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Green’s Relations on Regular Elements of Semigroup of

Relational Hypersubstitutions
for Algebraic Systems of Type ((m), (n))

Jukkrit Daengsaen and Sorasak Leeratanavalee

Abstract. Any relational hypersubstitution for algebraic systems of type

(1,7") = ((mi)ier, (nj)jes)

is a mapping which maps any m;-ary operation symbol to an m;-ary term and maps any 7n;-
ary relational symbol to an 7 ;-ary relational term preserving arities, where I, J are indexed
sets. Some algebraic properties of the monoid of all relational hypersubstitutions for algebraic
systems of a special type, especially the characterization of its order and the set of all regular
elements, were first studied by Phusanga and Koppitz[13] in 2018. In this paper, we study the
Green's relations on the regular part of this monoid of a particular type (7, 7') = ((m), (n)),
where m,n > 2.

1 Introduction

Identities are used to classify algebras into collections called varieties, hyperidentities are used to
classify varieties of algebras into collections called hypervarieties. Hyperidentities have an inter-
pretation in the theory of switching circuits and are also closely related to clone theory. The main
tool which is used to study hyperidentities and hypervarieties is the concept of a hypersubstitu-
tion. The concept of hypersubstitutions of a given type 7 in universal algebras was first introduced
by Denecke et al.[5] in 1991. On the other hand, to classify algebraic systems into subclasses by
logical sentences we can use the concept of hypersubstitutions for algebraic systems. The con-
cept of hypersubstitutions for algebraic systems of a given type (7, 7’) was first introduced by
Denecke and Phusanga[6] in 2008. In 2018, Phusanga and Koppitz[13] introduced a new concept
that generalize the notion of a hypersubstitution of type 7 for universal algebras in a canonical
way. Such hypersubstitution is called the relational hypersubstitution for algebraic systems of type
(7,7'). The name was first used in [9]. The algebraic properties of the monoid of all relational

hypersubstitutions for algebraic systems were studied intensively for several types. For examples,
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all regular elements and the order of relational hypersubstitutions for algebraic systems of type
((2), (2)) were determined by Phusanga and Koppitz in [13]. The order of linear relational hy-
persubstitutions for algebraic systems of type ((m), (n)) was characterized by Lekkoksung and
Phusanga in [9]. First of all, we recall the notion of an algebraic system of type (7, 7’), which was
first introduced by A.I. Mal’cev in 1951.

Definition 1. [10] Let I, J be indexed sets. An algebraic system of type

(7, T’) = ((mq)ier, (”j)jeJ)

is a triple (A, (fi)ier, (7j)jes) consisting of a nonempty set A, a sequence ( f;);cr of m;-ary op-
erations defined on A and a sequence (7y;) je.s of nj-ary relations on A. The pair (7, 7’) is called

the type of an algebraic system.

The concept of terms is one of the fundamental concepts of universal algebra. Terms may be
consider as words formed by letters. To define terms we need variables and operation symbols.
Let X,, = {x1,---,x,} be a finite set of variables for n € N, where N denotes the set of all
positive integers, and let X = {1, x2, - - } be countably infinite. Let {f; : i € I} be the set of
m;-ary operation symbols indexed by I. An n-ary term of type 7 = (m;);cs is defined in the

usual way by:
(i) Every xy € X, is an n-ary term of type 7.

(i) Iftq,--- ,tm, are n-ary terms of type 7, then f;(t1, - - ,tm,) is an n-ary term of type 7.

Let W7 (X5,) be the set of all n-ary terms of type 7 and let W7 (X) := U, Wr(X;,) be the set
of all terms of type 7.

Definition 2. Let I, .J be indexed sets and (7, 7') = ((m;)ic1, (nj)jes) be a type, i.e. we have a
sequence (f;)ics of m;-ary operation symbols and a sequence (7y;);cs of n;-ary relational sym-
bols. Ifty, - - - , t,, are n-ary terms of type 7, then we will call ; (1, - - - , ¢y, ) is an n-ary relational

term of type (7, 7’).
Let rF(; - (Xp) be the set of all n-ary relational terms of type (7, 7). Let

’I"F(TJ/) (X) = U ’I“F(T’T/) (Xn)
neN
be the set of all relational terms of type (7, 7’). A relational hypersubstitution for algebraic systems

of type (7,7") = ((m4)ier, (n;)jes) is a mapping

o {firiel}U{vy:jeJ} = Wr(X)UrF,(X)
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with o(f;) € Wr(Xom,) and o(v;) € rF; ) (Xy,;). Denote by Relhyp(t, ') the set of all
relational hypersubstitutions for algebraic systems of type (7, 7). To defined a binary operation
on Relhyp(7,7"), we firstly recall the concept of superposition of terms and superposition of

relational terms.

Let m,n € N. The superposition of terms S]* : W (X,,) x (W-(X,))™ — Wo(X,)
defined inductively by the following steps (see [11], pp.258):

(i) ft=o € Xppanduy, -+ ,upy € Wr(X,), then ST (t,ug, -+, Um) 1= ug.
(i) Ift = fi(tr, -+ ,tm,;) € Wr(Xp) and ug, -+, up € Wr(X,,), then
Sty ur, e ) = fi( St ut, - Um)y ey S (g, Uty -+ 5 Um))-
Next, the superposition operation of relational terms
R (Wr(Xn) Uy (Xon) X (W (X)) = We(Xn) U Fpp oy (X0)
defined by the following steps (see [11], pp.258 - 259):
(i) Ift € W (Xyn)andug, -+ ,up € Wo(Xy), then RV (8 wq, - -+, Up) = SPP(E,ut, -+ ).

(ii) vy(s1, -, 8n;) € rFr (X)) and ug, - -+ um € Wr(X,,), then

Rt (i (s1, -5 sy - s um) i= 95 (S (s, tm)s - S (sny s s ).
For any o € Relhyp(t, '), we define a mapping
0 Wr(X)UrFi)(X) = Wr(X) UrE; ) (X)
inductively defined as follows:

(i) olxg) := zp, fork € N,

(ii) 8[fi(t17 T 7tmi)] = R%i(o'(fi)aa[tl]v T 78[tm1]) = S:nni(a(fi%a[tl]? T 7a[tmi])’
(iii) G[v;(s1, ", 8n,)] == i (0(75),0(s1], -+, Tsn, ).

