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On the Babai and Upper Chromatic Numbers of Graphs of
Diameter 2

Peter Johnson and Alexis Krumpelman

Abstract. The Babai numbers and the upper chromatic number are parameters that can
be assigned to any metric space. They can, therefore, be assigned to any connected simple
graph. In this paper we make progress in the theory of the first Babai number and the upper
chromatic number in the simple graph setting, with emphasis on graphs of diameter 2.

1 Introduction

A distance function on a non-empty set X is a function ρ : X ×X → [0,∞) such that, for
all x, y ∈ X , (i) ρ(x, y) = ρ(y, x) and (ii) ρ(x, y) = 0 ⇐⇒ x = y. If, in addition, (iii)
ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X , then ρ is a metric, and the pair (X, ρ) is a metric
space.

A coloring of a set X is a function ϕ : X → C for some set C , called the set of colors. Such
a coloring is completely described by the color sets ϕ−1({c}) = {x ∈ X|ϕ(x) = c} for c ∈ C .
Some of these sets may be empty. If we allow empty sets in a partition, then the color sets partition
X . Conversely, every partition of X constitutes a coloring of X .

Suppose that ρ is a distance function on a set X , ϕ : X → C is a coloring of X , d > 0 and
c ∈ C . We will say that the distance d is forbidden for the color c if ϕ−1({c}) contains no two
points x, y ∈ X such that ρ(x, y) = d. To put it another way, if x, y ∈ X and ρ(x, y) = d, then
x and y cannot both be colored c. If the distance d is forbidden for every c ∈ C , then we say that
the distance d is forbidden by the coloring ϕ.

Suppose that X and ρ are as above, and D ⊆ (0,∞). The distance graph G(X,D) is the
simple graph with vertex set X and x, y ∈ X adjacent if and only if ρ(x, y) ∈ D. (It is con-
ventional to suppress mention of ρ in the notation. In this paper, it will always be clear what
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distance function is under discussion.) When D = {d}, we can use the notation G(X, d) as well
as G(X, {d}).

IfP is a graph parameter it is customary to shortenP (G(X,D)) toP (X,D). Thus, the chro-
matic number ofG(X,D) is denoted χ(X,D). Due to the way adjacency is defined inG(X,D),
we have χ(X,D) = min[|C|; there is a coloring ϕ : X → C which forbids each d ∈ D].

Let k be a positive integer. The kth Babai number of (X,ρ) is Bk(X) = sup[χ(X,D);D ⊆
(0,∞) and |D| = k]. Since χ(X,D) ≤ |X| for allD ⊆ (0,∞), the sup, or least upper bound, in
the definition ofBk(X) is valid. However, in most cases, including all of those of interest to us in
this paper, Bk(X) is finite and the sup above is a maximum.

The upper chromatic number of (X, ρ), denoted χ̂(X), is the smallest possible integer n, if
any exists, such that for every sequence d1, ..., dn ∈ (0,∞) there is a coloringϕ : X → {1, ..., n},
such that the distance di is forbidden for the color i, for all i = 1, ..., n. If no such positive integer
exists, we set χ̂(X) = ∞. (The definition can be refined to allow χ̂ to take on different values
among the infinite cardinal numbers, but in this paper the values of χ̂ will always be finite.)

Later in this paper we may use c1, ..., cn as color names, rather than the integers 1, ..., n. It
is assumed throughout that c1, ..., cn are distinct colors.

For the rest of this section, we continue to assume that ρ is a distance function on some set
X .

Lemma 1.1. If m > χ̂(X) is a positive integer and d1, ..., dm ∈ (0,∞), then there is a coloring
ϕ : X → {1, ...,m} such that the distance di is forbidden for the color i for each i = 1, ...,m,

Proof. Let n = χ̂(X). Given d1, ..., dn ∈ (o,∞) there is a coloring ϕ : X → {1, ..., n} such
that di is forbidden for the color i, where i = 1, ..., n. We can consider ϕ to be a function into
{1, ...,m}. Then, with reference to this coloring, the distance dk is forbidden for the color k, for
n < k ≤ m, as well as for 1 ≤ k ≤ n, because for n < k ≤ m, ϕ−1({k}) = ∅

Lemma 1.2. If χ̂(X) < ∞, then B1(X) ≤ χ̂(X) ≤ |X|.

