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*-Weyl Curvature Tensor within the Framework of Sasakian
and (k, pt)-Contact Manifolds

Venkatesha Venkatesha and H. Aruna Kumara

Abstract. The object of the present paper is to study *-Weyl curvature tensor within the
framework of Sasakian and (k, u1)-contact manifolds.

1 Introduction

Let M bea (2n+1)-dimensional Riemannian manifold with metric g and let 7'M be the Lie alge-
bra of differentiable vector fields in M. The Ricci operator () of (M, g) is defined by g(QX,Y) =
Ric(X,Y), where Ric denotes the Ricci tensor of type (0,2) on M and X, Y € TM. Weyl
([20, 21]) constructed a generalized curvature tensor on a Riemannian manifold which vanishes
whenever the metric is (locally) conformally equivalent to a flat metric. The Weyl conformal cur-

vature tensor is defined by

C(X,Y)Z =R(X,Y)Z — {9(QY, 2)X —g(QX,2)Y +g(Y,Z2)QX

2n —1

—9(X,2)QV} + 5

m{g(yv Z)X —g(X,2)Y},

for X,Y,Z € TM, where R and r denotes the Riemannian curvature tensor and the scalar
curvature of M respectively. If n = 1 then C'(X,Y)Z = 0andif n > 1 then M is locally
conformal flat if and only if C(X,Y)Z = 0. The condition of locally conformal flat holds for

3-dimensional Riemannian manifolds if and only if the Cotton tensor of M, which is given by
1
K(X,Y) = (VxQ)Y = (Vy Q)X — H(Xn)Y — (Yr)X},

vanishes identically.
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In [16] Okumura showed that a conformally flat Sasakian manifold of dimension >3 is of
constant curvature 1 and in [19] Tanno extended this result to the K -contact case and for dimen-
sions >3. Noting that the Ricci operator () commutes with the fundamental collineation ¢ for a
Sasakian manifold, but this commutativity need not hold for a contact metric manifold, Blair and
Koufogiorgos [3] proved that a conformally flat contact metric manifold on which ) commutes
with ¢, is of constant curvature 1. This generalized the above mentioned result of Okumura. In
[9], the authors classified a classes of conformally flat contact metric manifolds and characterized
a conformally flat contact manifolds as a hypersurfaces of 4-dimensional Kaehler Einstein mani-
folds. Miyazawa and Yamaguchi [15] proved that a conformally symmetric Sasakian manifold is
also locally isometric to the unit sphere. Chaki and Tarafdar [6] obtained the same result for a
Sasakian manifold satisfying the condition R(X,Y) - C =0, for X,Y € TM.

In 1959 Tachibana [17] defined *-Ricci tensor Ric* on almost Hermitian manifold. In [11]

Hamada gave the definition of *-Ricci tensor Ric* in the following way
1
Ric*(X,Y) = §t7“ace(Z — R(X,¢Y)pZ), (1.1)

forall X, Y € TM. He also presented x-Einstein, i.e., g(Q*X,Y) = Ag(X,Y), where A is a
constant multiple of g(X,Y") and provided classification of x-Einstein hypersurfaces. Ivey and
Ryan in [13] extended the Hamada’s work and studied the equivalence of *-Einstein condition
with other geometric conditions such as the pseudo-Einstein and the pseudo-Ryan condition. By
using the concept of x-Ricci tensor, the present authors with Naik [12] studied the some curvature

properies on contact metric generalized (x, p1)-space form.

Recently, Kaimakamis and Panagiotidou [14] introduced the notion of *-Weyl curvature ten-

sor on real hypersurfaces in non-flat complex space forms and it is defined in the following way

C*(X,Y)Z = RIX,Y)Z — o 9@, D)X — (@ X, Z)Y + (Y, 2)QX
* ,r.*
-9(X,2)Q Y}—i—m{g(iﬂ Z)X —g(X,Z)Y}, (1.2)

forall X,Y,Z € T M, where Q* is the *-Ricci operator and r* is the *-scalar curvature corre-
sponding to Q* of M.