A binary operation o, on Relhyp(7,7’) is defined by o op, p := & o p where o denotes the usual
composition of mappings and o, p € Relhyp(t,7’). Let 0,4 be the relational hypersubstitution
which maps each m;-ary operation symbol f; to the term fi(x1, - -, 2,,,) and maps each nj-ary
relation symbol +; to the relational term ~y; (21, - - - , ;). Then the structure Relhyp(r,7’) =
(Relhyp(t,7"), 0p, 04q) forms a monoid. In [3], the authors studied the regularity of relational
hypersubstitution for algebraic systems of type ((m), (n)). In this paper, we study the Green’s re-
lations on the set of all regular relational hypersubstitutions for algebraic systems of type ((m), (n)),

for arbitrary natural numbers m,n > 2.
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2 Preliminaries and Notations

Greenss relations of a semigroup S are equivalence relations on the set S which were first defined
by Green. According to such definitions, the L-relation was defined as follows. Let (.5, -) be a
monoid. For any a,b € S,

aLbifandonlyifS-a =S50,

or equivalently, a £ bifand onlyifa = z - band b = y - a for some =,y € S. Furthermore, the

‘R-relation was defined as follows.
aRbifandonlyifa-S=10-S5,

or equivalently, a R bifand onlyifa = b-xand b = a - y for some x,y € S. Moreover, the

J -relation was defined as follows.
aJbitandonlyifS-a-S=5-b-5,

or equivalently, a J bifand onlyifa =2 -b-yand b = u - a - v for some z,y, u,v € S. Finally,
letting{ = LN R and D = L o R, where o is the composition of relations. Since the relations
L and R commute, it follows that Lo R = R o L.

Remark 1. Let S be a semigroup. Then H C LCDC JandHC R C D C J.

Throughout this paper, we focus to the algebraic systems of type ((m), (n)). Let f be an
m-ary operation symbol and let v be an n-ary relational symbol. For any t € W/,,)(Xy,) and
F € rF((m),(n))(Xn), we introduce the following notation:

(i) o := the hypersubstitution of type (1) which maps f to the term ¢t € W,y (Xon),

(i) o p := the relational hypersubstitution for algebraic systems of type ((m), (n)) which maps
f tothetermt € W,,,)(X;,) and maps  to the relational term I € 7 Fi (), (n)) (Xn),

(iii) I(t) := the set of all indices of variables occurring in a term ¢,
(iv) I(F) := the set of all indices of variables occurring in a relational term F,

(v) 7(t) := the term such that each x4, k € I(t), is replaced by x(;) where 7 is an injective
map from I(¢) into {1,--- ,m}, ie. 7w(t) = S (t,y1,-- ,Ym) With y1, -+ ,ym € Xin
and y; 1= x(;) fori € I(2).

(vi) ¢(F') := the relational term such that each zy, k € I(F), is replaced by z4;) where
¢ is a injective map from I(F) into {1,--- ,n}, ie. ¢(F) = R(F,y1,- - ,Ym) with
Y1, Ym € X and y; := w4 fori € I(F).
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In 2015, W. Wongpinit and S. Leeratanavalee [16] introduced the concept of the 7 — most of

terms.

Definition 3. Lett € W(,,)(X;;,) and 1 <4 < m. Then i — most(t) is defined inductively by:

(i) Iftis avariable, then i — most(t) = t.
(i) Ift = f(t1, -+ ,tm), theni — most(t) =i — most(t;).

Example 1. Let 7 = (3) be a type with a ternary operation symbol f.

Lett = f(x2, f(z3, f(22, 23, 21), 23), f(23,21,21)) € W(3)(X3). Then

1 —most(t) =1 — most(xe) = 9,

2 — most(t) = 2 — most(f(xs, f(x2,x3,21),23)) = 2 — most(f(x2,x3,21)) = x3 and
3 — most(t) = 3 — most(f(xs3,x1,21)) = 1.

Furthermore, we have 7, [t] = 74, [f(x2, f(zs, f(x2, 23, 21), x3), f (23, 21,21))] =
83(00, (f), Gy [2], G [f (23, f (w2, 23, 21), 23)], 5o, [ f (23, 21, 71)]) =

S3 (w1, T, 0z, [f (3, f (22, 73, 71), ¥3)], Oy [f (23, 71, 71)]) = T2 = 1 — most(t).
Similarly, we have 0, [t] = 3 = 2 — most(t) and 7, [t] = x1 = 3 — most(t).

Remark 2. By Example 1, we have 7,,[t] = i — most(t). Furthermore, we have 7,, p[t] =
i — most(t), where ;,t € W) (X)) and F € 7F (3, (n)) (Xim)-

Lemma 2.1. [3] Let oy € Relhyp((m), (n)) wheret € W,y (Xm) and F' € 7F(() (n)) (Xn)-
Let s € W) (Xim). If i — most(t) = x; then j — most(s) = i — most(dy r|s]).

Remark 3. Let 05 and o be hypersubstitutions of type 7 = (n). Then I((os o, o¢)(f)) C I(¢).

By applying the above remark, we obtain the following result.

Lemma 2.2. Let oy p, 0,5 € Relhyp((m), (n)). Then I((oF op ow.mv)(f)) C I(owu(f))
and I((o4,F o 0uw,1) (7)) € L(0w,z(7))-

Proof. Ttis obvious if w,t € X,,. Lett = f(t1, -+ ,tm), w = f(w

wi, W) € Wiy (Xm) \
Xpand F' = (s1,+ ,8n)s H =y(h1, -, hn) € 7F (i), (n)) (X )where31,~-- ySnyhi, o hy
€ W) (Xn). First, we consider
(otF onowm)(f) = Grrlown(f)]
= Our[f(wr, - wm)]
= SOt onpwi], -, 0nF[wm]).

Clearly, 0 pwi] = o {wy]|forallk =1, .-, m. ByRemark 3, we have I (7, p[wy]) = 1(0¢[wg]) =
I((ot op 0w, )(f)) C I(wy). Hence I((or,F op ow,m)(f)) =
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ISy (t, o p(w], -, 0np[wm])) C G I(wg) = I(w) = I(0w,mz(f)). On the other hand, we
consider =
(0t,p on own)(Y) = Orr(owmn(Y)]

= Grr[y(hy, - )

= R,(F.Gplhi],--- 5¢p[hn])

= Sy (s1,0¢p ), oeplhnl), - ST (50, O plhal, -+ G p[hn])).

