*-Weyl Curvature Tensor within the Framework of Sasakian and (κ, μ)-Contact Manifolds

Venkatesha Venkatesha and H. Aruna Kumara

Abstract

The object of the present paper is to study $*$-Weyl curvature tensor within the framework of Sasakian and (κ, μ)-contact manifolds.

1 Introduction

Let M be a $(2 n+1)$-dimensional Riemannian manifold with metric g and let $T M$ be the Lie algebra of differentiable vector fields in M. The Ricci operator Q of (M, g) is defined by $g(Q X, Y)=$ $\operatorname{Ric}(X, Y)$, where Ric denotes the Ricci tensor of type $(0,2)$ on M and $X, Y \in T M$. Weyl ($[20,21]$) constructed a generalized curvature tensor on a Riemannian manifold which vanishes whenever the metric is (locally) conformally equivalent to a flat metric. The Weyl conformal curvature tensor is defined by

$$
\begin{aligned}
C(X, Y) Z= & R(X, Y) Z-\frac{1}{2 n-1}\{g(Q Y, Z) X-g(Q X, Z) Y+g(Y, Z) Q X \\
& -g(X, Z) Q Y\}+\frac{r}{2 n(2 n-1)}\{g(Y, Z) X-g(X, Z) Y\}
\end{aligned}
$$

for $X, Y, Z \in T M$, where R and r denotes the Riemannian curvature tensor and the scalar curvature of M respectively. If $n=1$ then $C(X, Y) Z=0$ and if $n \geq 1$ then M is locally conformal flat if and only if $C(X, Y) Z=0$. The condition of locally conformal flat holds for 3-dimensional Riemannian manifolds if and only if the Cotton tensor of M, which is given by

$$
K(X, Y)=\left(\nabla_{X} Q\right) Y-\left(\nabla_{Y} Q\right) X-\frac{1}{4}\{(X r) Y-(Y r) X\}
$$

vanishes identically.

Key words and phrases. Sasakian manifolds, (κ, μ)-contact manifolds, $*$-Ricci tensor, $*$-Weyl curvature tensor.
Corresponding author: Venkatesha Venkatesha.

In [16] Okumura showed that a conformally flat Sasakian manifold of dimension >3 is of constant curvature 1 and in [19] Tanno extended this result to the K-contact case and for dimensions ≥ 3. Noting that the Ricci operator Q commutes with the fundamental collineation φ for a Sasakian manifold, but this commutativity need not hold for a contact metric manifold, Blair and Koufogiorgos [3] proved that a conformally flat contact metric manifold on which Q commutes with φ, is of constant curvature 1 . This generalized the above mentioned result of Okumura. In [9], the authors classified a classes of conformally flat contact metric manifolds and characterized a conformally flat contact manifolds as a hypersurfaces of 4-dimensional Kaehler Einstein manifolds. Miyazawa and Yamaguchi [15] proved that a conformally symmetric Sasakian manifold is also locally isometric to the unit sphere. Chaki and Tarafdar [6] obtained the same result for a Sasakian manifold satisfying the condition $R(X, Y) \cdot C=0$, for $X, Y \in T M$.

In 1959 Tachibana [17] defined $*$-Ricci tensor Ric * on almost Hermitian manifold. In [11] Hamada gave the definition of $*$-Ricci tensor Ric* in the following way

$$
\begin{equation*}
\operatorname{Ric}^{*}(X, Y)=\frac{1}{2} \operatorname{trace}(Z \rightarrow R(X, \varphi Y) \varphi Z) \tag{1.1}
\end{equation*}
$$

for all $X, Y \in T M$. He also presented $*$-Einstein, i.e., $g\left(Q^{*} X, Y\right)=\lambda g(X, Y)$, where λ is a constant multiple of $g(X, Y)$ and provided classification of $*$-Einstein hypersurfaces. Ivey and Ryan in [13] extended the Hamada's work and studied the equivalence of $*$-Einstein condition with other geometric conditions such as the pseudo-Einstein and the pseudo-Ryan condition. By using the concept of $*$-Ricci tensor, the present authors with Naik [12] studied the some curvature properies on contact metric generalized (κ, μ)-space form.

Recently, Kaimakamis and Panagiotidou [14] introduced the notion of $*$-Weyl curvature tensor on real hypersurfaces in non-flat complex space forms and it is defined in the following way

$$
\begin{align*}
C^{*}(X, Y) Z & =R(X, Y) Z-\frac{1}{2 n-1}\left\{g\left(Q^{*} Y, Z\right) X-g\left(Q^{*} X, Z\right) Y+g(Y, Z) Q^{*} X\right. \\
& \left.-g(X, Z) Q^{*} Y\right\}+\frac{r^{*}}{2 n(2 n-1)}\{g(Y, Z) X-g(X, Z) Y\} \tag{1.2}
\end{align*}
$$

for all $X, Y, Z \in T M$, where Q^{*} is the $*$-Ricci operator and r^{*} is the $*$-scalar curvature corresponding to Q^{*} of M.