Proof. If |X| = ∞, then χ̂(X) ≤ |X|. Suppose X is finite. Any one-to-one function ϕ : X →
{1, ..., |X|} forbids all distances for all colors; therefore, χ̂(X) ≤ |X|.

Let n = χ̂(X), and suppose that d ∈ (0,∞). Consider the sequence d, ..., d of length n.
Since n = χ̂(X) there is a coloring ϕ : X → {1, ..., n} such that d is forbidden for each color.
Therefore, the distance d is forbidden by the coloring ϕ, and so χ(X, d) ≤ n = χ̂(X). Since this
holds for every d > 0, B1(X) ≤ χ̂(X).
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A remark: if ρ is the famous “discrete metric” on X , defined by

ρ(x, y) =

1, x ̸= y

0, x = y

then B1(X) = χ(X, d) = |X|.

The upper chromatic number was introduced in [6], where it was shown that, with the usual
absolute-value-of-the-difference metric on the real line R, χ̂(X) = 3. Spectacular work on more
exigent versions of the upper chromatic number, in which more than one distance must be for-
bidden for each color, has appeared in [1], [2] and [4], but mainly in the case X = R, where ρ is
the usual metric. It is strongly suspected that for n > 1, χ̂(Rn) = ∞ with respect to the usual
Euclidean distance, but the question is open.

The Babai numbers were proposed by Laszlo Babai in conversation with the first author of
[3], where the numbers may have first appeared in print. (We hear that Paul Erdős had the same
idea, but in a limited context.) The following appeared in [3], under the tacit assumption that all
of the numbers Bk(X) are finite, but it holds without that assumption.

Lemma 1.3. For any positive integers k and t, Bk+t(X) ≤ Bk(X)Bt(X).

From this and Lemma 1.2 we obtain the following.

Corollary 1.1. If χ̂(X) < ∞, then for each positive integer k, Bk(X) ≤ B1(X)k ≤ χ̂(X)k.

Since all the single-distance graphs G(R2, d) (with respect to the usual Euclidean distance
on R) are isomorphic, it follows that B1(R2) = χ(R2, 1), the ”chromatic number of the plane”,
now known to be either 5, 6, or 7 [7].

In [11] it was shown that Bk(R) = k+ 1 for each positive integer k, and from this the same
result follows with R replaced by Z. In [9] estimates of B1(Qn) and B1(Zn) are obtained. Here
Qn is the n-cube, with either the Euclidean distance in Rn or distance in Qn as a graph.

Estimation of the numbers Bk(Rn), for n, k > 1, seems to be a largely unexplored area in
combinatorial geometry. Also of interest, andwith connection to number theory, are the numbers
Bk(Qn), with the usual Euclidean distance on the set Qn of rational points in Rn. In [3] it was
shown that B1(Q2) = 2 and that B2(Q2) = 4. It was shown in [8] and [10] that B1(Q3) =

B1(Q4) = 4. In [5] it was shown that χ(Qn, 1), and thus B1(Qn), grows geometrically with n.
(If memory serves, the result is something like c(1.12+ o(1))n ≤ χ(Qn, 1) for some constant c.)



116 P. Johnson and A. Krumpelman

2 The Babai and upper chromatic numbers of simple graphs

Suppose H is a connected simple graph. Let distH denote the usual distance function in H :
for u, v ∈ V (H), distH(u, v) is the length of (number of edges in) a shortest walk in H from u

to v, or from v to u. (Such a shortest walk will always be a path.) Then (V (H), distH) is a metric
space, to which we can assign the Babai numbers and the upper chromatic numbers. These will
be denoted Bk(H) and χ̂(H).

If V (H) is finite then distH takes only the values 0, 1, ..., diam(H), where

diam(H) = max[distH(u, v);u, v ∈ V (H)] = the diameter of H.