Motivated by the above studies, in this paper we study certain curvature conditions on the
«-Weyl curvature tensor in Sasakian and (k, 1)-contact manifolds. The paper is organized as
follows: In section 2, we give brief introduction of contact metric manifolds. In section 3, we
study *-Weyl curvature tensor within the background of Sasakian manifolds. Here, we show that
Sasakin manifold with vanishing %-Weyl curvature tensor is )(F")2,,+1, and also proved that if
Sasakian manifold satisfies R - C* = 0, then it is -Einstein. In section 4, we study *-Weyl
curvature tensor in (x, it)-contact manifolds. In this section, we show that a non-Sasakian (&, )-

contact manifold with vanishing *-Weyl curvature tensor is a flat for n = 1 and locally isometric
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to a Riemannian product E" ! x S™(4). Finally, it is proved that if non-Sasakian (, 1t)-contact
manifold satisfies VC* = m ® C*, then it is locally isometric to a Riemannian product E"+1 x

S7(4).

2 Preliminaries

First, we shall review the basic definitions and formulas of contact metric manifolds. A (2n+1)-
dimensional smooth manifold M is said to be contact if it admits a global 1-form 7 such that
n A (dn)™ # 0 on M. This 1-form is called a contact 1-form. For a contact 1-form 7, there exists
a unique vector field £ such that dn(§, X) = 0 and n(§) = 1. Polarizing dn on the contact sub-
bundle D (defined by = 0), we obtain a Riemannian metric g and a (1,1)-tensor field ¢ such
that

dn(X,Y) = g(X,9Y), n(X)=g(X,§), ¢’X=-X+nX), (2.1)
forall X,Y € T'M. From these equations one can also deduce that

=0, nop=0, g(pX,eY)=gX,Y)-nX)nY). (2.2)

The structure (¢, &, 7, g) on M is known as a contact metric structure and the metric g is called
an associated metric. A Riemannian manifold M together with the structure (p, &, 7, g) is said
to be a contact metric manifold and we denote it by (M, ¢, £, 1, g). On a contact metric manifold

(see [1])
Vxé=—pX — phX, ho + ph =0, (2.3)
for any vector field X, Y on M and V denotes the operator of covariant differentiation of g. If the

vector field ¢ is Killing (equivalently, ~ = 0) with respect to g, then the contact metric manifold
M is said to be K -contact. On a Sasakian manifold, the following formulas are known [1]

Vx§=—pX, (2.4)
Q¢ = 2n¢, (2.5)

where () denote the Ricci operator of M. A contact metric manifold is said to be Sasakian if it
satisfies

(Vxp)Y = g(X,Y)§ —n(Y)X. (2.6)
On a Sasakian manifold, the curvature tensor satisfies
R(X,Y)E =n(Y)X —n(X)Y. (2.7)

Also, the contact metric structure on M is said to be Sasakian if the almost Kaehler structure on
the metric cone (M x R™,r%2g + dr?) over M, is Kaehler [1]. A Sasakian manifold is K-contact
but the converse is true only in dimension 3. For more details see [1] and [5].
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3 *-Weyl Curvature Tensor and Sasakian Manifolds

We are now in a position to find the expression of *-Weyl curvature tensor in the background of
Sasakian manifolds. In [10], Ghosh and Patra derive the expression of *-Ricci tensor on Sasakian

manifold, which is of the form
Ric*(X,Y) = Ric(X,Y) — (2n — 1)g(X,Y) —n(X)n(Y). (3.1)

Contracting this over X yields

r* =1 —4n® (3.2)
Using (3.1) and (3.2) in (1.2), we obtain
C(X,¥)Z = R(X,Y)Z = - {g(QY, )X — g(QX, 2)Y + (Y, 2)@X
(X, 2)QV} + 5 (1 (Z)X ~ n(X)n(Z)Y +g(¥, Zn(X)g
A DYIE + (o + DY 2K~ g(X, 2)Y 63

Let M be a Sasakian manifold with vanishing *-Weyl curvature tensor, that is, C*(X,Y)Z = 0.
Relation for C*(X,Y)Z = 0 implies that

