**-Weyl Curvature Tensor within the Framework of Sasakian and \((\kappa, \mu)\)-Contact Manifolds

Venkatesha Venkatesha and H. Aruna Kumara

Abstract. The object of the present paper is to study **-Weyl curvature tensor within the framework of Sasakian and \((\kappa, \mu)\)-contact manifolds.

1 Introduction

Let \(M \) be a \((2n+1)\)-dimensional Riemannian manifold with metric \(g \) and let \(TM \) be the Lie algebra of differentiable vector fields in \(M \). The Ricci operator \(Q \) of \((M, g)\) is defined by \(g(QX, Y) = Ric(X, Y) \), where \(Ric \) denotes the Ricci tensor of type (0,2) on \(M \) and \(X, Y \in TM \). Weyl ([20, 21]) constructed a generalized curvature tensor on a Riemannian manifold which vanishes whenever the metric is (locally) conformally equivalent to a flat metric. The Weyl conformal curvature tensor is defined by

\[
C(X, Y)Z = R(X, Y)Z - \frac{1}{2n-1} \{g(QY, Z)X - g(QX, Z)Y + g(Y, Z)QX - g(X, Z)QY\} + \frac{r}{2n(2n-1)} \{g(Y, Z)X - g(X, Z)Y\},
\]

for \(X, Y, Z \in TM \), where \(R \) and \(r \) denotes the Riemannian curvature tensor and the scalar curvature of \(M \) respectively. If \(n = 1 \) then \(C(X, Y)Z = 0 \) and if \(n \geq 1 \) then \(M \) is locally conformal flat if and only if \(C(X, Y)Z = 0 \). The condition of locally conformal flat holds for 3-dimensional Riemannian manifolds if and only if the Cotton tensor of \(M \), which is given by

\[
K(X, Y) = (\nabla_X Q)Y - (\nabla_Y Q)X - \frac{1}{4} \{(Xr)Y - (Yr)X\},
\]

vanishes identically.

2010 Mathematics Subject Classification. 53C15, 53C25, 53D15.

Key words and phrases. Sasakian manifolds, \((\kappa, \mu)\)-contact manifolds, **-Ricci tensor, **-Weyl curvature tensor.

Corresponding author: Venkatesha Venkatesha.
In [16] Okumura showed that a conformally flat Sasakian manifold of dimension >3 is of constant curvature 1 and in [19] Tanno extended this result to the K-contact case and for dimensions ≥ 3. Noting that the Ricci operator Q commutes with the fundamental collineation φ for a Sasakian manifold, but this commutativity need not hold for a contact metric manifold, Blair and Koufogiorgos [3] proved that a conformally flat contact metric manifold on which Q commutes with φ, is of constant curvature 1. This generalized the above mentioned result of Okumura. In [9], the authors classified a classes of conformally flat contact metric manifolds and characterized a conformally flat contact manifolds as a hypersurfaces of 4-dimensional Kaehler Einstein manifolds. Miyazawa and Yamaguchi [15] proved that a conformally symmetric Sasakian manifold is also locally isometric to the unit sphere. Chaki and Tarafdar [6] obtained the same result for a Sasakian manifold satisfying the condition $R(X,Y) \cdot C = 0$, for $X,Y \in TM$.

In 1959 Tachibana [17] defined \ast-Ricci tensor Ric^\ast on almost Hermitian manifold. In [11] Hamada gave the definition of \ast-Ricci tensor Ric^\ast in the following way

$$Ric^\ast(X,Y) = \frac{1}{2}\text{trace}(Z \rightarrow R(X,\varphi Y)\varphi Z), \tag{1.1}$$

for all $X,Y \in TM$. He also presented \ast-Einstein, i.e., $g(Q^\ast X, Y) = \lambda g(X, Y)$, where λ is a constant multiple of $g(X, Y)$ and provided classification of \ast-Einstein hypersurfaces. Ivey and Ryan in [13] extended the Hamada’s work and studied the equivalence of \ast-Einstein condition with other geometric conditions such as the pseudo-Einstein and the pseudo-Ryan condition. By using the concept of \ast-Ricci tensor, the present authors with Naik [12] studied the some curvature properties on contact metric generalized (κ,μ)-space form.