In these cases, let, for k ∈ {1, ..., diam(H)}, H(k) be the graph defined by

V (H(k)) = V (H) and E(H(k)) =
{
uv|u, v ∈ V (H) and distH(u, v) = k

}
.

Then, H(1) = H and B1(H) = max{χ(H(k)); 1 ≤ k ≤ diam(H)}.

Inspection of the definitions reveals that there is no need to confine the discussion ofBk(H)

and χ̂(H) to connected simple graphsH . In a disconnected graphH , distH(u, v) is still defined
for vertices u and v in the same component of H . The meanings of ”a distance d is forbidden
for a color c in a coloring ϕ” and ”a distance d is forbidden by a coloring ϕ : V (H) → C” are
clear. Under these extended definitions, it is evident that if H has components H1, .., Ht, then
for any positive integer k, Bk(H) = max{Bk(Hj); 1 ≤ j ≤ t}, and furthermore, χ̂(H) =

max{χ̂(Hj); 1 ≤ j ≤ t)}.

From here on, all graphs will be finite and simple, unless otherwise specified. If G and H

are graphs, the disjoint union of G and H will be denoted G + H , and G ∨ H will denote the
join ofG andH ; this is obtained by taking disjoint copies ofG andH and adding an edge uv for
every u ∈ V (G), v ∈ V (H). The complement ofGwill be denotedG: this is obtained by taking
V (G) = V (G) and E(G) = E(K) \ E(G), where K is the complete graph on the vertex set
V (G). Note that G = G, G+H = G ∨H , and G ∨H = G +H . The following is obvious by
previous remarks.

Proposition 2.1. For any graphsG andH , χ̂(G+H) = max[χ̂(G), χ̂(H)], and for each positive
integer k, Bk(G+H) = max[Bk(G), Bk(H)].

SinceG∨H is of diameter 2 unless bothG andH are complete graphs, we leave the discussion
of χ̂(G∨H) and theBk(G∨H) to the next section. We finish this section with two easy results
that may be useful later.

Lemma 2.1. If H has componentsH1, ..., Ht andm = max{diam(Hj); 1 ≤ j ≤ t}, then for all
m ≤ k, Bk(H) = Bm(H).
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Proof. Suppose that m ≤ k; then Bm(H) ≤ Bk(H). Also, suppose D ⊆ (0,∞) and |D| = k.
Since at most m of the distances in D actually occur in H , H can be colored with Bm(H) colors
so that all the distances inD are forbidden. Thus, χ(H,D) ≤ Bm(H). This holds for all suchD,
so Bk(H) ≤ Bm(H).

Let Kn denote the complete graph on n vertices.

Proposition 2.2. For all positive integers n and k, Bk(Kn) = n = χ̂(Kn).

Proof. We may assume that n > 1. Since 1 is the only distance that occurs in Kn, we have by
Lemma 2.1 and the fact that χ(Kn) = n, for all 1 ≤ k, n = χ(Kn) = χ(Kn, 1) = B1(Kn) =

Bk(Kn) ≤ χ̂(Kn) ≤ |V (Kn)| = n.

Note: the graphs Kn, where 1 < n, are the only graphs of diameter 1.

3 Graphs of diameter 2

Lemma 3.1. If diam(G) = 2, then B1(G) = max[χ(G), χ(Ḡ)].

Proof. If diam(G) = 2, then 1 and 2 are the only distances realized in G. Therefore, G(2) = Ḡ,
so B1(G) = max[χ(G(1)), χ(G(2))] = max[χ(G), χ(Ḡ)].

Theorem 3.1. If diam(G) = 2, then χ̂(G) ≤ χ(G) + χ(Ḡ)− 1.

Proof. Let m = χ(G) + χ(Ḡ) − 1. We aim to show that if d1, ..., dm > 0, then there is a
coloring of V (G) with colors c1, ..., cm such that the distance di is forbidden for the color ci,
where i = 1, ...,m.