R(X,Y)Z =

5, 1 W(QY, 2)X —g(QX, 2)Y +4(Y, 2)QX — g(X, Z)QY }
1

2n —1
—9(X, Z)n(Y)e} = (

Y )n(2)X —n(X)n(Z2)Y + g(Y, Z)n(X)E

r —4n?

mnan—1) TV OX —9(X, 2)¥} (4

Covariant differentiation of above relation along W and then contracting the resultant equation

over W yields

A= (VX Q)Y. 2) - 9(T¥Q)X. 2)

= M{(XT)Q(K Z)—(Yr)g(X,2)}

{29(X, Y )(Z) + g(X, pZ)n(Y) — g(Y, 0Z)n(X)}. (3.5)

2n —1

In a Sasakian manifold we have the following relation:

(VxQ)¢ = QpX — 2npX. (3.6)
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For a Sasakian manifold we know that § is Killing and hence L¢ Ric = 0. Therefore, by (2.4) we
easily get V:QQ = ¢©Q — Q. For a Sasakian manifold () and ¢ commute ( see [1]) and hence
V@ = 0. Now replacing Y by  in (3.5), recalling the last relation and (3.6) we find

2(n—1)

2(n —1)g(QeX, Z) — (4n(n — 1) + 1)g(pX, Z) — ™

(Xr)n(Z) = 0.
Replacing Z by ¢ Z in the foregoing equation and making use of (2.2) we obtain

Ric(X,Z) =ag(X,Z) —bn(X)n(Z), (3.7)

4dn(n—1)+1

where a = Sn=1)

and b = m Substituting (3.7) in (3.4), we obtain

R(X,Y,Z,W) =plg(Y, Z)g(X, W) — g(X, Z)g(Y,W)] + +qlg(X, W)n(Y)n(Z)
—9(X, Z2n(Y )n(W) + g(Y, Z)n(X)n(W) — g(Y, W)n(X)n(Z2)], (3.8)

where p = {23ﬁ1 — 25(72?_21) —2}andgq = —2l’n+_1. The relation (3.8) leads to
R(X,Y,Z,W) = F(Y,Z)F(X,W) — F(X, Z)F(Y,W), (3.9)
where
FOXY) = Vpg(X.Y) + o (X)n(Y). (3.10)

An n-dimensional Riemannian manifold whose curvature tensor R of type (0,4) satisfies the con-
dition (3.9), where F' is a symmetric tensor of type (0, 2) is called a special manifold with the
associated symmetric tensor F', and is denoted by ¢(F'),. Such type of manifolds have been
studied by Chern [7] in 1956.

By virtue of (3.9), we have the following;

Theorem 3.1. A Sasakian manifold with vanishing x-Weyl curvature tensor is 1 (F) a1 with as-

sociated symmetric tensor F' given by (3.10).

In view of (3.8), we have following result;

Theorem 3.2. A Sasakian manifold with vanishing x-Weyl curvature tensor is a manifold of quasi

constant curvature.

A Riemannian manifold (M, g) is said to be semisymmetric if R - R = 0. Now we study,

Sasakian manifold with *-Weyl curvature tensor satsifying relation R - C* = 0 and prove that

Theorem 3.3. Ifa (2n+1)-dimensional Sasakian manifold satisfies R-C* = 0, then it is n)-Einstein
manifold.
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Proof. Letus considera (2n+1)-dimensional Sasakian manifold satisfying (R(X,Y)-C*)(U, V)W =
0. Then, by definition we have

R(X,Y)C*(U,V)W — C*(R(X,Y)U, V)W
— C*(U,R(X,Y)V)W — C*(U,V)R(X, Y)W = 0.