Recently, Kaimakamis and Panagiotidou [14] introduced the notion of \ast-Weyl curvature tensor on real hypersurfaces in non-flat complex space forms and it is defined in the following way

$$C^\ast(X,Y)Z = R(X,Y)Z - \frac{1}{2n-1}\{g(Q^\ast X, Z)X - g(Q^\ast X, Z)Y + g(Y, Z)Q^\ast Z \}
- g(X, Z)Q^\ast Y\} + \frac{r^\ast}{2n(2n-1)}\{g(Y, Z)X - g(X, Z)Y\}, \tag{1.2}$$

for all $X,Y,Z \in TM$, where Q^\ast is the \ast-Ricci operator and r^\ast is the \ast-scalar curvature corresponding to Q^\ast of M.

Motivated by the above studies, in this paper we study certain curvature conditions on the \ast-Weyl curvature tensor in Sasakian and (κ,μ)-contact manifolds. The paper is organized as follows: In section 2, we give brief introduction of contact metric manifolds. In section 3, we study \ast-Weyl curvature tensor within the background of Sasakian manifolds. Here, we show that Sasakian manifold with vanishing \ast-Weyl curvature tensor is $\psi(F)_{2n+1}$, and also proved that if Sasakian manifold satisfies $R \cdot C^\ast = 0$, then it is η-Einstein. In section 4, we study \ast-Weyl curvature tensor in (κ,μ)-contact manifolds. In this section, we show that a non-Sasakian (κ,μ)-contact manifold with vanishing \ast-Weyl curvature tensor is a flat for $n = 1$ and locally isometric.
to a Riemannian product \(E^{n+1} \times S^n \). Finally, it is proved that if non-Sasakian \((\kappa, \mu)\)-contact manifold satisfies \(\nabla C^* = \pi \otimes C^* \), then it is locally isometric to a Riemannian product \(E^{n+1} \times S^n \).

2 Preliminaries

First, we shall review the basic definitions and formulas of contact metric manifolds. A \((2n+1)\)-dimensional smooth manifold \(M\) is said to be contact if it admits a global 1-form \(\eta\) such that \(\eta \wedge (d\eta)^n \neq 0\) on \(M\). This 1-form is called a contact 1-form. For a contact 1-form \(\eta\), there exists a unique vector field \(\xi\) such that \(d\eta(\xi, X) = 0\) and \(\eta(\xi) = 1\). Polarizing \(d\eta\) on the contact sub-bundle \(D\) (defined by \(\eta = 0\)), we obtain a Riemannian metric \(g\) and a \((1,1)\)-tensor field \(\varphi\) such that

\[
d\eta(X, Y) = g(X, \varphi Y), \quad \eta(X) = g(X, \xi), \quad \varphi^2 X = -X + \eta(X)\xi, \tag{2.1}
\]

for all \(X, Y \in TM\). From these equations one can also deduce that

\[
\varphi \xi = 0, \quad \eta \circ \varphi = 0, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y). \tag{2.2}
\]

The structure \((\varphi, \xi, \eta, g)\) on \(M\) is known as a contact metric structure and the metric \(g\) is called an associated metric. A Riemannian manifold \(M\) together with the structure \((\varphi, \xi, \eta, g)\) is said to be a contact metric manifold and we denote it by \((M, \varphi, \xi, \eta, g)\). On a contact metric manifold (see [1])

\[
\nabla_X \xi = -\varphi X - \varphi h X, \quad h \varphi + \varphi h = 0, \tag{2.3}
\]

for any vector field \(X, Y\) on \(M\) and \(\nabla\) denotes the operator of covariant differentiation of \(g\). If the vector field \(\xi\) is Killing (equivalently, \(h = 0\)) with respect to \(g\), then the contact metric manifold \(M\) is said to be \(K\)-contact. On a Sasakian manifold, the following formulas are known [1]

\[
\nabla_X \xi = -\varphi X, \tag{2.4}
\]

\[
Q \xi = 2n \xi, \tag{2.5}
\]

where \(Q\) denote the Ricci operator of \(M\). A contact metric manifold is said to be Sasakian if it satisfies

\[
(\nabla_X \varphi) Y = g(X, Y) \xi - \eta(Y) X. \tag{2.6}
\]