Motivated by the above studies, in this paper we study certain curvature conditions on the *-Weyl curvature tensor in Sasakian and (κ, μ)-contact manifolds. The paper is organized as follows: In section 2, we give brief introduction of contact metric manifolds. In section 3, we study $*$-Weyl curvature tensor within the background of Sasakian manifolds. Here, we show that Sasakin manifold with vanishing $*$-Weyl curvature tensor is $\psi(F)_{2 n+1}$, and also proved that if Sasakian manifold satisfies $R \cdot C^{*}=0$, then it is η-Einstein. In section 4, we study $*$-Weyl curvature tensor in (κ, μ)-contact manifolds. In this section, we show that a non-Sasakian (κ, μ) contact manifold with vanishing $*$-Weyl curvature tensor is a flat for $n=1$ and locally isometric
to a Riemannian product $E^{n+1} \times S^{n}(4)$. Finally, it is proved that if non-Sasakian (κ, μ)-contact manifold satisfies $\nabla C^{*}=\pi \otimes C^{*}$, then it is locally isometric to a Riemannian product $E^{n+1} \times$ $S^{n}(4)$.

2 Preliminaries

First, we shall review the basic definitions and formulas of contact metric manifolds. A ($2 \mathrm{n}+1$)dimensional smooth manifold M is said to be contact if it admits a global 1-form η such that $\eta \wedge(d \eta)^{n} \neq 0$ on M. This 1-form is called a contact 1-form. For a contact 1-form η, there exists a unique vector field ξ such that $d \eta(\xi, X)=0$ and $\eta(\xi)=1$. Polarizing $d \eta$ on the contact subbundle D (defined by $\eta=0$), we obtain a Riemannian metric g and a (1,1)-tensor field φ such that

$$
\begin{equation*}
d \eta(X, Y)=g(X, \varphi Y), \quad \eta(X)=g(X, \xi), \quad \varphi^{2} X=-X+\eta(X) \xi \tag{2.1}
\end{equation*}
$$

for all $X, Y \in T M$. From these equations one can also deduce that

$$
\begin{equation*}
\varphi \xi=0, \quad \eta \circ \varphi=0, \quad g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}
\end{equation*}
$$

The structure (φ, ξ, η, g) on M is known as a contact metric structure and the metric g is called an associated metric. A Riemannian manifold M together with the structure (φ, ξ, η, g) is said to be a contact metric manifold and we denote it by $(M, \varphi, \xi, \eta, g)$. On a contact metric manifold (see [1])

$$
\begin{equation*}
\nabla_{X} \xi=-\varphi X-\varphi h X, \quad h \varphi+\varphi h=0 \tag{2.3}
\end{equation*}
$$

for any vector field X, Y on M and ∇ denotes the operator of covariant differentiation of g. If the vector field ξ is Killing (equivalently, $h=0$) with respect to g, then the contact metric manifold M is said to be K-contact. On a Sasakian manifold, the following formulas are known [1]

$$
\begin{align*}
& \nabla_{X} \xi=-\varphi X \tag{2.4}\\
& Q \xi=2 n \xi \tag{2.5}
\end{align*}
$$

where Q denote the Ricci operator of M. A contact metric manifold is said to be Sasakian if it satisfies

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=g(X, Y) \xi-\eta(Y) X \tag{2.6}
\end{equation*}
$$

On a Sasakian manifold, the curvature tensor satisfies

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.7}
\end{equation*}
$$

Also, the contact metric structure on M is said to be Sasakian if the almost Kaehler structure on the metric cone $\left(M \times R^{+}, r^{2} g+d r^{2}\right)$ over M, is Kaehler [1]. A Sasakian manifold is K-contact but the converse is true only in dimension 3. For more details see [1] and [5].

3 *-Weyl Curvature Tensor and Sasakian Manifolds

We are now in a position to find the expression of $*$-Weyl curvature tensor in the background of Sasakian manifolds. In [10], Ghosh and Patra derive the expression of $*$-Ricci tensor on Sasakian manifold, which is of the form

$$
\begin{equation*}
\operatorname{Ric}^{*}(X, Y)=\operatorname{Ric}(X, Y)-(2 n-1) g(X, Y)-\eta(X) \eta(Y) \tag{3.1}
\end{equation*}
$$

Contracting this over X yields

$$
\begin{equation*}
r^{*}=r-4 n^{2} . \tag{3.2}
\end{equation*}
$$

Using (3.1) and (3.2) in (1.2), we obtain

$$
\begin{align*}
& C^{*}(X, Y) Z=R(X, Y) Z-\frac{1}{2 n-1}\{g(Q Y, Z) X-g(Q X, Z) Y+g(Y, Z) Q X \\
& -g(X, Z) Q Y\}+\frac{1}{2 n-1}\{\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y+g(Y, Z) \eta(X) \xi \\
& -g(X, Z) \eta(Y) \xi\}+\left(\frac{r-4 n^{2}}{2 n(2 n-1)}+2\right)\{g(Y, Z) X-g(X, Z) Y\} \tag{3.3}
\end{align*}
$$