By the same process, we have I(S)(sk, 0t p[h1], -+ ,0e.r[hn])) € U I(hy) = I(H). Thus
k=1
I((ot,F on ow,m)(Y)) € I(H) = I(0y, (7)) and the proof is complete. O

3 Green’s relations on Reg(Relhyp((m), (n)))

In this section, we study Green’s relations on regular elements of semigroup of all relational hy-
persubstitutions for algebraic systems of type ((m), (n)).
Let oy € Relhyp((m), (n)), we denote

Rx ={oyp |t = z;and F = ~(s1, -+, sp) with I(F) = {b1,---,b;} such that j —
most(sy,) = xp, forall k = 1,--- 1 and for some distinct b'y,--- ,b'; € {1,---,n} where
je{l,-- m}},

Ry ={owr |t = f(t1, -+ ,tm)and F = ~(s1,--- ,sp,) with I(t) = {a1,--- ,ax} and
I(F) = {b1,--- ,bi} such thatt,, = x4, and sy, = xp, foralli = 1,--- [k, j =1,---,1, for
some distinct a’y, - -+ ,a € {1,--- ,m} and some distinct 'y, --- ,b’; € {1,--- ,n}}

In [3], the authors showed that Reg(Relhyp((m), (n))) := Rx U Ry is the set of all regu-
lar elements in Relhyp((m), (n)), but the set Reg(Relhyp((m), (n))) is not a subsemigroup of
Relhyp((m), (n)). We can illustrate it by the following example.

Example 2. Let (7,7") = ((2),(2)) be a type with a binary operation symbol f and a binary
relational symbol . Let oy p, 041 € Reg(Relhyp((2),(2))) such thatt = f(z1, f(z1,21)),
u= f(f(xe,z2),22) and F = y(x1, f(z1,21)), H = v(f (22, x2), z2). Then

(or,F on oum)(f) = 0Lpf(f(z2,22), 22)]

f(@, f(zr,20)), S5(f (21, f 21, 21)), 22, 32), 22)

5(f(x1, f(21,21)), f(®2, f22,22)), T2)

= f(f(z2, f(z2,22)), f(f (22, f(22, 22)), f (2, f(22,22))))
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and

(o1,F on 0um)(7) = 01 r[y(f (22, 22), ¥2)]
= R3(y(x1, f(z1,21)), S5(f (w1, f (21, 21)), 2, 22), T2)
= R3(y(x1, f(z1,21)), f (w2, f (w2, 22)), 22)
=(f (22, f(x2,22)), f(f (22, f (22, 72)), f (2, f(72,22)))).

So ot op oy ¢ Reg(Relhyp((2),(2))). Thus Reg(Relhyp((2), (2))) is not a subsemigroup
of Relhyp((2), (2)).

We begin with characterizing the Green’s relations when two regular relational hypersubsti-

tutions are elements of Rx as follows.

Theorem 3.1. Letoy, p, 00, 1 € Rx.Theno,, Eaxjﬂ ifandonlyifi = jand I(F) = I(H).

Proof. Let 0y, p L 04, . Then there exist 0y g, 00,0 € Relhyp((m),(n)) such that o, p =
)= (UuGoh Ua:J,H)(f) =
8uvg[azj7H(f)] = xj. Soi = j. Next, we consider F' = 04, p(v) = (0u,c °n ame)('y) and
YJCI(H)and I(H) C I(F).

Ou,G Oh Oz, 5 and 0y, g = 04,0 Oh Og, p. We have z; = o4, 7(f)

H = 04; 1(v) = (00,0 °h 04;,r) (7). By Lemma 2.2, we have I (F
SoI(H) =I(F).

Conversely, let 0, , 04, 1 € Rx withi = j, F' = y(s1,-++ ,sp) and H = y(h1,- -+ , hy)
where I(F) = {b1,--- ,b;} = I(H). Since 04, F,04; 1 € Ry, there exist p,q € {1,---,m}
and the set of all distinct elements {0'y,--- , b}, {b"1,--- ,0/} € {1,---,n} such that p —
most(sy, ) = xp, and g—most(hy) = xp, forallk =1,--- 1. Wewill show that o, L 05 1.
First, we define 7 : {b1,--- b} — {b},--- ,bj} by m(by) = b}, forallk = 1,--- [, and define
¢ {br,-- by = {b,--- 0} by ¢p(by) = b} forall k = 1,--- 1. Then 7 and ¢ are bijective
and p — most(sy ) = Tp, = Tr-1(;) and ¢ — most(hyy) = xp, = Ty-10y) forallk =1,--- 1.
Choose 0, ¢(F)s O, r(1) € Relhyp((m), (n)). Then

(Oayo(F) Oh Oay 1) (V) = Oy om0, 1 (7))
= Ougo(r)[H]
= Ry(¢(F),q —most(hi),---,q—most(hy))
= ¢ N ¢(F)),

since g — most(hbu) = Tg-1(by) forallk=1,---,1
and I($(F)) = {b, -, 0]},
= F=(04,r)(7)

It is obvious that (0, ¢(r) °h 0z, 1) (f) = 5 = 2; = (04, F)(f). S0 04, ¢(F) Oh Oz; H = O, F.
Similarly, 0 «(m) °h O, F = 04, 1. Therefore o4, p L 04, 1. ]
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Theorem 3.2. Let oy, p,0.; n € Rx. Then o, p R 04, p if and only if

@) [I(H)] = [I(F)].

(i) H = 7(F') where 7 is a bijective map from I(F’) to I(H).

Proof. Let 0z, p R 0, m where F' = ~y(s1,-++ ,8n), H = y(h1, -+ ,hn) € 7F((m),(n))(Xn)-
Then there exist 0, ¢, 0y,0 € Relhyp((m), (n)) such that o, p = 04, g op ou,c and oy, g =
Oz;,FOhOv,0 whereu, v € W(m) (Xm) andG = ’y(gl, s ,gn), 0= ’7(01, s ,On) S TF((m),(n))(Xn)
Then

Fo= o4,r(7)
= (04,5 °h 0uc)(V)
= 0y ulouc(V)]
= Guyu[v(91,  , 9n)]
= Ry(H,04ul0l], 0 u1[0])
= R,(H,j—most(g1), - ,j —most(gn)),

where s, = S/ (hy, j — most(g1),- - ,j — most(gy)), forallp=1,--- n,and

H = o4;1(v)
= (04;,F °n 04,0)(7)
= 0urlov0(7)]
= 0y, r[v(01,+ ,0n)]
= Ry(F,05,r01],-+ 00, rlo1])

= R} (F,i—most(o1), - ,i —most(oy,)),

where hy, = S}/(sp, i — most(o1),- -+ ,i — most(op)) forallp=1,--- ,n.
Since 0, € Ry, there exists k € {1,--- ,m} and some distinct b, --- , b, € {1,--- ,n} such
that k — most(sy, ) = x,, forallg =1,--- I, where I(F) = {by,--- ,b;}. Then

l’bq

=k —most(sy,) = S, (k — most(hy, ), j — most(g1), - ,j — most(gn)).