On a Sasakian manifold, the curvature tensor satisfies

\[
R(X, Y) \xi = \eta(Y) X - \eta(X) Y. \tag{2.7}
\]

Also, the contact metric structure on \(M\) is said to be Sasakian if the almost Kaehler structure on the metric cone \((M \times \mathbb{R}^+, r^2 g + dr^2)\) over \(M\), is Kaehler [1]. A Sasakian manifold is \(K\)-contact but the converse is true only in dimension 3. For more details see [1] and [5].
3 *-Weyl Curvature Tensor and Sasakian Manifolds

We are now in a position to find the expression of *-Weyl curvature tensor in the background of Sasakian manifolds. In [10], Ghosh and Patra derive the expression of *-Ricci tensor on Sasakian manifold, which is of the form

\[Ric^*(X, Y) = Ric(X, Y) - (2n - 1)g(X, Y) - \eta(X)\eta(Y). \]

(3.1)

Contracting this over \(X \) yields

\[r^* = r - 4n^2. \]

(3.2)

Using (3.1) and (3.2) in (1.2), we obtain

\[C^*(X, Y)Z = R(X, Y)Z - \frac{1}{2n - 1} \{g(QY, Z)X - g(QX, Z)Y + g(Y, Z)QX - g(X, Z)QY\} \]

\[\quad - \frac{1}{2n - 1} \{\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y + g(Y, Z)\eta(X)\xi \]

\[\quad - g(X, Z)\eta(Y)\xi + (\frac{r - 4n^2}{2n(2n - 1)} + 2) \{g(Y, Z)X - g(X, Z)\xi \}. \]

(3.3)

Let \(M \) be a Sasakian manifold with vanishing *-Weyl curvature tensor, that is, \(C^*(X, Y)Z = 0 \). Relation for \(C^*(X, Y)Z = 0 \) implies that

\[R(X, Y)Z = \frac{1}{2n - 1} \{g(QY, Z)X - g(QX, Z)Y + g(Y, Z)QX - g(X, Z)QY\} \]

\[\quad - \frac{1}{2n - 1} \{\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y + g(Y, Z)\eta(X)\xi \]

\[\quad - g(X, Z)\eta(Y)\xi - (\frac{r - 4n^2}{2n(2n - 1)} + 2) \{g(Y, Z)X - g(X, Z)\xi \}. \]

(3.4)

Covariant differentiation of above relation along \(W \) and then contracting the resultant equation over \(W \) yields

\[\frac{2(n - 1)}{2n - 1} \{g((\nabla_X Q)Y, Z) - g((\nabla_Y Q)X, Z)\} \]

\[= \frac{2(n - 1)}{4n(2n - 1)} \{(Xr)g(Y, Z) - (Yr)g(X, Z)\} \]

\[\quad - \frac{1}{2n - 1} \{2g(X, \varphi Y)\eta(Z) + g(X, \varphi Z)\eta(Y) - g(Y, \varphi Z)\eta(X)\}. \]

(3.5)

In a Sasakian manifold we have the following relation:

\[(\nabla_X Q)\xi = Q\varphi X - 2n\varphi X. \]

(3.6)
For a Sasakian manifold we know that ξ is Killing and hence $L_\xi Ric = 0$. Therefore, by (2.4) we easily get $\nabla_\xi Q = \varphi Q - Q\varphi$. For a Sasakian manifold Q and φ commute (see [1]) and hence $\nabla_\xi Q = 0$. Now replacing Y by ξ in (3.5), recalling the last relation and (3.6) we find

$$2(n-1)g(Q\varphi X, Z) - (4n(n-1) + 1)g(\varphi X, Z) - \frac{2(n-1)}{4n} (Xr)\eta(Z) = 0.$$