Let M be a Sasakian manifold with vanishing $*$-Weyl curvature tensor, that is, $C^{*}(X, Y) Z=0$. Relation for $C^{*}(X, Y) Z=0$ implies that

$$
\begin{align*}
R(X, Y) Z & =\frac{1}{2 n-1}\{g(Q Y, Z) X-g(Q X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y\} \\
& -\frac{1}{2 n-1}\{\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y+g(Y, Z) \eta(X) \xi \\
& -g(X, Z) \eta(Y) \xi\}-\left(\frac{r-4 n^{2}}{2 n(2 n-1)}+2\right)\{g(Y, Z) X-g(X, Z) Y\} \tag{3.4}
\end{align*}
$$

Covariant differentiation of above relation along W and then contracting the resultant equation over W yields

$$
\begin{align*}
& \frac{2(n-1)}{2 n-1}\left\{g\left(\left(\nabla_{X} Q\right) Y, Z\right)-g\left(\left(\nabla_{Y} Q\right) X, Z\right)\right\} \\
& =\frac{2(n-1)}{4 n(2 n-1)}\{(X r) g(Y, Z)-(Y r) g(X, Z)\} \\
& -\frac{1}{2 n-1}\{2 g(X, \varphi Y) \eta(Z)+g(X, \varphi Z) \eta(Y)-g(Y, \varphi Z) \eta(X)\} \tag{3.5}
\end{align*}
$$

In a Sasakian manifold we have the following relation:

$$
\begin{equation*}
\left(\nabla_{X} Q\right) \xi=Q \varphi X-2 n \varphi X \tag{3.6}
\end{equation*}
$$

For a Sasakian manifold we know that ξ is Killing and hence L_{ξ} Ric $=0$. Therefore, by (2.4) we easily get $\nabla_{\xi} Q=\varphi Q-Q \varphi$. For a Sasakian manifold Q and φ commute (see [1]) and hence $\nabla_{\xi} Q=0$. Now replacing Y by ξ in (3.5), recalling the last relation and (3.6) we find

$$
2(n-1) g(Q \varphi X, Z)-(4 n(n-1)+1) g(\varphi X, Z)-\frac{2(n-1)}{4 n}(X r) \eta(Z)=0
$$

Replacing Z by φZ in the foregoing equation and making use of (2.2) we obtain

$$
\begin{equation*}
\operatorname{Ric}(X, Z)=a g(X, Z)-b \eta(X) \eta(Z) \tag{3.7}
\end{equation*}
$$

where $a=\frac{4 n(n-1)+1}{2(n-1)}$ and $b=\frac{1}{2(n-1)}$. Substituting (3.7) in (3.4), we obtain

$$
\begin{align*}
R(X, Y, Z, W) & =p[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]++q[g(X, W) \eta(Y) \eta(Z) \\
& -g(X, Z) \eta(Y) \eta(W)+g(Y, Z) \eta(X) \eta(W)-g(Y, W) \eta(X) \eta(Z)] \tag{3.8}
\end{align*}
$$

where $p=\left\{\frac{2 a}{2 n-1}-\frac{r-4 n^{2}}{2 n(2 n-1)}-2\right\}$ and $q=-\frac{b+1}{2 n-1}$. The relation (3.8) leads to

$$
\begin{equation*}
R(X, Y, Z, W)=F(Y, Z) F(X, W)-F(X, Z) F(Y, W) \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
F(X, Y)=\sqrt{p} g(X, Y)+\frac{q}{\sqrt{p}} \eta(X) \eta(Y) \tag{3.10}
\end{equation*}
$$

An n-dimensional Riemannian manifold whose curvature tensor R of type (0,4) satisfies the condition (3.9), where F is a symmetric tensor of type $(0,2)$ is called a special manifold with the associated symmetric tensor F, and is denoted by $\psi(F)_{n}$. Such type of manifolds have been studied by Chern [7] in 1956.
By virtue of (3.9), we have the following;
Theorem 3.1. A Sasakian manifold with vanishing $*$-Weyl curvature tensor is $\psi(F)_{2 n+1}$ with associated symmetric tensor F given by (3.10).

In view of (3.8), we have following result;
Theorem 3.2. A Sasakian manifold with vanishing *-Weyl curvature tensor is a manifold of quasi constant curvature.