Hence for each g = 1, - [, there exists dy € I(H) such that k — most(hy;,) = x4, then z;, =
j — most(gq,). If there exist dy = d, for some ¢ # r € {1,--- 1} such that k — most(hy,) =
rq, = xq, = k — most(hy ) then z,, = j — most(gq,) = j — most(gq,) = xp,. This is a con-
tradiction with b, # b, € I(F) forall ¢ # r € {1,--- ,}. Hence we obtain the set of all distinct
elements {dy,--- ,d;} of I(H). It implies that |I(F')| = |{d1,--- ,d;}| < |I(H)|. Similarly, we
can show that |I(H)| < |I(F)|. So |I(H)| = |I(F')| and the proof of (i) is complete. Next, we
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will prove (ii). Without loss of generality, we assume that [ (H ) = {dy, - - - , d;}. Define a bijective
map ¢ : [(H) — I(F) by ¢(dy) = by forallg = 1,--- 1. Then j — most(ga,) = T, = Tg(d,)
forallg = 1,---,l. Since I(H) = {di,--- ,d;}, wehave F = RI'(H,j — most(g1),--- ,j —
most(gn)) = ¢(H). It follows that H = 7(F) where 7 = ¢! is a bijective map from I(F) to
I(H).

Conversely, assume that the conditions hold. Let 0, p,0,;, v € Rx with H = 7(F)
where 7 is a bijective map from I(F) to I(H), F' = (51, ,80) € TF((m),(n))(Xn), [(F) =
{bi,---,biyand I[(H) = {d1,--- ,d;}.

Choose 0y, p, 04;,g € Relhyp((m), (n)) where P =(p1,--- ,pn), @ =(q1, - ,qn) €
TF((m),(n)) (Xn) with j —most(pq,) = 7-1(4,) and i —most(qy,,) = Ty, forallk =1,--- 1.
Then

(02,0 On 02,,P) (V) = Ou; m[02,P(7)]

— 8zj,H[7(p17 te 7pn)]

= RZ(U{L‘J,H(’Y)a aZj,H[pl]) o 781‘]‘,H[pn])]
= R}(H,j—most(p1), - ,7 — most(py))
= 7 '(H),

since [(H) = {d1,--- ,d;} and j — most(pg,) = Tr-1(q,)
forallk=1,---,1,
= 7 '#(F)=F= Oz, F (7).

Since (O’wa Op Uxi7p)(f) =T; = O'xi,F(f)’We have ij7H Oh Og;,P = Oz, F-

Similarly, we have o, F oy 04, ¢ = 0z; n. Therefore o, pF R 04, 1. O

Theorem 3.3. Let 0y, 7, 04, 1 € Rx. Then oy, p J 04, g if and only if [I(H)| = [I(F)].

Proof. Let oy,  J 0u; 1 Where F' = y(s1,++ ,8n), H = y(h1, -+, hn) € TF((m),n))(Xn)-
Then there are 0, G, 0y, 1, 0p,0,04,r € Relhyp((m), (n)) such that o, p = 0u,G On Tu; 1 On
oy,gand 0., g = 0p 0 O Oz, F Oh 0q,r Where u, v, p,q € Wiy (Xom) and E = v(e1,- -+, en),
G =7(g1,""" ,9n), O = (01, -+ ,00), R =y(r1, -+ ,70) € "F{(m),(n))(Xn). First of all, we

consider o, p o, 0y g and 0z, F o, 04 g Then

(Ul’ij Ohn JU,E)(’V) = /U\xj,H[E] = RZ(HaJ - mOSt(el)a T vj - mOSt(en)) = 7(%17 t 7?’%)’
(3.1)
where h, = S (h,, j — most(e1),- - ,j — most(ey)), forallt =1,--- ,n, and

(02, F on 0qRr)(Y) = 0z, F|R] = Ry (F,i —most(ry),- -+ ,i —most(ry)) = v(51, -+ ,5n),
(3.2)
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where s, = S'(s,,i — most(r1),--- ,i —most(ry)) foralle = 1,--- ,n.

Next, we consider 0, p = 0y, Op x;,1 Oh 0y E- By (3.1), we have

Fo= (02,r)(7)

(0u,G Oh Oz 1 Oh 0u,E)(7Y)
0u,G(0z;, 1 °n 0v,E) (V)]
= ouc[y(h1, - hn)]

= RYG,Gucll], - Gucln)),

where s, = Sg(gm@g[ﬁl], e ,8%(;[%”]) foralle =1,--- n.
Since 0, € Rx, thereexists k € {1,--- ,m} and some distinct b, - -- ,b; € {1,--- ,n} such
that k — most(sy, ) = ap, forall p=1,--- I where I(F') = {by,--- , b;}. We obtain that

xp, =k —most(sy ) = Sy (k — most(gy, ),k — most(Gu,glhi]), -+, k — most(ou,c|hn]))

P

forall p = 1,---,l. Without loss of generality, for any p = 1,--- ,[, we can assume that & —
most(gy ) = xq, where d, € I(G). Then ay, = k — most(&mg[ﬁd;]) forallp = 1,--- L.
Since k — most(u) exists, we can fix k — most(u) = x, for some o = 1,--- ;m. By (3.1) and
Lemma 2.1, we have x, = k — most(&uyg[ﬁd/p]) =a-— most(ﬁdg) = Sy (a —most(hay), j —
most(e1), - ,j—most(ey)) forallp =1,--- 1. So,if o —most(ha,) = xa, whered, € I(H)
then z;, = j—most(eq,). Hence, forany b, € I(F), there exists d, € I(H) such thatz;, = j—
most(eq,). If some pair of distinct elements b,, b, € I(F') whicharisezg,, x4, € {Ta,," -+ ,Ta, }
such that d, = d,, then z;, = j — most(eq,) = j — most(eq,) = xp, which is a contradiction
with b, # b, € I(F). So we obtain the set of all distinct elements {dy,--- ,d;} C I(H). Thus
|[I(F)| = {d1,- - ,di}| < |I(H)|. Similarly, by using (3.2), we have | I (H)| < |I(F')|. Therefore
[I(H)| = [I(F)].