Replacing Z by φZ in the foregoing equation and making use of (2.2) we obtain

$$Ric(X, Z) = ag(X, Z) - b\eta(X)\eta(Z), \quad (3.7)$$

where $a = \frac{4n(n-1)+1}{2(n-1)}$ and $b = \frac{1}{2(n-1)}$. Substituting (3.7) in (3.4), we obtain

$$R(X, Y, Z, W) = p[g(Y, Z)g(X, W) - g(X, Z)g(Y, W)] + q[g(X, W)\eta(Y)\eta(Z) - g(X, Z)\eta(Y)\eta(W) + g(Y, Z)\eta(X)\eta(W) - g(Y, W)\eta(X)\eta(Z)]$$

$$= F(Y, Z)F(X, W) - F(X, Z)F(Y, W), \quad (3.8)$$

where $p = \{ \frac{2a}{2n-1} - \frac{r-4n^2}{2n(2n-1)} - 2 \}$ and $q = -\frac{b+1}{2n-1}$. The relation (3.8) leads to

$$F(X, Y) = \sqrt{p}g(X, Y) + \frac{q}{\sqrt{p}}\eta(X)\eta(Y). \quad (3.10)$$

An n-dimensional Riemannian manifold whose curvature tensor R of type $(0,4)$ satisfies the condition (3.9), where F is a symmetric tensor of type $(0,2)$ is called a special manifold with the associated symmetric tensor F, and is denoted by $\psi(F)_n$. Such type of manifolds have been studied by Chern [7] in 1956.

By virtue of (3.9), we have the following:

Theorem 3.1. A Sasakian manifold with vanishing \ast-Weyl curvature tensor is $\psi(F)_{2n+1}$ with associated symmetric tensor F given by (3.10).

In view of (3.8), we have following result;

Theorem 3.2. A Sasakian manifold with vanishing \ast-Weyl curvature tensor is a manifold of quasi constant curvature.

A Riemannian manifold (M, g) is said to be semisymmetric if $R \cdot R = 0$. Now we study, Sasakian manifold with \ast-Weyl curvature tensor satsifying relation $R \cdot C^* = 0$ and prove that

Theorem 3.3. If a $(2n+1)$-dimensional Sasakian manifold satisfies $R \cdot C^* = 0$, then it is η-Einstein manifold.
Proof. Let us consider a \((2n+1)\)-dimensional Sasakian manifold satisfying \((R(X, Y)\cdot C^*)(U, V)W = 0\). Then, by definition we have

\[
\]

Replacing \(X\) by \(\xi\) in the above equation and then taking inner product of resultant equation, we obtain

\[
\eta(R(\xi, Y)C^*(U, V)W) - \eta(C^*(R(\xi, Y)U, V)W) \\
- \eta(C^*(U, R(\xi, Y)V)W) - \eta(C^*(U, V)R(\xi, Y)W) = 0. \tag{3.11}
\]

In view of (2.7), it follows from (3.11) that

\[
C^*(U, V, W, Y) - \eta(C^*(U, V)W)\eta(Y) - g(Y, U)\eta(C^*(\xi, V)W) \\
+ \eta(U)\eta(C^*(Y, V)W) - g(Y, V)\eta(C^*(U, \xi)W) + \eta(V)\eta(C^*(U, Y)W) \\
- g(Y, W)\eta(C^*(U, V)\xi) + \eta(W)\eta(C^*(U, V)Y) = 0.
\]

Replacing \(Y\) by \(U\) in the above equation, we have

\[
C^*(U, V, W, U) - g(U, U)\eta(C^*(\xi, V)W) \\
- g(U, V)\eta(C^*(U, \xi)W) + \eta(W)\eta(C^*(U, V)U) = 0. \tag{3.12}
\]