A Riemannian manifold (M, g) is said to be semisymmetric if $R \cdot R=0$. Now we study, Sasakian manifold with $*$-Weyl curvature tensor satsifying relation $R \cdot C^{*}=0$ and prove that

Theorem 3.3. If a $(2 n+1)$-dimensional Sasakian manifold satisfies $R \cdot C^{*}=0$, then it is η-Einstein manifold.

Proof. Let us consider a $(2 n+1)$-dimensional Sasakian manifold satisfying $\left(R(X, Y) \cdot C^{*}\right)(U, V) W=$ 0 . Then, by definition we have

$$
\begin{aligned}
& R(X, Y) C^{*}(U, V) W-C^{*}(R(X, Y) U, V) W \\
& -C^{*}(U, R(X, Y) V) W-C^{*}(U, V) R(X, Y) W=0
\end{aligned}
$$

Replacing X by ξ in the above equation and then taking inner product of resultant equation, we obtain

$$
\begin{align*}
& \eta\left(R(\xi, Y) C^{*}(U, V) W\right)-\eta\left(C^{*}(R(\xi, Y) U, V) W\right) \\
& -\eta\left(C^{*}(U, R(\xi, Y) V) W\right)-\eta\left(C^{*}(U, V) R(\xi, Y) W\right)=0 \tag{3.11}
\end{align*}
$$

In view of (2.7), it follows from (3.11) that

$$
\begin{aligned}
& C^{*}(U, V, W, Y)-\eta\left(C^{*}(U, V) W\right) \eta(Y)-g(Y, U) \eta\left(C^{*}(\xi, V) W\right) \\
& +\eta(U) \eta\left(C^{*}(Y, V) W\right)-g(Y, V) \eta\left(C^{*}(U, \xi) W\right)+\eta(V) \eta\left(C^{*}(U, Y) W\right) \\
& -g(Y, W) \eta\left(C^{*}(U, V) \xi\right)+\eta(W) \eta\left(C^{*}(U, V) Y\right)=0
\end{aligned}
$$

Replacing Y by U in the above equation, we have

$$
\begin{align*}
& C^{*}(U, V, W, U)-g(U, U) \eta\left(C^{*}(\xi, V) W\right) \\
& -g(U, V) \eta\left(C^{*}(U, \xi) W\right)+\eta(W) \eta\left(C^{*}(U, V) U\right)=0 \tag{3.12}
\end{align*}
$$

By virtue of (3.3), one can easily see that

$$
\begin{align*}
\eta\left(C^{*}(X, Y) Z\right)= & -\frac{1}{2 n-1}\{\operatorname{Ric}(Y, Z) \eta(X)-\operatorname{Ric}(X, Z) \eta(Y)\} \\
& +\left(\frac{r}{2 n(2 n-1)}-4\right)\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\}, \tag{3.13}\\
\eta\left(C^{*}(X, Y) \xi\right)= & 0 \tag{3.14}\\
\eta\left(C^{*}(X, \xi) Z\right)= & \frac{1}{2 n-1} \operatorname{Ric}(X, Z)-\frac{2 n}{2 n-1} \eta(X) \eta(Z) \\
& -\left(\frac{r}{2 n(2 n-1)}-4\right)\{g(X, Z)-\eta(X) \eta(Z)\}, \tag{3.15}\\
\sum_{i=1}^{2 n+1} C^{*}\left(e_{i}, Y, Z, e_{i}\right)= & \frac{2 n(2 n-2)+1}{2 n-1} g(Y, Z)+\eta(Y) \eta(Z), \tag{3.16}
\end{align*}
$$

where $\left\{e_{i}\right\}_{i=1}^{2 n+1}$ is an orthonormal basis of the tangent space at any point of the manifold. Taking $U=e_{i}$ in (3.12) and summing over i and making use of (3.13)-(3.16), we get

$$
\operatorname{Ric}(V, W)=\alpha g(V, W)-\beta \eta(V) \eta(W)
$$

where $\alpha=\frac{20 n^{2}-12 n+1-r}{2 n}$ and $\frac{\beta=20 n^{2}-8 n+1-r}{2 n}$. The above relation shows that the manifold is Sasakian. This completes the proof.

$4 *$-Weyl Curvature Tensor and (κ, μ)-contact Manifolds

In [2], Blair et al. introduced and studied a new type of contact metric manifold known as a (κ, μ)-contact manifold. Later on, Boeckx [4] classified these manifolds completely. A contact metric manifold $(M, \varphi, \xi, \eta, g)$ is said to be (κ, μ)-space if the curvature tensor satisfies

$$
\begin{equation*}
R(X, Y) \xi=\kappa\{\eta(Y) X-\eta(X) Y\}+\mu\{\eta(Y) h X-\eta(X) h Y\} \tag{4.1}
\end{equation*}
$$