Conversely, assume that the condition holds. Let o, r, 0, H € Rx where F' = y(s1,- -+, $pn)
and H = ~y(hy,- -+ ,hyp)withI(F) = {b1,--- ,by}and I(H) = {dy,--- ,d;}. Thereexista, 5 €
{1,---,m}andsubsets {0}, -, bj}, {dy, -+ ,dj} of {1, -+ ,n} suchthat a —most(sy ) = ws,
and 5 — most(hdz) = xq, forallk = 1,---,1. We will show that 04, r J 04; n. First,
we define 7 : {b1,--- , b} — {d|,--- ,d}} by m(by) = d}, forall k = 1,--- 1, and define
¢ {dy,---di} = {bl,--- b} by ¢(di) = b), forall k = 1,--- 1. Then =, ¢ are bijec-

tive. Choose 0, «(F)> Oun é(H)> Oi, B> Ouy,r € Relhyp((m), (n)) where E' = vy(e1, -+, en),
R=7(r1,-+ ,rn) € rF((m),(n))(Xn) such that j — most(eq, ) = xp, and i —most(ry,) = x4,
forall k = 1,---,l. Next, we want to show that Ozym(F) Oh Oxj,H Oh Og, E = Og,F and

Oe,d(H) Oh Oz F Oh Og; R = Ox; H- For convenience, we consider

(O-'Z'j7H Oh O-wi,E)(’Y) = aﬂ?j,H[Usz(V)]
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Oy m[y(er, - en)]
= Rn(%ﬁH(’Y) 3xj,H[€1]a“‘ ,ff\:cj,H[en])
= R} (H,j—most(e1), - ,j —most(ey))
= (hh e hn)

where hp = S)(hp,j —most(e1),--- ,j —most(ey)) forallp=1,--- ., n
Since 8 — most(hdk) = 24, and j — most(edk) =uxyp,,forallk =1,--- 1, wehave

8- most(ﬁdg) = B —most(Sy(ha,j —most(er),- - ,j — most(en)))
= S,(B—most(hg),j —most(er), - ,j —most(en))
= Sp(zay,j —most(e1),- - ,j — most(en))

= j —most(eq,) = Tp,

forallk =1,--- 1. Similarly, if we consider 0, r op, 04, r then we have (04, F o 04; R)(7) =
Y(81,7 -+, Sp) with & — most(sy ) = xq, forallk =1, ,l.~
By definition of bijective maps 7 and ¢, we obtain 5 — most(hd;c ) = xp, = Tr=1(d}) and o —
most(Eb;C) = Tq), = Ty-1(y)) forallk =1,--- 1. Next, we consider
(Owpm(F) Oh Os H Oh 00y B)(Y) = Ouy () [(Os 1 On 00y B) (V)]
= Goynr)y (ﬁl, . 77Ln)]
= R0uyn(r)(V):Guym(py B, Gy [Pin])

= RYx(F),B —most(hy),--- ,3 — most(hy))
= 7 H(n(F)),

since I(n(F)) = {d}, -, 2},
= F=o5r(7)

Itis obviousthat(amﬂr(F)ohaxijoha%E)(f) =x; = 04, 7(f). So O 4,m(F)Oh0z;,HON w, E =
0y, F- Similarly, O o, ¢(H) Oh Oz; F Oh Oz;,R = O H- Therefore o, r J O H- O

Theorem 3.4. In Rx, J = D.

Proof. It is obvious that D C J. We will show that 7 C D. Let 0., r J Ou; H where o, F,
Ox;,H € Rx with F' = ")/(81, s ,Sn),H = "}/(hl, s ,hn) S TF((m),(n))(Xn) By Theorem
3.3, we obtain that |[I(H)| = |I(F)|. We want to show that 0, r D 0, i, i.e. there exists
op.c € Relhyp((m),(n)) such that 0, r R 0pc and 0y, g £ 0, 1. Since |[I(H)| = |I(F)],
we assume that I(F') = {by,--- ,b;} and [(H) = {d1,--- ,d;}. Define 7 : {b1,--- ,b;} —
{di,--- ,d;} by m(by) = dj forall k = 1,--- ,I. Then 7 is a bijective map. Choose o), ¢ €
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Relhyp((m), (n)) withp = z;and G = 7(F'). Then I(G) = I(w(F)) = {n(b1),--- ,7(by)} =
{d1,---,d;} = I(H). By Theorem 3.1, we obtain that 0, £ 04, n. Next, we prove that

0z,,F R 0pc. Choose 0, r,02, E € Relhyp((m),(n)) where R = ~(ry,---

7(617 o e

It is obvious that (0, ¢ o4 04, E)(f) = s

,Tn), B

s€n) € TF((m),(n)) (Xn) suchthati—most(ry, ) = T,) andi—most(eq, ) = Tr-1(4,)
forallk =1,---,l. Then

(0p.G °h 0z;,8)(7)

(JfBi,F Oh Ursz)(’Y)

s m(F) 02, 2 (V)]

Oy m(my (€1, en)]

Ry (00, () (), Oz, m(ry€1)s Ty () lEn])
R} (n(F),i —most(ey), - ,i —most(ey))

m (7 (F)),

since I(w(F)) = {dy,--- ,d;},

F=o0g,r(7),

aIi,F [Uri7R(7)]

Oy, p[y(r1, - )]

Ry (04,7 () Oy, p[r1], -+ Ouy F[rn])
R} (F,i —most(r1), - ,i —most(ry))
m(F),

since i — most(ry, ) = Tr(p,) forallk =1,

G = O'p,G(’Y)'

L,

= 04,7 (f) and (0u,,F on 02, R)(f) = 7 = p =

opc(f). Soopcop 0y, E = 0y, F and 0y, F O 04, R = 0p . It follows that o, p R 0 G-

Therefore 0, p D 0;; i and the proof is complete.

Theorem 3.5. Let oy, r,04; m € Rx. Then oy, p H 0, g if and only if

() I(H

) =1(F)

(ii) ¢ = j and H = mw(F) where 7 is a bijective map on I (F).

Proof. The proof is completed by Theorem 3.1 and Theorem 3.2.

O

O]

Next, we study Green’s relations when one element is in Rx and another one is in R7. We

obtain that Rx and Ry are not related under Green’s relations.
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Theorem 3.6. Any relational hypersubstitution o, r € Rx is not R-, £-, H-, D- and J -related

to any relational hypersubstitution in Rr.

Proof. Letoy, p € Rx and 0y € Ry where w € Wi,y (Xpm) \ X Consider J-class, assume
that o, p J 0y, u. There are 0y, ¢, 04 1,0p0,04r € Relhyp((m),(n)) such that o, p =

Ou,G Oh Ow,H Oh Ou,E aNd 0y g = 0p 0 Ok Oz, F O ¢ R. Then

w = own(f)
= (9p.0 °n 0,7 on 04,R)(f)
= 0p,0[0a;,rlogr(f)]]
= 0,0[04,r[d]
= 0p0[i — most(q)]

= i—most(q) € Xpm.

