ MB;) (15, — pa,)
A= i=1 [( M\I;/TZZ ) ! (\/(1 ﬁB:u’Ai)l(jlf_ MBi)>] 21

(xiv) Fuzzy Symmetric Jensen-Shannon Divergence Measure [5, 27]:-

I(A, B) = S,(A, B) + Sy(B, A)

=53 e (2 e (25 )
,Z[l_,m 1og(2 <M {A;B)+<1_MBinog(z?_(Z;ﬂ_B;}Bi)] (2.14)

3 New Fuzzy Information Inequality

Theorem 3.1. Let f : Ry — R, be a convex function and normalized i.e. f(1) = 0. Then ¥ A and
B be two fuzzy sets defined in universe of discourse X = {x1,x2, ..,y } having the membership

values j14, and pp,, 1 = 1,2, ..,n respectively,

1 — A, 1—pa
< 2; [M&f( Bz‘) +(1—us )f<1—u3 )}
1
Si(A,B) < in(A, B), (3.1)
and equality holds in (3.1) iﬁ‘% = % == %.
1 2 n

Proof. Let f : k C R — R be differentiable convex on the interval k and y € k°, where k¥ is
interior of k. Let A = (A1, Aa, ....., Ap) € X, then Jensen inequality is

f(z)\zyz) < Z&‘f(yz‘)-

if)\l:)\2:%and)\gz)u;:---:)\n:(),then
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1
POy < D) + F)l
Putting y; = y and y» = 1 then
1 1 1
FEE=) < 51Fw) + FD] < 5 (),
since f(1) =0. Puty = Z;}f and apply fuzzy, then
/'LAi + IU’BZ‘ 2 - MAZ‘ - MBZ‘ 1 /’LA-L' 1— MAZ'

Multiplying by 5, and taking summation both side, we have
- MA-"FNB) 2 — g
Z [IUB f( 2/’[/.82' ( " )f 2(1 - ,U/Bi)

<53 [ (B2) + 0= ) (F22)],

thatis, S¢(A, B) < $C(A, B). Equation (3.1) is a relation between fuzzy new f-divergence and

fuzzy Csiszar f-divergence functional. O]

4 Results Analysis:-

In this section, we shall show relationship in the form of inequality using the results (3.1) of the-
orem (3.1) among the various known measures such as Csiszar’s, new f-divergence, Hellinger,

Chi-square, and J-divergence etc.

Result 1. Let A, B € X, then we have the following relations
K(A, B), (4.1)
K(B, A), (42)

where S;(A, B) and K (A, B) are Fuzzy Relative Jensen Shannon Divergence Measure and Fuzzy
K-L Divergence Measure given in (2.1) and (2.4).

Proof. Consider the mapping f : (0,00) — R,

fy) = —logy, £/ (y) = ;2 >0 Wy >0, f(1) = 0,
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so f is convex and normalized. Then
- pa; + 1B 2 — pa; — pB;
&mngpf( ) =) (S )]
. 2(1 - :U’Bi) _
_ Z [ 15, log <u T ) (1 — pup,)log (Q_MA_MB)} — S,(B,A).  (43)
Interchange by A — B,
& Ha; + pB; 2 — pa, — 1B,
Sf(B7A) :; [NAif( 204, ) +(1_NAi)f( 2(1_/1/141') )}
_ - 214, 2(1 - :uAi) _
= ; {#Ai log (M> + (1 — pa,)log <m>} = Si(A, B) (4.4)
Similarly,
- PA; 1 — pa,
Cy(A,B) = ; [uBif(M ) +(1- uBi)f(l — MB)}
- 1B; L—pB\] _
:ZZ; {MBi log(MAi) + (1 — pp,)log (1_,[%)} = K(B,A) (4.5)
Interchange by A — B,
L —pp,
; |14, f( ) (1= na)f(5 —uA,->]
L — pa, _
Z;[/LA log< Z) (1 —pa,)log <(1_NBZ))} = K(A, B) (4.6)
O
From equations (3.1), (4.3), (4.4), (4.5) and (4.6) give the results (4.1) and (4.2).
Result 2. Consider A, B € X, then we have the following relations
H(B, A) < K(A,B) (47)

where K (A, B) and H(A, B) are Fuzzy K-L divergence and Fuzzy Relative Arithmetic-Geometric

divergence measure given in (2.1) and (2.5).

Proof. Consider the mapping f : (0,00) — R

ﬂwzm%%f@=;>QW>mﬂn=
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so f is convex and normalized. Then

S9048) = 32 g (M) 0 - (P2 )
Sl )+ (e )
= H(B, A), (4.8)

€)= 3 [ () + 0= o (1= 52

= Zzn; [MAi log (%) + (1 — pa,)log (&:Z}’;)ﬂ = K(A, B.) (4.9)

The equation (3.1) using (4.8) and (4.9) gives the result (4.7). O
Result 3. Consider A, B € X, then we have the following relations

Jn(A,B) < N(A, B), (4.10)

I(A,B) + F(4,B) <  N(4, B), (4.11)

where N(A, B), Jn (A, B), F(A, B),and I (A, B) are Fuzzy J-divergence, Fuzzy relative J-divergence,
Fuzzy arithmetic-geometric divergence and Fuzzy jensen-Shannon divergence measure given in
(2.10), (2.11),(2.12) and (2.14) respectively.