for all vector fields X, Y on M and for some real numbers (κ, μ). This type of space arises through a D-homothetic deformation ([18]) to a contact metric manifold which satisfies $R(X, Y) \xi=0$. The class of (κ, μ)-spaces covers Sasakian manifolds (for $\kappa=1$) and the trivial sphere bundle $E^{n+1} \times S^{n}(4)$ (for $\kappa=\mu=0$). There exist examples of non-Sasakian (κ, μ)-contact metric manifolds. For instance, the unit tangent bundles of Riemannian manifolds of constant curvature $\kappa \neq 1$. Since a D-homothetic deformation preserves (κ, μ)-contact structures, one can construct a lot of examples of (κ, μ)-contact structures (see [2]). The following formulas are also valid for a non-Sasakian (κ, μ)-contact manifolds [2]:

$$
\begin{align*}
Q X & =[2(n-1)-n \mu] X+[2(n-1)+\mu] h X \\
& +[2(1-n)+n(2 \kappa+\mu)] \eta(X) \xi, \tag{4.2}\\
\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X & =(1-\kappa)[2 g(X, \varphi Y) \xi+\eta(X) \varphi Y-\eta(Y) \varphi X] \\
& +(1-\mu)[\eta(X) \varphi h Y-\eta(Y) \varphi h X, \tag{4.3}\\
Q \xi & =2 n \kappa \xi, \tag{4.4}\\
h^{2} & =(\kappa-1) \varphi^{2}, \quad \kappa<1, \tag{4.5}
\end{align*}
$$

equality holds when $\kappa=1$ (equivalently, $h=0$), i.e., M is Sasakian. For the non-Sasakian case, i.e., $\kappa<1$, the (κ, μ)-nullity condition determines the curvature of M completely. In view of this, Boeckx [4] proved that a non-Sasakian (κ, μ)-contact manifold is locally homogeneous and hence analytic. Moreover, the constant scalar curvature r of such structures is given by

$$
r=2 n(2(n-1)+\kappa-n \mu),
$$

which is constant. On a (κ, μ)-contact manifold we have

$$
\begin{equation*}
\left(\nabla_{\xi} Q\right) X=\mu(2(n-1)+\mu) h \varphi X \tag{4.6}
\end{equation*}
$$

for any vector field X on M. In [10], Ghosh and Patra gave a expression of $*$-Ricci tensor on non-Sasakian (κ, μ)-contact manifolds, which is of the form

$$
\begin{equation*}
\operatorname{Ric}^{*}(X, Y)=(n \mu+\kappa)\{-g(X, Y)+\eta(X) \eta(Y)\} . \tag{4.7}
\end{equation*}
$$

Contracting this over X provides

$$
\begin{equation*}
r^{*}=-2 n(n \mu+\kappa) \tag{4.8}
\end{equation*}
$$

Making use of (4.7) and (4.8) in (1.2), we ultimately have

$$
\begin{align*}
C^{*}(X, Y) Z= & R(X, Y) Z-\frac{n \mu+\kappa}{2 n-1}\{\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y-g(Y, Z) X \\
& +g(Y, Z) \eta(X) \xi+g(X, Z) Y-g(X, Z) \eta(Y) \xi\} \tag{4.9}
\end{align*}
$$

Let M be a (κ, μ)-contact manifold with vanishing *-Weyl curvarure tensor, i.e., $C^{*}(X, Y) Z=$ 0 . Relation (4.9) for $C^{*}(X, Y) Z=0$ implies

$$
\begin{aligned}
R(X, Y) Z= & \frac{n \mu+\kappa}{2 n-1}\{\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y-g(Y, Z) X \\
& +g(Y, Z) \eta(X) \xi+g(X, Z) Y-g(X, Z) \eta(Y) \xi\}
\end{aligned}
$$

Substituting Z by ξ in the above equation, we obtain

$$
R(X, Y) \xi=0
$$

Hence by Blair's theorem (see [1], p.122) M is locally flat in dimension 3, and in higher dimension it is locally isometric to the trivial bundle $E^{n+1} \times S^{n}(4)$. Thus we state the following theorem;

Theorem 4.1. Let M be a non-Sasakian (κ, μ)-contact manifold with vanishing *-Weyl curvature tensor. Then M is flat for $n=1$ and for $n>1, M$ is locally isometric to a Riemannian product $E^{n+1} \times S^{n}(4)$.

A Riemannian manifold (M, g) is said to be recurrent if there exists a 1-form ω such that Riemannian curvature tensor R satisfies $\nabla R=\pi \otimes R$, where ∇ is Levi-Civita connection of g. This type of manifold appears as a generalization of symmetric manifold. In [8] Ghosh studied conformally recurrent (κ, μ)-contact manifold of dimension >3 and show that it is locally isometric to either (i) unit sphere $S^{2 n+1}(1)$ or (ii) $E^{n+1} \times S^{n}(4)$. Now we study, non-Sasakian (κ, μ) contact manifold with $*$-Weyl curvature tensor satisfying recurrent relation, i.e., $\nabla C^{*}=\pi \otimes C^{*}$ and prove that

Theorem 4.2. If a non-Sasakian (κ, μ)-contact manifold $M,(n>1)$ satisfies $\nabla C^{*}=\pi \otimes C^{*}$, then M is locally isometric to the trivial bundle $E^{n+1} \times S^{n}(4)$.