If any di /∈ {1, 2} we can color all of V (G) with ci. So, we need only consider sequences
of 1’s and 2’s. The order of the di is irrelevant so we need consider only sequences 2k1m−k in
which 2 appears k times and 1 appears m − k times. Since m = χ(G) + χ(Ḡ) − 1, for any
k ∈ {0, ...,m}, either χ(Ḡ) ≤ k or χ(G) ≤ m− k. If the former is true, color V (G) with χ(Ḡ)

colors so that the distance 1 in Ḡ is forbidden for all colors. Then, the distance 2 inG is forbidden
for all χ(Ḡ) colors. Similarly, if χ(G) ≤ m−k, color V (G)with χ(G) colors so that the distance
1 is forbidden for each color.

The following lemma is a corollary of remarks made in the proof of Theorem 3.1.

Lemma 3.2. Suppose that diam(G) = 2. In testing whether or not χ̂(G) ≤ n, for any n <

χ(G)+χ(Ḡ)−1, it suffices to consider only sequences of distances 2k1n−k such that both k < χ(Ḡ)

and n− k < χ(G).
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Figure 1: Petersen graph

In the remainder of this section, we determine B1(G) and χ̂(G) for two famous graphs of
diameter 2, the Petersen graph and the Grötzsch graph, as well as for all nonempty complete
multi-partite graphs.

3.1 The Petersen graph

Let P denote the Petersen graph, pictured in Figure 1. Let α(X) denote the vertex indepen-
dence number of a graph X , which is max[|S|;S ⊆ V (X) and no two vertices of S are adjacent
in X]. It is well known that for any finite, simple graph X , |V (X)| ≤ α(X)χ(X). It is easy to
see that α(P ) = 4.

For a finite simple graph X , ω(X) denotes the clique number of X , the maximum order of
a complete subgraph of X . Clearly, ω(X) ≤ χ(X). Also, α(X) = ω(X̄), so α(X̄) = ω( ¯̄X) =

ω(X).

Theorem 3.2. B1(P ) = χ̂(P ) = 5.

Proof. It is well known, and easily checked, that χ(P ) = 3.

P is “triangle free”, meaning that it has no complete subgraph on 3 vertices. Therefore,
ω(P ) = α(P̄ ) = 2. So |V (P̄ )| = |V (P )| = 10 ≤ 2 · χ(P̄ ), which implies that 5 ≤ χ(P̄ ).
On the other hand, the sets {ui, vi} for i = 1, ..., 5, partition V (P̄ ) and are independent in P̄ .
Therefore, χ(P̄ ) = 5. So B1(P ) = max[χ(P ), χ(P̄ )] = max[3, 5] = 5 ≤ χ̂(P ).



On the Babai and Upper Chromatic Numbers of Graphs of Diameter 2 119

By Lemma 3.2, to show that χ̂(P ) = 5 is suffices to consider distance lists 2k15−k in which
k < 5 and 5− k < 3.

Case 1. 2312: PartitionV (P )by takingC1 = {v5}, C2 = {u1}, C3 = {u2}, C4 = {v1, v3, u4, u5}
andC5 = {v2, v4, u3}. Distance 2 does not occur withinC1, C2, C3, and distance 1 does not oc-
cur within C4, C5.

Case 2. 2411: SetC1 = {u1}, C2 = {v2, u2}, C3 = {u3}, C4 = {v4, v5} andC5 = {v1, v3, u4, u5}.
Distance 2 is forbidden within each of C1, C2, C3, C4, and distance 1 is forbidden within C5.

Thus, χ̂(P ) = 5.

3.2 The Grötzsch graph

The Grötzsch graph, depicted in Figure 2, has a couple of claims to fame: it is the smallest
triangle free graph with chromatic number 4, and it is the 3rd Mycielski graph. Let us explain the
last claim. Suppose that G is a graph with vertices x1, · · · , xn. The Mycielskian of G, denoted
M(G), has vertices x1, · · · , xn, y1, · · · , yn, z; x1, · · · , xn induce a copy ofG inM(G), and each
yi is adjacent to z and to every xj to which xi is adjacent. There are no other adjacencies. The
Mycielski construction is mainly famous for:

1. If G is triangle-free, then so is M(G), and

2. χ(M(G)) = χ(G) + 1.
For our purposes, it will be useful to add:

3. If diam(G) = 2, then diam(M(G)) = 2.

If M1 = K2 and for k > 1, Mk = M(Mk−1), then the Mk are called the Mycielski graphs.
It is straightforward to see that M2 = C5 and that M3 is the Grötzsch graph.