Replacing X by ¢ in the above equation and then taking inner product of resultant equation, we
obtain

n(R(EY)C™ (U, V)W) = n(C*(R(E Y)U, V)W)
= n(C*(U, R(§,Y)V)W) = n(C*(U, V)R(, Y)W) = 0. (3.11)
In view of (2.7), it follows from (3.11) that
C*(U,V,W,Y) = n(C*(U,V)W)n(Y) — g(Y,U)n(C*(&, V)W)
+nUn(C* (Y, V)W) = g(Y,V)n(C* (U, )W) + ( n(C* (U, Y)W)
— g, W)n(C*(U, V)§) +n(W)n(C*(U,V)Y) =
Replacing Y by U in the above equation, we have
C*(U7 Va Wv U) - g(Uv U)U(C*(§> V)W)
—g(U,V)n(C* (U, W) + n(W)n(C*(U,V)U) = 0. (3.12)

By virtue of (3.3), one can easily see that

N(C(X,Y)Z) = — o — {Rie(Y, Z2)n(X) — Rie(X, Z)n(Y)}

r

+ (m = D{g(Y, Z)n(X) — g(X, Z)n(Y)}, (3.13)
n(C*(X,Y)§) =0, (3.14)
WO (X,6)2) =5 Rie(X, 7) — 5 —n(X)n(2)
- (m —D{9(X,Z) —n(X)n(2)}, (3.15)
2n+1
Z C*(e;,Y, Z,ei) 2271(227;__21)“9(1/, Z)+n(Y)n(2), (3.16)
=1

}2n+1

where {e;}7"]" is an orthonormal basis of the tangent space at any point of the manifold. Taking

U = e; in (3.12) and summing over 7 and making use of (3.13)-(3.16), we get

Ric(V,W) = ag(V,W) = Bn(V)n(W),

20n?2—12n+1—r and B=20n°—8n+1—r
2n 2n

Sasakian. This completes the proof. O]

where o = . The above relation shows that the manifold is
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4 x-Weyl Curvature Tensor and (x, yt)-contact Manifolds

In [2], Blair et al. introduced and studied a new type of contact metric manifold known as a
(K, p)-contact manifold. Later on, Boeckx [4] classified these manifolds completely. A contact

metric manifold (M, , &, n, g) is said to be (k, j1)-space if the curvature tensor satisfies
R(X, Y€ = s{(Y)X — n(X)¥} + p{n(Y)hX —n(X)hV}, (4.1)

for all vector fields X, Y on M and for some real numbers (k, 11). This type of space arises through
a D-homothetic deformation ([18]) to a contact metric manifold which satisfies R(X,Y)¢ = 0.
The class of (k, it)-spaces covers Sasakian manifolds (for x = 1) and the trivial sphere bundle
E™L % Sn(4) (for k = p = 0). There exist examples of non-Sasakian (r, it)-contact metric
manifolds. For instance, the unit tangent bundles of Riemannian manifolds of constant curvature
k # 1. Since a D-homothetic deformation preserves (k, (1)-contact structures, one can construct
a lot of examples of (k, u1)-contact structures (see [2]). The following formulas are also valid for a

non-Sasakian (k, u1)-contact manifolds [2]:

QX =12(n—1)—nulX +[2(n— 1) + plhX

+[2(1 = n) 4+ n(2k + p)n(X)E, (4.2)
(Vxh)Y = (Vyh) X = (1 - 5)[29(X, pY)E + n(X)pY —n(Y)pX]
+ (L= p)n(X)phY —n(Y)phX, (4.3)
Q¢ = 2nkE, (4.4)
= (k—1)¢% k<1, (4.5)

equality holds when x = 1 (equivalently, h = 0), i.e., M is Sasakian. For the non-Sasakian case,
ie, k < 1, the (k, u)-nullity condition determines the curvature of M completely. In view of
this, Boeckx [4] proved that a non-Sasakian (k, it)-contact manifold is locally homogeneous and

hence analytic. Moreover, the constant scalar curvature r of such structures is given by
r=2n(2(n—1)+ Kk —nu),
which is constant. On a (k, 1t)-contact manifold we have
(Ve@Q)X = p(2(n — 1) + p)heX, (4.6)

for any vector field X on M. In [10], Ghosh and Patra gave a expression of *-Ricci tensor on

non-Sasakian (k, u1)-contact manifolds, which is of the form

Ric*(X,Y) = (n+ 1) {—g(X,Y) + n(X)n(¥)}. (47)
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Contracting this over X provides
r* = =2n(nu+ K). (4.8)

Making use of (4.7) and (4.8) in (1.2), we ultimately have

ny+ K
2n—1
+9(Y, Z)n(X)& 4+ 9(X, 2)Y — g(X, Z)n(Y)E} (4.9)