Proof. By hypothesis we have

$$
\begin{equation*}
\left(\nabla_{W} C^{*}\right)(X, Y) Z=\pi(W) C^{*}(X, Y) Z \tag{4.10}
\end{equation*}
$$

Contracting (4.10) over W provide

$$
\begin{equation*}
\left(\operatorname{div} C^{*}\right)(X, Y) Z=C^{*}(X, Y, Z, P) \tag{4.11}
\end{equation*}
$$

where P is the recurrence vector metrically associated to the recurrence form π. Taking covariant differentiation of (4.9) along W and then contracting the resultant equation over W and using $\operatorname{Tr} h=\operatorname{Tr} \varphi h=0$, we entails that

$$
\begin{align*}
\left(\operatorname{div} C^{*}\right)(X, Y) Z & =g\left(\left(\nabla_{X} Q\right) Y, Z\right)-g\left(\left(\nabla_{Y} Q\right) X, Z\right)-\frac{n \mu+\kappa}{2 n-1}\{2 g(X, \varphi Y) \eta(Z) \\
& +g(X, \varphi Z+h \varphi Z) \eta(Y)-g(Y, \varphi Z+h \varphi Z) \eta(X)\} \tag{4.12}
\end{align*}
$$

Combining (4.11) and (4.12), we find that

$$
\begin{align*}
& g\left(\left(\nabla_{X} Q\right) Y, Z\right)-g\left(\left(\nabla_{Y} Q\right) X, Z\right)=\frac{n \mu+\kappa}{2 n-1}\{2 g(X, \varphi Y) \eta(Z) \\
& +g(X, \varphi Z+h \varphi Z) \eta(Y)-g(Y, \varphi Z+h \varphi Z) \eta(X)\}+C^{*}(X, Y, Z, P) \tag{4.13}
\end{align*}
$$

Next, differentiating covariantly (4.4) along an arbitrary vector field X and using (2.3) we get

$$
\begin{equation*}
\left(\nabla_{X} Q\right) \xi=Q \varphi X+Q \varphi h X-2 n \kappa(\varphi X+\varphi h X) \tag{4.14}
\end{equation*}
$$

Substituting Z by ξ in (4.13) and making use of (4.14) we find that

$$
\begin{align*}
g(Q \varphi X & +\varphi Q X+Q \varphi h X+h \varphi Q X-4 n \kappa \varphi X, Y) \\
& =\frac{2(n \mu+\kappa)}{2 n-1} g(X, \varphi Y)+C^{*}(X, Y, \xi, P) \tag{4.15}
\end{align*}
$$

Replacing X by $\varphi X, Y$ by φY and Z by ξ in (4.9) and by virtue of (4.1), it follows that $C^{*}(\varphi X, \varphi Y) \xi=$ 0 . Thus setting $X=\varphi X, Y=\varphi Y$ in (4.15) and making use of last equality we obtain

$$
Q \varphi X+\varphi Q X-\varphi Q h X-h Q \varphi X-4 n \kappa \varphi X+\frac{2(n \mu+\kappa)}{2 n-1} \varphi X=0
$$

By virtue of (4.2), the foregoing equation reduces to

$$
\begin{equation*}
\kappa \mu-n \mu-2 \kappa-\mu+\frac{2(n \mu+\kappa)}{2 n-1}=0 . \tag{4.16}
\end{equation*}
$$

Taking the covariant differentiation of (4.2) and making use of (2.3) gives

$$
\begin{array}{r}
\left(\nabla_{X} Q\right) Y=[2(n-1)+\mu]\left(\nabla_{X} h\right) Y-[2(1-n)+n(2 \kappa+\mu)] \\
\{g(\varphi X-\varphi h X, Y) \xi+\eta(Y)(\varphi X+\varphi h X)\} . \tag{4.17}
\end{array}
$$

Interchanging X and Y in (4.17) and substracting the resultant equation with (4.17) and by virtue of (4.3) and (4.16) we find that

$$
\begin{array}{r}
g\left(\left(\nabla_{X} Q\right) Y, Z\right)-g\left(\left(\nabla_{Y} Q\right) X, Z\right)=\frac{2(n \mu+\kappa)}{2 n-1}\{2 g(X, \varphi Y) \eta(Z) \\
+\eta(X) g(\varphi Y, Z)-\eta(Y) g(\varphi X, Z)\}+\left(3 \mu-\mu^{2}-n \mu+2 n \kappa\right) \\
\{\eta(X) g(\varphi h Y, Z)-\eta(Y) g(\varphi h X, Z)\} . \tag{4.18}
\end{array}
$$