Proof. Consider the mapping f : (0,00) — R

) = (v — 1logy. 1 () = yytl > 0,¥y > 0, f(1) = 0,

so f is convex and normalized. Then

S1(A, B) = Zn; [MBJ(W) +(1- w)f(Wﬂ

1=

_ % Zn: [(NAZ- — pip;) log (W) + (uB; — pa,)log (W)} (4.12)
i=1 i A

1
= 3 Jm(4,B).

n

crth =3 (22 + - (122
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3

-3 (4, = ) tog (B2) + (s, — ) og = MO]=Nap) @

(2

The equation (3.1) using (4.12) and (4.13) gives (4.10).

Now again we get

S¢(A, B)
_ ;g [u Jog (uA +us) 13, 10g (MAM/;? )}
Q*MAi*MBiﬂ

+5 Z [ 1—NA)10g(m) _(1_MBi)log<2(1—,uB,~)

= % Zj; (14, log (ﬁ) + pup, log (/ﬂjm)ﬂ
+ {(1—MA1-)10g (M) + (1 — pp,)log (M)}

=1

3

N | — N | —
i ‘M:

[ (uAi + 1B A, + 1B )
pa, log
24, 24,

=1
(2— pa, — pB;) (2 — pa; — 13,
+ (1 - s, log ( 21— pup,)  2(1— pa) )

=1(A,B) +zn: |:/LAZ. log (MAi +'uBi> +(1- uAi)log< (2= pa; — si) ))}
i=1

2/RAlB, 2¢/(1 — pa,)(1 — ps,

(4.14)

Using equations (3.1), (4.13) and (4.14), we get

1A B+ Z oo (411

; [ 1 — pa log<2\/ 1:/:2 _1Mfu3i))} % (A, B) (4.15)

Interchanging A and B we get

2 — pa; — pB; 1
Z [(1 ~rn)log <2\/(1 —pa)(1 - MBZ-))} VA 1o

Adding inequalities (4.15) and (4.16)
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I(A,B) + I(B, A) + Z; [(uAi + ;) log (Wlmﬂ +

2—pa—p 1 1
;[(2—/«%1'_.“32')10 (2\/1_MA )(119,“32))} §§N(A,B)+§N(B’A)

9I(A, B) + 2F(A, B) <

> [(ua, s o (2 >}+z[ o~ ) log ({140

=1

Therefore I(A,B) = I(B,A)and 21(A, B) + 2F (A, B) < N(A, B). O
Note that, from equation (4.11), we get

(a2) F(A,B) < AN(A, B), with equality if A = B, where I(A, B) and F(A, B) both are

positive.
Result 4. Let A, B € X, then we have the following relations
A(A,B) < Ef (A, B), (4.17)

where A(A, B) and Ej (A, B) are Fuzzy Triangular discrimination and Fuzzy Symmetric Chi

square, Arithmetic and Geometric mean divergence measure give in (2.8) and (2.13) respectively.

Proof. Consider the mapping f : (0,00) — R

(y=12% .
7 S (y) =

so f is convex and normalized. Then

3;1+
—y 2
4?J

fly) = y35+;y2>0Vy>0f()

3
1

[ (pa, —ps)* (nB, — pa,)?
- ; '<\/2M;(MAZ~?‘/~LB¢)> ! (\/2(1 —Mli)(Q —AMBZ- - ,UAi)ﬂ, o
0,3 = 3 [ (A0) 4 1 = ) (1)

@
I
—
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3

—_ )2 . — )2
Sl (sl s

i=1
From equations (3.1), (4.18) and (4.19)

[ e (na, — 1B,)* (1B, — pa,)?
; [El = 2(\/2H;(NA¢iMB¢)> ! <\/2(1 - M;)(Q _AHBi - MAJH

_ (wa; — pB,)? (nB; — pra,)?
N \@<\/MB?(MAZ- iuBi)> i <\/(1 - MB?)(Q —/LBi — pa,) }’
and
n Cun)2 )2
LB ; [(M) i <(2(/iBl:Ai liA;L)Bi))}
- \@Z K A(u;l;BJ)ﬂuAiuBi)jL
(hB, — pa,)?
(\/(1 —pa)?+ (1 —j/iBi)2 i 2(1— pa,)(1 - uBi)ﬂ
pa; — i) (kB — pa,)?
= fz [<\/MBA (14, 4B-MB )> (\/(1 —,LLB?)(2 —ZAZ- - ,LLBi))]
< El(A, B).
Hence the relation (4.17) is proved. ]

Result 5. Let A, B € X, then we have the following relations

35X (4, B) + (A, B) < p(4, B) (4.20)
where x%(A, B), A(A, B) and (A, B) are fuzzy Chi-square divergence, Fuzzy triangular dis-
crimination and Fuzzy symmetric Chi-square divergence measure give in (2.3), (2.8) and (2.9)

respectively.