Theorem 3.3. LetG denote the Grötzsch graph; B1(G) = χ̂(G) = χ(Ḡ) = 6.

Proof. As in the proof of Theorem 3.2, since G is triangle-free, α(Ḡ) = ω(G) = 2; therefore,
11/2 = |V (Ḡ)|/2 ≤ χ(Ḡ), so 6 ≤ χ(Ḡ). On the other hand, the sets {x1, y2}, {x2, y3},
{x3, y4}, {x4, y5}, {x5, y1}, {z} partition V (Ḡ), and each set is independent in Ḡ. Therefore,
χ(Ḡ) = 6 = max[4, 6] = max[χ(G), χ(Ḡ)] = B1(G) ≤ χ̂(G).

By Lemma 3.2, to see that χ̂(G) = 6, it suffices to consider only distance lists 2k16−k such
that k < χ(Ḡ) = 6 and 6− k < χ(G) = 4.

Case 1. 2313: Let the color sets for colors c1, ..., c6 be C1 = {x1, x2}, C2 = {x3, x4}, C3 =

{x5, y1}, C4 = {y2, y3, y4, y5}, C5 = {z}, C6 = ∅. Then the distance 2 (in G) is forbidden for
c1, c2, c3 and distance 1 for c4, c5, c6.
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Figure 2: Grötzsch graph

Case 2. 2412: Let C1, C2, C3 be as in Case 1, C4 = ∅, C5 = {y2, y3, y4, y5}, and C6 = {z}.

Case 3. 2511: Let C1, C2, C3 be as above, C4 = {z}, C5 = ∅, and C6 = {y2, y3, y4, y5}.

Thus, χ̂(G) = 6.

It is easy to see that B1(C5) = χ̂(C5) = 3 = χ(C̄5) = χ(C5). This and Theorem 3.3 raise
the question: is it true that for every k > 1, B1(Mk) = χ̂(Mk) = χ(M̄k)?

3.3 Complete multi-partite graphs

For integers 2 ≤ r and 1 ≤ p1 ≤ ... ≤ pr, the complete r-partite graphwith part sizes p1, ..., pr
will be denoted Kp1,...,pr . Another way of writing this graph is K̄p1 ∨ ... ∨ K̄pr . From this we
have K̄p1,...,pr = Kp1 + ... +Kpr . Therefore, if G = Kp1,...,pr , 2 ≤ r, 1 ≤ p1 ≤ ... ≤ pr, then
χ(G) = r (as is well known) and χ(Ḡ) = pr. From Lemma 3.1 and Theorem 3.1, we conclude
the following.

Theorem 3.4. If 2 ≤ r, p1 ≤ ... ≤ pr are positive integers, and G = Kp1,...,pr , then B1(G) =

max[r, pr] ≤ χ̂(G) ≤ r + pr − 1.

Note that when p1, ..., pr = 1, and only in that case, G = Kp1,...,pr = Kr does not have
diameter 2. However, the conclusion of Theorem 3.4 holds in that case nonetheless.
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Theorem 3.5. If 2 ≤ r, 1 ≤ p andG = Kp,...,p is complete r-partite, then χ̂(G) = r + p− 1.

Proof. We already have χ̂(G) ≤ r + p − 1 by Theorem 3.4 and χ̂(G) = r = r + p − 1 when
p = 1, by Proposition 2.2. Suppose that p > 1. We shall finish the proof by showing that χ̂(G) >

r + p− 2.

Consider the sequence of distances 2p−11r−1. If there were a coloring of V (G) with colors
c1, ..., cr+p−2 so that the jth distance in the sequence of distances is forbidden for cj , 1 ≤ j ≤
r + p − 2, then there would be a partition of V (G) into sets C1, ..., Cp−1, C

′
1, ..., C

′
r−1, such

that each of C1, ..., Cp−1 induces a clique in G and each of C ′
1, ..., C

′
r−1 is an independent set of

vertices in G.