This contradicts with w € W, (Xm) \ Xom. So (04, F,00H) ¢ J forall o, p € Rx and
ow,H € Rp.SinceH CRCDC JandH C L CD C J,italso implies that (o4, 7, 0w, 1) ¢
R,L,HandDforallo,, r € Rx and 0, g € Ry. Therefore, we can conclude thatany o, r €
Rx isnot R-, L-, H-, D- and J -related to any other relational hypersubstitution in R7. O

Finally, we characterize the Green’s relations on Ry as follows.

Theorem 3.7. Let oy p, 0y n € Ry. Then oy p L 0y g if and only if I(w) = I(t) and I(H) =
I(F).

Proof. Let oy p L 0y . There exist 0y, ¢, 04,0 € Relhyp((m), (n)) such that oy p = 0y o),
ow,g and oy g = 0.0 op o p. Thent = oy p(f) = (ou,g on ow,m)(f) and w = oy, g (f) =
(0w,0 on 01,7)(f). By Lemma 2.2, we obtain that /(¢) C I(w) and I(w) C I(t). It follows that
I(w) = I(t). On the other hand, F' = o p(y) = (0u,g oK Ow,m)(Y) and H = o, u(y) =
(0v,0 on 0t,F)(77). By Lemma 2.2, we have I(F') C I(H)and I(H) C I(F). So I(H) = I(F).
Conversely, assume that the conditions hold. Let oy, 7, 04 p € Ry wherew = f(w1,- -+, W),
t=f(tr, - ;tm) € Wiy (Xmm)and H = y(hy, -+ hp), F = (81, , 50) € 7 E((m),(n)) (Xn)
with I(w) = {a1, - ,ax} = I(t)and I(H) = {b1,---,b} = I(F). We will show that
ot r L oy H,i.e. there exist o, ¢, 04,0 € Relhyp((m), (n)) such that o, G oj, 0. = 04,z and

0,0 Oh Ow,H = OtF. Since oy p, 0w g € Ry, there exist subsets {a}, - ,a}}, {a1,--- ,ax}

of {1,---,m} and subsets {t/,--- , b/}, {b1, - ,b;} of {1,--- ,n} such that Wy, = Tq; = g,

and hy = xp, = sy foralli = 1,--- kandj = 1,---,l. Definem : {a1, - ,ax} —
J J

{61,"‘ ,Eik}bym(ai) :Ei forall i = 1,‘-- ,k,
my :{ar, -+ ,ar} — {a}, -+ ,a } byme(a;) = af foralli =1,--- |k,
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¢r:{br,-- by} = {b1,--- , by} by ¢1(b;) = bj forall j = 1,--- I and
qf)g : {bl,"' ,bl} — {b/la ,b;}bydb(b]) = b; forallj = 1,"' ,l.
Then 7, w2, ¢1 and ¢, are bijective. First, consider the mapping 71, we have a; = 7 1(51) for all

i=1,--- k. Thentz, = 4, = TG foralli =1,--- , k. Similarly, we have Wa = Trt(g1>

%o T Tor' @)
Choose 0y, ¢, 00,0 € Relhyp((m), (n)) with u = m(w), v = ma(t), G = ¢1(H) and
O = ¢o(F). Then I(u) = {ar, - ,ax}, I(v) = {a}, -~ ,a}}, I(G) = {b1,---,b} and

I(O) = {t}, - ,b;}. Wehave

andhb;_ = Tyt foralli =1,--- ,kandj=1,---,L
J

(ougononr)(f) = ouclonr(f)]
= oualf(ts, - tm)]
= Sp(wougltil,-- -, ucltml),
since 0y, ¢[ta,] = Tt (@) foralli =1,---  k,

= W) =7 () = w = 0w (f),

(ougonoer)(y) = oualor(y)]
= oucly(ss - sn)]
— RNG.Guclsil e Fuclsal),
since 3%(;[533_] =Ty forallj=1,--,1,

= ¢1(G) =¢7 (¢1(H)) = H = 0w 1 (7).

Similarly, we have (0, 0 o, 0. 1) (f) =t = 0¢.p(f) and (04,0 on Ow.m)(Y) = F = 0.5 (7). It
follows that 0, ¢ oy, 01, F = 0y, i and 0y, 0 o, 0y, g = 0t . Therefore oy p L oy 1. ]

Theorem 3.8. Let 0y r, 0y, i € Rr. Then oy p R 0, 7 if and only if
(i) [[(w)| = [I(t)] and [I(H)| = [I(F)],
(ii) w=m(t)and H = ¢(F) where 7w : I(t) — I(w) and ¢ : I(F') — I(H) are bijective.

Proof. Letoyp R oy wheret = f(t1, - ,tm), w = f(wi, -+ ,wm) € W) (Xon) and F' =
(1,0 5 8n)s H = y(h1, s hn) € TF((m),(n)) (Xn). Thereexist oy g, 04,0 € Relhyp((m), (n))
such that

Ot,F = Ow,H h Tu,G> (3.3)

Ow,H = OtF Oh 0y,0- (3.4)
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where u = f(u1, - ,um),v = f(vr,-++ ,vm) € Wiy (Xom) and G = v(g1,- - ,9n),0 =
’Y(Ol, v On) S TF((m) (n))(X ) Consider
t = o,r(f)
= (owmonoua)(f)

= ownlouc(f)

== &’LU,H[f(ulu e 7“77’1)]

= S;r:b(wa aw,H[ul]7 Tt 78w,H[um])
where t, = S (wp, Oy m[w1], -+, 0w, m|um]) forallp = 1,--- ,m. Clearly, if t, € X, then
wy € Xp. Since oy € Ry, there are all distinct a,--- ,a), € {1,--- ,m} and b}, -- b €
{1,--- ,n} such that tay = Tay, "ty = Tay and sy = Tp,, - , Sy = T, where I(t) =
{ar,---,ar} and I(F) = {b1, - ,bi}. Sowyy, -+, Way € Xom. Mfwy, = Wy, = x4 for some
1 # j then

La; = ta’i = Sm(wagvaW,H[ul}v T ’a\w,H[um])
:8w,H[ud] = Snn;(wa;aa'\w,H[ul]a o 78w,H[um]) = ta; = xaj~

This contradicts with x4, # z,, forall i # j. Thus w,, # W/ foralli # j € {1,---,k}.
It implies that |I(2)] = [{wg, -, wa } < [I(w)]. Similarly, by using (3.4), we have [I(w)| <
|I(t)]. So |I(w)| = |I(t)|- By using (3.3) and (3.4) again, we have |I(H )| = |I(F")| and the proof
of (i) is complete.