CH(X,Y)Z =R(X,Y)Z - {n(Y)n(2)X —n(X)n(2)Y —g(Y, 2)X

Let M bea (k, pt)-contact manifold with vanishing «-Weyl curvarure tensor, i.e., C*(X,Y)Z =
0. Relation (4.9) for C*(X,Y)Z = 0 implies
nu+ K
X, Y)Z =
R(X,Y)Z = 5 —

¥ n(2)X —n(Xn(2)Y —g(Y,2)X

Substituting Z by ¢ in the above equation, we obtain
R(X,Y)¢ =0.

Hence by Blair’s theorem (see [1], p.122) M islocally flat in dimension 3, and in higher dimension

it is locally isometric to the trivial bundle E"! x S™(4). Thus we state the following theorem;

Theorem 4.1. Let M be a non-Sasakian (k, p)-contact manifold with vanishing x- Weyl curvature
tensor. Then M is flat for n = 1 and for n > 1, M is locally isometric to a Riemannian product
E™L % S7(4).

A Riemannian manifold (M, g) is said to be recurrent if there exists a 1-form w such that Rie-
mannian curvature tensor R satisfies VR = m ® R, where V is Levi-Civita connection of g. This
type of manifold appears as a generalization of symmetric manifold. In [8] Ghosh studied con-
formally recurrent (k, 11)-contact manifold of dimension > 3 and show that it is locally isometric
to either (i) unit sphere S?"*1(1) or (ii) E"*! x S™(4). Now we study, non-Sasakian (, j)-
contact manifold with *-Weyl curvature tensor satisfying recurrent relation, i.e., VC* = 7 ® C*

and prove that

Theorem 4.2. If a non-Sasakian (k, j1)-contact manifold M, (n > 1) satisfies VC* = m @ C¥,
then M is locally isometric to the trivial bundle E"T' x S™(4).

Proof. By hypothesis we have

(VwC*)(X,Y)Z = n(W)C*(X,Y)Z. (4.10)
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Contracting (4.10) over W provide
(divC*)(X,Y)Z = C*(X,Y, Z, P), (4.11)

where P is the recurrence vector metrically associated to the recurrence form 7. Taking covariant
differentiation of (4.9) along W and then contracting the resultant equation over W and using
Trh = Trph = 0, we entails that

nu+ K
29(X, Y )n(Z
5, 1 29(X,¥Y)n(Z)

+9(X,0Z +hoZ)n(Y) — g(Y,pZ + hpZ)n(X)}. (4.12)

(divC™)(X,Y)Z = g((VxQ)Y, Z) —g((VyQ)X, Z) —

Combining (4.11) and (4.12), we find that

J(TxQ)Y. 2) — g((VyQ)X, 2) = T {24(X, o )(2)

+9(X,0Z +hoZ)n(Y) — g(Y,0Z + hoZ)n(X)} + C*(X,Y, Z, P). (4.13)

Next, differentiating covariantly (4.4) along an arbitrary vector field X and using (2.3) we get
(VxQ)¢ = QuX + QphX — 2nk(pX + ¢hX). (4.14)
Substituting Z by £ in (4.13) and making use of (4.14) we find that

9(QeX + pQX + QphX + hpQX — dnkpX,Y)

- WQ(XWY)JFC*(X,Y,&P)- (4.15)

Replacing X by X, Y by Y and Z by £ in (4.9) and by virtue of (4.1), it follows that C* (¢ X, pY )¢ =
0. Thus setting X = ¢ X, Y = ¢Y in (4.15) and making use of last equality we obtain

2
QoX + 0QX — pQhX — hQpX — dnkpX + wwx —0.
n —
By virtue of (4.2), the foregoing equation reduces to
2
Kib—np — 2K — 1+ 7(71#—“{) =0. (4.16)
2n —1

Taking the covariant differentiation of (4.2) and making use of (2.3) gives

(VxQ)Y =[2(n— 1)+ p)(Vxh)Y — [2(1 — n) + n(2k + )]
{9(pX — oh X, Y)E +n(Y) (X + phX)}. (4.17)
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Interchanging X and Y in (4.17) and substracting the resultant equation with (4.17) and by virtue
of (4.3) and (4.16) we find that

o(VxQ)Y. 2) — (V@)X 2) = 2P o5 x oy y(2)