Proof. Consider the mapping f : (0,00) — R

_1)2 .
f(y)z(y”yw,f (y)=2+y23>0,vy>0,f(1)=

so f is convex and normalized. Then

1=
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+
= B; (1—ps,) 2L pa,+ B 2= pa — pB;

& [ pa, — 13, (,UAI-—MBZ-V} +1i[(ﬂAi_MBi>2+ (,UAZ-—,UBi)Z}

= ixm B)+ 34 (AB), (421)

CraB) =3 mf (1

=1

) +(1 —uBi)fG_Z;)} = (A, B) (4.22)

The equation (3.1) using (4.21) and (4.22) gives the result (4.20). O

Result 6. Let A, B € X, then we have the following relations

MG,(B,A) < -D,(A, B) (4.23)

(NN

where MG, (A, B) and D,,(A, B) are Unified fuzzy relative Jensen-Shannon and Arithmetic-
Geometric Divergence of type n and Fuzzy relative information of type n give in (2.6) and (2.2),

respectively.
Proof. Consider the mapping f : (0,00) — R

[n(n =17y = 1] if #0,1,
fn(y) = { —logy if n=0, (4.24)
ylogy if n=1.

Since £ (y) > 0and f(1) = 0, so the function f is convex and normalized. Then

)= 3 s (P52 + 0 ) (P2 )]

i=1

= [n(n - 1)]—1[[iu3i(“f‘;:;3i)” (1 —MBJ(W)"} 1] @)

i=1

= (ntn-1)" [ > (A e (1= pa )" (1 - uBy—”) - 1] (4.26)
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= D, (A, B)
The quation (3.1) using (4.24), (4.25) and (4.26) gives the result (4.23). O

Particular Cases of Result 4.6:-

(i) If n = 0,1 then we have proved in equation (4.1) and (4.7) of results in (4.1) and (4.2)

respectively.

(ii) Ifn = —1 then we get the following relation
A(A, B) < x*(B, A). (4.27)
Proof. Putn = —1 in equation (4.23), then

MG—I(BvA) < D—l(Av B)a (428)

N | =

1/ Q(MBi)Q 2(1 - :uBi)Z
MG?l(B7A) B 2(; HA; + UB; - Q_MAz _MBi] 1>
1/ — 2004, LB, 2(1 — pa,) (1 = pp,)
== pp, — 2B 91— pp) — L -1
2 <; |: 1B HA; + 1B, ( #BI) 2—pa, — pB, ] )
1 ot 2ua,pp, 2(1— pa)(1 — pg,
2 i—1 HA; + BB; 2- HA; — BB;
1 ¢ Cuaps) | 200 —pa)(1 - pp,)
— 1 _ 2 v + 7 i ,
2[ ;((”AZ_FMBZ) (2_luAi_luBi) )}
MG_1(B, A) = % A (A, B)[ using (2.8) and (4.25)], (4.29)
and
1
D_1(A,B) = §X2(B, A)[ using (2.3)(2.3) and (4.26)], (4.30)
using equations (4.28), (4.29) and (4.30) gives the result (4.27). ]

(iii) ifn = %, then we have the following relation
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4[1—T(A;B,B)} < M(A, B). (4.31)
Proof. Ifn = 3 putin (4.23)
MG, (B, A) < %D%(A,B) (432)
where
MG (B, A) = 4[1 _ i (\/MAiuBiQJr (1B;)? N V(L= pa,)(1 - ,121,Bi) +(1— uBi)2>}
pa
:4[1—T<A;B,B>] (4.33)

(using (2.7) and (4.25)) and

n

Dy (A, B) = 4[1 =" (ViEmps, + /(1 - pa) (1 -, )| =201(4,B). @39

i=1

using equations (4.32), (4.33) and (4.34) gives the result (4.31). O

5 Case Study

We consider the problem having four known patterns A;, Az, A3 and A4 which have classifica-
tions Ry, Ra, R3 and R4 respectively. These are represented by the following fuzzy sets in the

universe of discourse X = {x1,z9, x3}.

A ={<x1,.7T> < 29,3 > < x3,.1 >},
As = {< x1,4 >, < x9,.2 >,< x3,.5 >},
Az ={<x1,.6 >, < x9,.3>,<x3,.8>},
Ay ={<x1,.7T> < x9,.5 > < x3,.8 >}

Given an unknown pattern B, represented by the fuzzy set
B={<z,.5><x9,.4><x3,.9>}

From the calculated numerical values of fuzzy divergence measure given in Table 1, the inequali-

ties proposed in result (4.1) are verified

Si(A, B) < ~K(A, B).

N |



A New Fuzzy Information Inequalities ... 123

Table 1: Calculated numerical values of fuzzy divergence measures.

Si(A, B) | K(A,B)
1717 .8085
.0512 2703
.0085 .0374
.0154 .0639

6 Conclusions

In this current paper, we have achieved some series of fuzzy divergence measure by using fuzzy
Csiszar’s f-divergence and fuzzy new f-divergence measures properties with proof of validity, We
have recommended generalized series of combination of kullback-Leibler, Arithmetic divergence
measure etc. we have also derived Inequalities relating with new and well known fuzzy divergence

measures.
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