Next, we will show (ii). Let I(w) = {c1, -+ ,cg}and I(H) = {dy, - , di}. Sincewyy , ..., wq;

€ Xy, such that wgy # Wy forall ¢ # j, we can assume that wy = @, - S We = Ty,
Then x4, =ty = S;(War, Gw, (U, -+ 0w Hum]) = Ow mlue] foralli = 1,--- k. Since
w € Wipy(Xm) \ X, it implies u., = x4, foralli = 1,--- k. Define a bijective map
m:{a1, -+ ary = {c1, -+ ey bym(a;) = ciforalli = 1,--- k. Then u, = Ta, = Tr-1(c,)
foralli = 1,---,k and it implies that &y y[ue,] = 25-1(,) foralli = 1,--- k. Since
I(w) = {e1, ek}, we have t = ST (w, Gy m[u1], 0w m[tum]) = 7 H(w). Therefore,

w = m(t) where 7 is a bijection from I(¢) to I(w). Similarly, H = ¢(F') where ¢ is a bijection
from I(F)to I(H).

Conversely, assume that the conditions hold. Let oy p, 0y g € Ry with I(t) = {a1, - , ax},
I(w) ={c1, - ,ex}, I(F) = {by,--- ,by} and [(H) = {dy,- - ,d;} such that w = 7(t) and
H = ¢(F) where 7 : I(t) — I(w)and ¢ : I(F) — I(H) are bijective. We will show that
ot r R 0w, H, ie. there exist o, ¢, 0y 0 € Relhyp((m), (n)) such that oy, g op, 0y, = 0 F and
Ot,F Oh Ov,0 = Ow,H-

Choose 0., 04,0 € Relhyp((m), (n)) where w = f(uy, - ,um),v = f(v1, -+ ,um) €
Wiy (Xm) and G = (g1, ,9n),0 = (01, ,0n) € TF((),(n))(Xy) such that u., =
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Tr=1(¢;)> Ya; = Tr(a;)> 9d; = Tp—1(dy) and Ob; = Z(b;) foralli =1,--- ,kandj =1, ---,L
Then
(ow,m onouwg)(f) = Gwnlowc(f)
= a\w,H[f(uly R ’um)]
= Sp(w, oy mul, 0w mun]),
since Gy, p [Uc;| = Tp-1(c,) foralli =1,--- |k,

= 7 (w) =7t (n(t) =t =0 r(f),

(Cw,m on0uG)(Y) = Owrlowa(V)]
= Guul[v(g1, " 9n)]
= Ry(H,0uwulg1], 0w H[9n]);
since Gy, m(gd;] = Tg-1(q,) forall j =1,--- 1,

= ¢ H(H)=¢ Y($(F)) = F = arr(7).

Similarly, (o4, F o 00,0)(f) = Spi(t,0¢r[v1],- -+ , 0 plvm]) = 7(t) = w = 0y u(f) and
(01,F on 00,0)(7) = RL(F,Grr(o1], -+, 0 rlon]) = ¢(F) = H = 0w u (7). Hence ow, g op
ou,c = 0y r and oy F oy, 0y 0 = 0y . Therefore oy p R 0y m. ]
Theorem 3.9. Let 0y, 0451 € Rp. Then oy 5 J 0y m if and only if |I(w)| = |I(t)| and
[[(H)| = [I(F)]-

Proof. Let oy J 0w, g. Thereare oy, ¢, 04 E,0p.0,04.r € Relhyp((m), (n)) such that

O,F = OuG Oh Ow,H h Ov,E, (3.5)

Ow,H = 0pO Oh Ot F Oh OgR- (3.6)

where u = f(u1, - ,um),v = f(vi, -+ ,vm) € Wipy(Xm) and G = v(g1,-++ ,gn), E =

y(e1, s en) € TE((m),(n))(Xn). First, we consider (3.5). For convenience, let
(ow,i on 0v,E)(f) = w,uv] = S5 (0, 0w, mv1], -+ Ow,m[vm]) = f(W1,- -+, Wm)
where w; = SV (wj, 0w, ([V1), -+, Ow,H[Um]) forall j =1,---  m. Then

t = our(f)

= (O-U7G Oh Ow,H ©h Uv,E)(f)
= 0ucl(owH on 0y E)(f)]
— Guclf (@ )

= S;Z(O'u,G(f)a au,G[wlL ce 78u,G[wm])



Green’s Relations on Reg(Relhyp((m), (n))) 143

= SP(u,ouclun],  ,0uc[Wn]).
Sot; = Sy (uj, Ouclwi), -+, 0ug[Wn]) forallj = 1,--- ,m. We know that if ¢; € X, then
u; € Xy, Since oy € Ry, there exist all distinct af,--- ,a), € {1,--- ,m}and b},--- ,b) €
{1,---,n}suchthatt, = x4, - yta) = Ta, and sy = @p,, -, 5 = ap, where I(t) =

{a1, -+ ,ar} and I(F) = {by,--- ,b;}. Similar to the proof of Theorem 3.8, we obtain that
Ugys 5 Ug, € Xim and u,; # Uq! forall i # j.

Without loss of generality, we can assume that u,; = zq, forallé =1, k (it also implies
that o; # o foralli # j). Then zq, =ty = S (ugr, Ou,G[W1], -, 0uG[Wm]) = Tu,c[Wa,]
foralli = 1,--- , k. Next, we show that w,;, = x,, foralli = 1,--- k. Ifu = 23 € X, then,
by (3.5), we have t = (0 r)(f) = (0u,G on Tw,ir Oh 0v,E)(f) = Gus cl(OwH on 0v.)(f)] =
Oup GLf (W1, Wi)] = B —most(f(wr,: -+, Wn)) = B —most(wg) € Xy, a contradiction
with t € W) (Xom) \ Xin. Sou € Wiy (Xon) \ Xopp. Since x4, = 04, [Wa, ], Wa, = T4, for all
i=1,--- k. Since xq, = Wo, = S (Wa,, Ow,H[V1],** , Ow,H[VUm]), we have wq,, - -+ , Wa, €
Xy and are all distinct. So |1(t)| = |[{wa,, -+ ,wa, }| < [I(w)]. By (3.6), we can show that
|I(w)| < |I(t)|. Thus |I(w)| = |L(t)]. By (3.5) and (3.6) again, we have |I(H)| = |I(F)|.