+0(X)g(pY, Z) = n(Y)g(eX, Z)} + (3 — p® — npu + 2nk)
n(X)g(phY, Z) —n(Y)g(phX, Z)}. (4.18)

By virtue of (4.13), the foregoing equation reduces to

C"(X.Y, 2.P) = S22 29X, 0¥ )0(Z) + n(X)g(4Y. 2)
()9 X, Z)} + {31 — 14 = mpu+ 20m) — DAY
{n(X)g(phY, Z) —n(Y)g(phX, Z)}. (4.19)
Replacing X by ¢ X, Y by ¢Y and Z by ¢ in (4.19), it follows that
nu+ k=0, (4.20)

where we used C* (¢ X, pY )¢ = 0. Setting Z = P and X = £ in (4.19) and by virtue of (4.20)
yields

(31 — p* — np + 2nk)g(phY, P) = 0.
Thus we have two possible cases:

(1) 3 — p® — np + 2nk = 0, (4.21)
(i1) hoP = 0. (4.22)

Case(i). Keeping in mind that nu + x = 0. Solving (4.16) and (4.21) we have the following
solutions

n?—1

k=p=0, K=p=n+3 or kK= e =2(1—mn).

When k = p = 0, we obtain from (4.1) that R(X,Y){ = 0 and applying Blair’s theorem we see
that M is locally isometric to the product E" ™! x S™(4). Since n > 1, the last two solutions leads
to a contradiction as x < 1.

Case(ii). Operating (4.22) by h and making use of (4.5) it follows that P = 7 (£)&. Together
this with the condition (4.10) gives (Vi C*)(X,Y)Z = 7(§)n(W)C*(X,Y ) Z. Substituting W

by p?W in the last equality and contracting the resultant equation over W gives

(divC*)(X,Y)Z = g((VeC*) (X, Y) Z, £). (4.23)
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Taking covariant differentiation of (4.1) along & provides
(VeR)(X,Y)E = 12 {n(Y)hoX — n(X)hpY}. (4.24)
On the other hand from (4.9) and together with the help of (4.24) we have
9(VeC)(X,Y)Z,&) = —p*{n(Y)g(heX, Z) — n(X)g(heY, Z)}. (4.25)
In view of (4.23) and (4.25) it follows that
(divC*)(X,Y)Z = —p* {n(Y)g(hpX, Z) — 0(X)g(hyY, Z)}.

Making use of (4.12) in the foregoing equation yields

J(TxQ)Y: 2) — g(VyQ)X, Z2) = LA 529X, oY )n(2)

+9(X, 0Z + hoZ)n(Y) — g(Y,0Z + hpZ)n(X)}
— 1 {n(YV)g(heX, Z) = n(X)g(heY, Z)}. (4.26)

Setting Y = £ in the above equation and making use of (2.2), (4.6) and (4.14), we find that

QX + QehX — 2nk(pX + phX) + ZZ i ’f oX
ny+ K
—[p2(n—1) —np) + 25 1" pheX = 0. (4.27)

By virtue of (4.2), the foregoing equation reduces to

nu+ K
(i —np — 25— ZE22}g(0X,Y) + {3 + 2k — np)
ny+ K
- 25 —Yg(heX,Y) = 0. (4.28)

Interchanging X and Y in (4.28) and adding the resultant equation with (4.28) and by virtue of
(2.2) we find that
nu+ K

3 2 — — =0. 4.29
(31 -+ 2nk —np) - L2 (4.29)

Solving (4.29) and (4.16) it follows that
k=p=00rk = 7("_121("*'3), = 72(”_7111(;”)
n # 3, because if n = 3, then from (4.29) it follows that k = 0 and hence ;1 = 0). The first

solution shows that M is locally isometric to the product E"*! x S™(4). The last solution leads

, where we used ny + x = 0, (in the last solution

to a contradiction as x < 1. This completes the proof. O]
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