By virtue of (3.3), one can easily see that

\[
\eta(C^*(X, Y)Z) = -\frac{1}{2n-1}\{Ric(Y, Z)\eta(X) - Ric(X, Z)\eta(Y)\} \\
+ \left(\frac{r}{2n(2n-1)} - 4\right)\{g(Y, Z)\eta(X) - g(X, Z)\eta(Y)\}, \tag{3.13}
\]

\[
\eta(C^*(X, Y)\xi) = 0, \tag{3.14}
\]

\[
\eta(C^*(X, \xi)Z) = \frac{1}{2n-1}Ric(X, Z) - \frac{2n}{2n-1}\eta(X)\eta(Z) \\
- \left(\frac{r}{2n(2n-1)} - 4\right)\{g(X, Z) - \eta(X)\eta(Z)\}, \tag{3.15}
\]

\[
\sum_{i=1}^{2n+1} C^*(e_i, Y, Z, e_i) = \frac{2n(2n-2) + 1}{2n-1}g(Y, Z) + \eta(Y)\eta(Z), \tag{3.16}
\]

where \(\{e_i\}_{i=1}^{2n+1}\) is an orthonormal basis of the tangent space at any point of the manifold. Taking \(U = e_i\) in (3.12) and summing over \(i\) and making use of (3.13)-(3.16), we get

\[
Ric(V, W) = \alpha g(V, W) - \beta\eta(V)\eta(W),
\]

where \(\alpha = \frac{20n^2 - 12n + 1 - r}{2n}\) and \(\beta = \frac{20n^2 - 8n + 1 - r}{2n}\). The above relation shows that the manifold is Sasakian. This completes the proof. \qed
4 -Weyl Curvature Tensor and \((\kappa, \mu)\)-contact Manifolds

In [2], Blair et al. introduced and studied a new type of contact metric manifold known as a \((\kappa, \mu)\)-contact manifold. Later on, Boeckx [4] classified these manifolds completely. A contact metric manifold \((M, \varphi, \xi, \eta, g)\) is said to be \((\kappa, \mu)\)-space if the curvature tensor satisfies

\[
R(X, Y)\xi = \kappa \{\eta(Y)X - \eta(X)Y\} + \mu \{\eta(Y)hX - \eta(X)hY\},
\]

for all vector fields \(X, Y\) on \(M\) and for some real numbers \((\kappa, \mu)\). This type of space arises through a \(D\)-homothetic deformation ([18]) to a contact metric manifold which satisfies \(R(X, Y)\xi = 0\).

The class of \((\kappa, \mu)\)-spaces covers Sasakian manifolds (for \(\kappa = 1\)) and the trivial sphere bundle \(E^{n+1} \times S^n(4)\) (for \(\kappa = \mu = 0\)). There exist examples of non-Sasakian \((\kappa, \mu)\)-contact metric manifolds. For instance, the unit tangent bundles of Riemannian manifolds of constant curvature \(\kappa \neq 1\). Since a \(D\)-homothetic deformation preserves \((\kappa, \mu)\)-contact structures, one can construct a lot of examples of \((\kappa, \mu)\)-contact structures (see [2]). The following formulas are also valid for a non-Sasakian \((\kappa, \mu)\)-contact manifolds [2]:

\[
QX = [2(n - 1) - n\mu]X + [2(n - 1) + \mu]hX + [2(1 - n) + n(2\kappa + \mu)]\eta(X)\xi,
\]

\[
(\nabla_X h)Y - (\nabla_Y h)X = (1 - \kappa)[2g(X, \varphi Y)\xi + \eta(X)\varphi Y - \eta(Y)\varphi X] + (1 - \mu)[\eta(X)\varphi hY - \eta(Y)\varphi hX,
\]

\[
Q\xi = 2n\kappa\xi,
\]

\[
h^2 = (\kappa - 1)\varphi^2, \quad \kappa < 1,
\]

equality holds when \(\kappa = 1\) (equivalently, \(h = 0\)), i.e., \(M\) is Sasakian. For the non-Sasakian case, i.e., \(\kappa < 1\), the \((\kappa, \mu)\)-nullity condition determines the curvature of \(M\) completely. In view of this, Boeckx [4] proved that a non-Sasakian \((\kappa, \mu)\)-contact manifold is locally homogeneous and hence analytic. Moreover, the constant scalar curvature \(r\) of such structures is given by

\[
r = 2n(2(n - 1) + \kappa - n\mu),
\]

which is constant. On a \((\kappa, \mu)\)-contact manifold we have

\[
(\nabla_\xi Q)X = \mu(2(n - 1) + \mu)h\varphi X,
\]

for any vector field \(X\) on \(M\). In [10], Ghosh and Patra gave an expression of \(\ast\)-Ricci tensor on non-Sasakian \((\kappa, \mu)\)-contact manifolds, which is of the form

\[
Ric^\ast(X, Y) = (n\mu + \kappa)\{-g(X, Y) + \eta(X)\eta(Y)\}.
\]
Contracting this over \(X\) provides
\[r^* = -2n(n\mu + \kappa). \] (4.8)