Conversely, assume that the conditions hold. Let o4 7, 0y g € Ry with
I(t) = {al,--- ,ak}, I(w) = {Cl,'” ,Ck}, [(F) = {bl,'” ,bl} and I(H) = {dl,'” ,dl}
where t = f(t1, -+ ,tm), w = f(wi, - ,wm), F = ~v(s1,-+ ,sp) and H = v(hy,--- , hy)

suchthatt, = zq,wy = ey Sy, = T, andhd; =g, foralli=1,--- kandj =1,---,l. We
will show that oy p J 04 7. First, we define m; : {a1,--- ,ar} — {c}, -+, ¢} by mi(a;) = ¢
foralli=1,--- ,k,

mo:{cr, -, = {a), -+ ,ap} by ma(e) = d foralli=1,--- k,

o1 {br, - b} = {dy, - ,d;}bygbl(bj):d;foralljzl,--- ,land
¢2{dla >dl}—>{b/13 ’b;}by¢2(dj) :b; forall]: 17 al

Choose U7q(t),¢1(F)7 Uwg(w),¢2(H)7O-u,an'v,R € Relhyp((m)’ (n)) with u = f(ula o 7um))
v=f(vi, - ,om), E="(e1, - ,e,) and R = y(ry,--- ,ry,) such that u,, = xq,, vo, = T,
eq; = xp; and rp, = xg, foralli = 1,--- k, j = 1,--- 1. Next, we will show that oy p =
Uﬂl(t)#ﬁl(p) Oh Ow,H ©h Ou,E and OwH = 0'7r2(w),d>2(H) Oh Ot,F ©h Oy,R- For convenience, we
consider

(ow,m on ouwE)(f) = Sp(w, 0w, U], -+, 0w, [Um]) = f(w1,- -, W)
where w, = ST (wp, O mu1], -+ Owmum]) forallp=1,--- m,

(01, o 00,R)(f) = ST(t,Grplv1], -, G r[vm]) = fE1, - tm)

where t, = ST(t,, 5y plv1], -+ , Ot plvm]) forallp=1,--- ,m,

(Gw.i on o) (Y) = RY(H, Gwnlel],- - Gwrlen]) = v(h1, -+ hn)
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whete iy = S2(hys Gusler): -+ Gu,alem]) forallp = 1,- -+ nand
(or,F on our)(Y) = Ry (F,o0p[r1], - 0ur[rm]) = v(51,- - ,5n)
where s, = S (sp, 0. p(r1],- - ,01,p[rm]) forallp=1,--- n.
Since we; = @, and ue, = Tq; = Lo foralle =1,--- ,k, we have
B = ST G ltr]s - 3Gt tm]) = ST (s Fust i, -+ Fusaltm]) = G lic] =
i=1,---,kandj =1,--- ,l. Next, we consider
(Or1(0),01(F) Oh Ow,i Oh Ouw2)(f) = Tri),60(F) [(Ow,i1 O 0w, ) (f)]
= Or ()60 (F)Lf (W1, Wm)]
led

= Sp(mi(t), Tryt).60 () [W1)s 3Ty (1), () [ D))
= Wfl(ﬂl(t)%
since I(m(t)) = {0,17 s 76;9} and

Oy (t),60 (F) [Wer ] = Lol foralli=1,---,k,
and (0, (1),6,(F) Oh Ow,HOwE)(7) = ¢f1(¢1(F)) = F = 04,7 (7). S0 0, (1),61(F) ©h Tw,H ©h
Oup = oup. Similarly, we can show that o, = Oro(w),p2(H) Oh Ot,F Oh Ou,R- Therefore
O-t,FjO-w7H. D

Theorem 3.10. In Ry, J = D.

Proof. 1t is obvious that D C J. We will show that 7 C D. Let oy p,00 1 € Rr such
that oy J 0w g Where t = f(t1, -+ tp), w = f(wi, - ,wm) € Wiy (Xm) and F =
(81,0 5 8n) H =y(h1, -+, hn) € 7F((1m),(n)) (Xn). By Theorem 3.9, we obtain that | I (w)| =
|[I(t)|and|I(H)| = |I(F)|. LetI(t) = {a1, - ,ap}, I(w) ={c1, - ,ex}, I(F) = {b1,--- , by}

and I(H) = {d1,--- ,d;}. Since oy p, 0, i € Rr, there are subsets {a},--- ,a}.}, {c}, -+, ¢}
of {1,---,m} and subsets {0}, -- , 0}, {d},--- ,d;} of {1,--- ,n} such that ta, = Tap We, =
Tep Sy, = T and hd; = zg; foralls = 1,--- kand j = 1,---,I. We will show that

o, D oy, i, ie. thereisoy, ¢ € Relhyp((m), (n)) suchthato,, g £ oy ¢ and o, g R oy . Since
|[I(w)| = |I(t)| and |I(H)| = |I(F')|, we define bijective maps 7 : I(t) — I(w) by 7(a;) = ¢;,
foralli =1,--- ,k,and ¢ : I(F) — I(H) by m(b;) = dj,forallj =1,--- 1. Choose o €
Relhyp((m), (n)) such that p = n(t) and G = ¢(F). Then I(p) = {n(a1), -+ ,w(ag)} =
{c1,-++ ,ex} = I(w) and I(G) = {¢(b1), - ,0(by)} = {d1, -+ ,di} = I(H). By Theo-
rem 3.7, we have o, i £ o), . Next, we will show that 0, ¢ R oy F, i.e. there are 0, g, 0, c €

Relhyp((m), (n)) such that o, ¢ = 0 F o} 0y, g and oy p = 0p.G 01, 0y . Choose 0y B, 00.G €
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Relhyp((m), (n)) with u = f(u1, -+ ,um),v = f(vr, - ,0m) € Wip)(Xpn) and E =
yler, -+ sen), G =591, ,9n) € TF((m),(n))(Xn) such that ug;, = x¢;, ve; = T, €0, = T4,
and g4, = xp, foralli =1,--- ;kand j = 1,--- . By calculation, we obtain that 0}, ¢ R oy .
Therefore oy D 0 H. ]

Theorem 3.11. Let 04, 0, i € Rr. Then oy p H 0, i if and only if
(i) I(w)=1I(t)and I(H) = I(F),

(i) w = 7(t) and H = ¢(F') where m and ¢ are bijective maps on I () and I (F'), respectively.

Proof. The proof is completed by Theorem 3.7 and Theorem 3.8. O
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