Each set C ′
j must be completely contained in one of the r parts of G. Since there are only

r − 1 of the C ′
j , it must be that one of the parts of G is devoid of representatives of ∪C ′

j for
j = 1, ..., r − 1. Therefore the p vertices of that part must be covered by the Ci, i = 1, ..., p− 1.
However, no Ci can contain more than one vertex from each part. Therefore, because there are
only p − 1 of the Ci, that part that is devoid of vertices in ∪C ′

j for j = 1, ..., r − 1 cannot be
covered by C1, ..., Cp−1. Thus, there is no such partition of V (G).

Theorem 3.6. Suppose that 2 ≤ r, 1 ≤ p1 ≤ ... ≤ pr, and p1 < pr. Let G = Kp1,...,pr . For
p1 ≤ k ≤ pr − 1, define g(k) = max[j; pj ≤ k]. Then χ̂(G) = max[pr, r + p1 − 1,max[r +

k − g(k); p1 ≤ k ≤ pr − 1]].

Proof. Letm = max[pr, r+ p1 − 1,max[r+ k− g(k); p1 ≤ k ≤ pr − 1]]. First we will see that
χ̂(G) ≤ m. By Lemma 3.2 and the fact that diam(G) = 2, it suffices to consider distance lists
2t1m−t in which t < χ(Ḡ) = pr and m− t < χ(G) = r.

Suppose thatm− r+1 ≤ t ≤ pr−1. Since r+p1−1 ≤ m, it follows that p1 ≤ t ≤ pr−1.
Since r + t− g(t) ≤ m we have r − g(t) ≤ m− t.

Thefirst g(t)parts ofG, i.e. the vertex set ofKp1,...,pg(t) , can be coloredwith pg(t) = χ(K̄p1,...,pg(t))

colors so that the distance 2 in G is forbidden for each color. Then we can color the last r − g(t)

parts of G with r − g(t) = χ(Kpg(t)+1,...,pr) new colors so that the distance 1 in G is forbidden
for each color. Since pg(t) ≤ t and r − g(t) ≤ m− t, the resulting coloring of V (G) disposes of
the challenge list 2t1m−t.

We finish the proof by showing that χ̂(G) > m−1. First note that pr ≤ max(r, pr) ≤ χ̂(G).
Next, notice that H = Kp1,...,p1 , the complete r-partite graph with all parts of cardinality p1, is
a subgraph of G such that the distance in H between any pair of vertices in H is the same as the
distance between them in G. Therefore, by Theorem 3.5, r + p1 − 1 = χ̂(H) ≤ χ̂(G).

Finally, let t ∈ {p1, ..., pr − 1} be such that z = r + t − g(t) = max[r + k − g(k); p1 ≤
k ≤ pr − 1]. Note that g takes values in {1, ..., r − 1}, and that, since t− g(t) is a maximum, it
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must be the case that t = pg(t)+1 − 1, since this is the greatest value of k such that g(k) = g(t).
To see that χ̂(G) > z − 1, consider the distance list 2t1z−t−1. Since z − t − 1 = r − g(t) − 1,
and a color set within which the distance 1 is forbidden must be a subset of one of the parts, after
coloring vertices with up to z− t−1 colors so that the distance 1 is forbidden for each color, there
are at least g(t) + 1 parts with no color appearing.

The largest of these parts must have at least pg(t)+1 vertices, and pg(t)+1 > t by the definition
of g. Therefore, no t color sets, each containing atmost one vertex per part, can cover these g(t)+1

parts. Thus χ̂(G) > z − 1.

Corollary 3.7. If 1 ≤ p1 < p2, then χ̂(Kp1,p2) = p2.

Proof. We look at the conclusion of Theorem 3.6 in the case of r = 2 and notice that r+p1−1 =

2 + p1 − 1 = p1 + 1 ≤ p2, and, for each k ∈ {p1, ..., p2 − 1}, r + k − g(k) = 2 + k − 1 =

k + 1 ≤ p2 − 1 + 1 = p2.
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