Making use of (4.7) and (4.8) in (1.2), we ultimately have
\[
C^*(X,Y)Z = R(X,Y)Z - \frac{n\mu + \kappa}{2n - 1} \{\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y - g(Y,Z)X \\
+ g(Y,Z)\eta(X)\xi + g(X,Z)Y - g(X,Z)\eta(Y)\xi\}. \] (4.9)

Let \(M\) be a \((\kappa, \mu)\)-contact manifold with vanishing \(\ast\)-Weyl curvature tensor, i.e., \(C^*(X,Y)Z = 0\). Relation (4.9) for \(C^*(X,Y)Z = 0\) implies
\[
R(X,Y)Z = \frac{n\mu + \kappa}{2n - 1} \{\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y - g(Y,Z)X \\
+ g(Y,Z)\eta(X)\xi + g(X,Z)Y - g(X,Z)\eta(Y)\xi\}. \]

Substituting \(Z\) by \(\xi\) in the above equation, we obtain
\[
R(X,Y)\xi = 0. \]

Hence by Blair’s theorem (see [1], p.122) \(M\) is locally flat in dimension 3, and in higher dimension it is locally isometric to the trivial bundle \(E^{n+1} \times S^n(4)\). Thus we state the following theorem;

Theorem 4.1. Let \(M\) be a non-Sasakian \((\kappa, \mu)\)-contact manifold with vanishing \(\ast\)-Weyl curvature tensor. Then \(M\) is flat for \(n = 1\) and for \(n > 1\), \(M\) is locally isometric to a Riemannian product \(E^{n+1} \times S^n(4)\).

A Riemannian manifold \((M, g)\) is said to be recurrent if there exists a 1-form \(\omega\) such that Riemannian curvature tensor \(R\) satisfies \(\nabla R = \pi \otimes R\), where \(\nabla\) is Levi-Civita connection of \(g\). This type of manifold appears as a generalization of symmetric manifold. In [8] Ghosh studied conformally recurrent \((\kappa, \mu)\)-contact manifold of dimension \(>3\) and show that it is locally isometric to either (i) unit sphere \(S^{2n+1}(1)\) or (ii) \(E^{n+1} \times S^n(4)\). Now we study, non-Sasakian \((\kappa, \mu)\)-contact manifold with \(\ast\)-Weyl curvature tensor satisfying recurrent relation, i.e., \(\nabla C^* = \pi \otimes C^*\) and prove that

Theorem 4.2. If a non-Sasakian \((\kappa, \mu)\)-contact manifold \(M, (n > 1)\) satisfies \(\nabla C^* = \pi \otimes C^*\), then \(M\) is locally isometric to the trivial bundle \(E^{n+1} \times S^n(4)\).