By virtue of (4.13), the foregoing equation reduces to

$$
\begin{array}{r}
C^{*}(X, Y, Z, P)=\frac{n \mu+\kappa}{2 n-1}\{2 g(X, \varphi Y) \eta(Z)+\eta(X) g(\varphi Y, Z) \\
-\eta(Y) g(\varphi X, Z)\}+\left\{\left(3 \mu-\mu^{2}-n \mu+2 n \kappa\right)-\frac{n \mu+\kappa}{2 n-1}\right\} \\
\{\eta(X) g(\varphi h Y, Z)-\eta(Y) g(\varphi h X, Z)\} \tag{4.19}
\end{array}
$$

Replacing X by $\varphi X, Y$ by φY and Z by ξ in (4.19), it follows that

$$
\begin{equation*}
n \mu+\kappa=0 \tag{4.20}
\end{equation*}
$$

where we used $C^{*}(\varphi X, \varphi Y) \xi=0$. Setting $Z=P$ and $X=\xi$ in (4.19) and by virtue of (4.20) yields

$$
\left(3 \mu-\mu^{2}-n \mu+2 n \kappa\right) g(\varphi h Y, P)=0
$$

Thus we have two possible cases:

$$
\begin{array}{r}
\text { (i) } 3 \mu-\mu^{2}-n \mu+2 n \kappa=0 \\
\text { (ii) } h \varphi P=0 \tag{4.22}
\end{array}
$$

Case(i). Keeping in mind that $n \mu+\kappa=0$. Solving (4.16) and (4.21) we have the following solutions

$$
\kappa=\mu=0, \quad \kappa=\mu=n+3 \quad \text { or } \quad \kappa=\frac{n^{2}-1}{n}, \mu=2(1-n) .
$$

When $\kappa=\mu=0$, we obtain from (4.1) that $R(X, Y) \xi=0$ and applying Blair's theorem we see that M is locally isometric to the product $E^{n+1} \times S^{n}(4)$. Since $n>1$, the last two solutions leads to a contradiction as $\kappa<1$.

Case(ii). Operating (4.22) by h and making use of (4.5) it follows that $P=\pi(\xi) \xi$. Together this with the condition (4.10) gives $\left(\nabla_{W} C^{*}\right)(X, Y) Z=\pi(\xi) \eta(W) C^{*}(X, Y) Z$. Substituting W by $\varphi^{2} W$ in the last equality and contracting the resultant equation over W gives

$$
\begin{equation*}
\left(\operatorname{div} C^{*}\right)(X, Y) Z=g\left(\left(\nabla_{\xi} C^{*}\right)(X, Y) Z, \xi\right) \tag{4.23}
\end{equation*}
$$

Taking covariant differentiation of (4.1) along ξ provides

$$
\begin{equation*}
\left(\nabla_{\xi} R\right)(X, Y) \xi=\mu^{2}\{\eta(Y) h \varphi X-\eta(X) h \varphi Y\} . \tag{4.24}
\end{equation*}
$$

On the other hand from (4.9) and together with the help of (4.24) we have

$$
\begin{equation*}
g\left(\left(\nabla_{\xi} C^{*}\right)(X, Y) Z, \xi\right)=-\mu^{2}\{\eta(Y) g(h \varphi X, Z)-\eta(X) g(h \varphi Y, Z)\} . \tag{4.25}
\end{equation*}
$$

In view of (4.23) and (4.25) it follows that

$$
\left(\operatorname{div} C^{*}\right)(X, Y) Z=-\mu^{2}\{\eta(Y) g(h \varphi X, Z)-\eta(X) g(h \varphi Y, Z)\} .
$$

Making use of (4.12) in the foregoing equation yields

$$
\begin{array}{r}
g\left(\left(\nabla_{X} Q\right) Y, Z\right)-g\left(\left(\nabla_{Y} Q\right) X, Z\right)=\frac{n \mu+\kappa}{2 n-1}\{2 g(X, \varphi Y) \eta(Z) \\
+g(X, \varphi Z+h \varphi Z) \eta(Y)-g(Y, \varphi Z+h \varphi Z) \eta(X)\} \\
-\mu^{2}\{\eta(Y) g(h \varphi X, Z)-\eta(X) g(h \varphi Y, Z)\} . \tag{4.26}
\end{array}
$$

Setting $Y=\xi$ in the above equation and making use of (2.2), (4.6) and (4.14), we find that

$$
\begin{array}{r}
Q \varphi X+Q \varphi h X-2 n \kappa(\varphi X+\varphi h X)+\frac{n \mu+\kappa}{2 n-1} \varphi X \\
-\left[\mu(2(n-1)-n \mu)+\frac{n \mu+\kappa}{2 n-1}-\mu^{2}\right] h \varphi X=0 . \tag{4.27}
\end{array}
$$