Proof. By hypothesis we have
\[
(\nabla_W C^*)(X,Y)Z = \pi(W)C^*(X,Y)Z. \] (4.10)
Contracting (4.10) over W provide
\[(\text{div} C^*)(X, Y)Z = C^*(X, Y, Z, P),\] (4.11)
where P is the recurrence vector metrically associated to the recurrence form π. Taking covariant differentiation of (4.9) along W and then contracting the resultant equation over W and using $Trh = Tr\varphi h = 0$, we entails that
\[(\text{div} C^*)(X, Y)Z = g((\nabla_X Q)Y, Z) - g((\nabla_Y Q)X, Z) - \frac{n\mu + \kappa}{2n - 1}\{2g(X, \varphi Y)\eta(Z) + g(X, \varphi Z + h\varphi Z)\eta(Y) - g(Y, \varphi Z + h\varphi Z)\eta(X)\}.\] (4.12)
Combining (4.11) and (4.12), we find that
\[g((\nabla_X Q)Y, Z) - g((\nabla_Y Q)X, Z) = \frac{n\mu + \kappa}{2n - 1}\{2g(X, \varphi Y)\eta(Z) + g(X, \varphi Z + h\varphi Z)\eta(Y) - g(Y, \varphi Z + h\varphi Z)\eta(X)\} + C^*(X, Y, Z, P).\] (4.13)
Next, differentiating covariantly (4.4) along an arbitrary vector field X and using (2.3) we get
\[(\nabla_X Q)\xi = Q\varphi X + Q\varphi hX - 2n\kappa(\varphi X + \varphi hX).\] (4.14)
Substituting Z by ξ in (4.13) and making use of (4.14) we find that
\[g(Q\varphi X + \varphi QX + Q\varphi hX + h\varphi QX - 4n\kappa\varphi X, Y) = \frac{2(n\mu + \kappa)}{2n - 1}g(X, \varphi Y) + C^*(X, Y, \xi, P).\] (4.15)
Replacing X by $\varphi X, Y$ by φY and Z by ξ in (4.9) and by virtue of (4.1), it follows that $C^*(\varphi X, \varphi Y)\xi = 0$. Thus setting $X = \varphi X, Y = \varphi Y$ in (4.15) and making use of last equality we obtain
\[Q\varphi X + \varphi QX - \varphi QhX - hQ\varphi X - 4n\kappa\varphi X + \frac{2(n\mu + \kappa)}{2n - 1}\varphi X = 0.\]
By virtue of (4.2), the foregoing equation reduces to
\[\kappa\mu - n\mu - 2\kappa - \mu + \frac{2(n\mu + \kappa)}{2n - 1} = 0.\] (4.16)
Taking the covariant differentiation of (4.2) and making use of (2.3) gives
\[(\nabla_X Q)Y = [2(n - 1) + \mu](\nabla_X h)Y - [2(1 - n) + n(2\kappa + \mu)]\]
\[\{g(\varphi X - \varphi hX, Y)\xi + \eta(Y)(\varphi X + \varphi hX)\}.\] (4.17)
Interchanging X and Y in (4.17) and subtracting the resultant equation with (4.17) and by virtue of (4.3) and (4.16) we find that
\[
g((\nabla X Q) Y, Z) - g((\nabla Y Q) X, Z) = \frac{2(n\mu + \kappa)}{2n - 1}\{2g(X, \varphi Y)\eta(Z) + \eta(X)g(\varphi Y, Z)\} - \eta(Y)g(\varphi X, Z)\}. \tag{4.18}
\]

By virtue of (4.13), the foregoing equation reduces to
\[
C^*(X, Y, Z, P) = \frac{n\mu + \kappa}{2n - 1}\{2g(X, \varphi Y)\eta(Z) + \eta(X)g(\varphi Y, Z)
\]
\[-\eta(Y)g(\varphi X, Z)\} + \{(3\mu - \mu^2 - n\mu + 2n\kappa) - \frac{n\mu + \kappa}{2n - 1}\}
\]
\[\{\eta(X)g(\varphi h Y, Z) - \eta(Y)g(\varphi h X, Z)\}. \tag{4.19}
\]

Replacing X by φX, Y by φY and Z by ξ in (4.19), it follows that
\[
n\mu + \kappa = 0, \tag{4.20}
\]

where we used $C^*(\varphi X, \varphi Y)\xi = 0$. Setting $Z = P$ and $X = \xi$ in (4.19) and by virtue of (4.20) yields
\[
(3\mu - \mu^2 - n\mu + 2n\kappa)g(\varphi h Y, P) = 0.
\]

Thus we have two possible cases:
\[
(i) \ 3\mu - \mu^2 - n\mu + 2n\kappa = 0, \tag{4.21}
\]
\[
(ii) \ h\varphi P = 0. \tag{4.22}
\]

Case(i). Keeping in mind that $n\mu + \kappa = 0$. Solving (4.16) and (4.21) we have the following solutions
\[
\kappa = \mu = 0, \quad \kappa = \mu = n + 3 \quad \text{or} \quad \kappa = \frac{n^2 - 1}{n}, \mu = 2(1 - n).
\]

When $\kappa = \mu = 0$, we obtain from (4.1) that $R(X, Y)\xi = 0$ and applying Blair’s theorem we see that M is locally isometric to the product $E^{n+1}_+ \times S^n(4)$. Since $n > 1$, the last two solutions leads to a contradiction as $\kappa < 1$.