By virtue of (4.2), the foregoing equation reduces to

$$
\begin{array}{r}
\left\{\kappa \mu-n \mu-2 \kappa-\frac{n \mu+\kappa}{2 n-1}\right\} g(\varphi X, Y)+\{(3 \mu+2 n \kappa-n \mu) \\
\left.-\frac{n \mu+\kappa}{2 n-1}\right\} g(h \varphi X, Y)=0 . \tag{4.28}
\end{array}
$$

Interchanging X and Y in (4.28) and adding the resultant equation with (4.28) and by virtue of (2.2) we find that

$$
\begin{equation*}
(3 \mu+2 n \kappa-n \mu)-\frac{n \mu+\kappa}{2 n-1}=0 \tag{4.29}
\end{equation*}
$$

Solving (4.29) and (4.16) it follows that $\kappa=\mu=0$ or $\kappa=\frac{(n-1)(n+3)}{n}, \mu=\frac{2(n-1)(n+3)}{n-3}$, where we used $n \mu+\kappa=0$, (in the last solution $n \neq 3$, because if $n=3$, then from (4.29) it follows that $\kappa=0$ and hence $\mu=0$). The first solution shows that M is locally isometric to the product $E^{n+1} \times S^{n}(4)$. The last solution leads to a contradiction as $\kappa<1$. This completes the proof.

Acknowledgement

The authors are thankful to the referee for his/her valuable suggestions towards the improvement of the paper.

References

[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds. Birkhauser, Boston, 2010.
[2] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition. Isr. J. Math. 91 (1995), 189-214.
[3] D. E. Blair and T. Koufogiorgos, When is the tangent sphere bundle conformally flat. J. Geom. 49 (1994), 55-66.
[4] E. Boeckx, A full classification of contact metric (κ, μ)-spaces. Ill. J. Math. 44 (2000), 212-219.
[5] C. P. Boyer and K. Galicki, Sasakian Geometry. Oxford University Press, Oxford (2008).
[6] M. C. Chaki and M. Tarafdar, On a type of Sasakian manifold. Soochow J. Math. 16(1) (1990), 23-28.
[7] S. S. Chern, On the curvature and characteristic classes of a Riemannian manifold. Abh. Math. Semin. Univ. Hambg. 20 (1956), 117-126.
[8] A. Ghosh, Conformally recurrent (κ, μ)-contact manifolds. Note Mat. 28(2) (2008), 207-212.
[9] A. Ghosh, T. Koufogiorgos and R. Sharma, Conformally flat contact metric manifolds. J. Geom. 70 (2001), 66-76,
[10] A. Ghosh and D. S. Patra, *-Ricci Soliton within the frame-work of Sasakian and (κ, μ) contact manifold. Int. J. Geom. Methods Mod. Phys. 15(7) (2018), 1850120
[11] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci *-tensor. Tokyo J. Math. 25 (2002), 473-483.
[12] A. K. Huchchappa, D. M. Naik and V. Venkatesha, Certain results on contact metric generalized (κ, μ)-space forms, Commun. Korean Math. Soc. 34 (4) (2019), 1315-1328.
[13] T. A. Ivey and P. J. Ryan, The $*$-Ricci tensor for hypersurfaces in $\mathbb{C} P^{n}$ and $\mathbb{C} H^{n}$. Tokyo J. Math. 34 (2011), 445-471.
[14] G. Kaimakamis and K. Panagiotidou, On a new type of tensor on real hypersurfaces in nonflat complex space forms. Symmetry 2019, 11(4), 559; https://doi.org/10.3390/sym11040559.
[15] T. Miyazawa and S. Yamaguchi, Some theorems on K-contact metric manifolds and Sasakian manifolds. TRU Math. 2 (1966), 46-52.
[16] M. Okumura, Some remarks on spaces with certain contact structures. Tohoku Math. J. 14 (1962), 135-145.
[17] S. Tachibana, On almost-analytic vectors in almost Kahlerian manifolds. Tohoku Math. J. 11 (1959), 247-265.
[18] S. Tanno, The topology of contact Riemannian manifolds. Illinois J. Math. 12 (1968), 700717.
[19] S. Tanno, Locally symmetric K-contact Riemannian manifolds. Proc. Japan Acad. 43 (1967), 581-583.
[20] H. Weyl, Reine Infinitesimalgeometrie. Math. Z. 2 (3-4) (1918), 384-411.
[21] H. Weyl, Zur Infinitesimalgeometrie, Einordnung der projektiven und der konformen Auffassung. Gottingen Nachrichten. (1921), 99-112.

Venkatesha Venkatesha Department of Mathematics Kuvempu University Shankaraghatta Karnataka 577451 India

E-mail: vensmath@gmail.com
H. Aruna Kumara Department of Mathematics, Kuvempu University, Shankaraghatta, Karnataka 577451, India

E-mail: arunmathsku@gmail.com