Case(ii). Operating (4.22) by h and making use of (4.5) it follows that $P = \pi(\xi)\xi$. Together this with the condition (4.10) gives $(\nabla_W C^*)(X, Y)\xi = \pi(\xi)\eta(W)C^*(X, Y)Z$. Substituting W by $\varphi^2 W$ in the last equality and contracting the resultant equation over W gives
\[
(div C^*)(X, Y)Z = g((\nabla \xi C^*)(X, Y)Z, \xi). \tag{4.23}
\]
Taking covariant differentiation of (4.1) along ξ provides

$$(\nabla_\xi R)(X, Y)\xi = \mu^2 \{\eta(Y)h\varphi X - \eta(X)h\varphi Y\}. \quad (4.24)$$

On the other hand from (4.9) and together with the help of (4.24) we have

$$g((\nabla_\xi C^*)(X, Y)Z, \xi) = -\mu^2 \{\eta(Y)g(h\varphi X, Z) - \eta(X)g(h\varphi Y, Z)\}. \quad (4.25)$$

In view of (4.23) and (4.25) it follows that

$$(\text{div}C^*)(X, Y)Z = -\mu^2 \{\eta(Y)g(h\varphi X, Z) - \eta(X)g(h\varphi Y, Z)\}. \quad (4.26)$$

Making use of (4.12) in the foregoing equation yields

$$g((\nabla XQ)Y, Z) - g((\nabla YQ)X, Z) = \frac{n\mu + \kappa}{2n - 1} \{2g(X, \varphi Y)\eta(Z) + g(X, \varphi Z + h\varphi Z)\eta(Y) - g(Y, \varphi Z + h\varphi Z)\eta(X)\} - \mu^2 \{\eta(Y)g(h\varphi X, Z) - \eta(X)g(h\varphi Y, Z)\}. \quad (4.27)$$

Setting $Y = \xi$ in the above equation and making use of (2.2), (4.6) and (4.14), we find that

$$(Q\varphi X + Q\varphi hX - 2n\kappa(\varphi X + \varphi hX) + \frac{n\mu + \kappa}{2n - 1}\varphi X - [\mu(2(n - 1) - n\mu) + \frac{n\mu + \kappa}{2n - 1} - \mu^2]h\varphi X = 0. \quad (4.28)$$

By virtue of (4.2), the foregoing equation reduces to

$$\{\kappa\mu - n\mu + \kappa - \frac{n\mu + \kappa}{2n - 1}\}g(\varphi X, Y) + \{(3\mu + 2n\kappa - n\mu) - \frac{n\mu + \kappa}{2n - 1}\}g(h\varphi X, Y) = 0. \quad (4.28)$$

Interchanging X and Y in (4.28) and adding the resultant equation with (4.28) and by virtue of (2.2) we find that

$$(3\mu + 2n\kappa - n\mu) - \frac{n\mu + \kappa}{2n - 1} = 0. \quad (4.29)$$

Solving (4.29) and (4.16) it follows that

$$\kappa = \mu = 0 \text{ or } \kappa = \frac{(n-1)(n+3)}{n}, \mu = \frac{2(n-1)(n+3)}{n-3},$$

where we used $n\mu + \kappa = 0$, (in the last solution $n \neq 3$, because if $n = 3$, then from (4.29) it follows that $\kappa = 0$ and hence $\mu = 0$). The first solution shows that M is locally isometric to the product $E^{n+1} \times S^n(4)$. The last solution leads to a contradiction as $\kappa < 1$. This completes the proof.
Acknowledgement

The authors are thankful to the referee for his/her valuable suggestions towards the improvement of the paper.

References

[8] A. Ghosh, Conformally recurrent \((\kappa, \mu)\)-contact manifolds. Note Mat. 28(2) (2008), 207-212.

Venkatesha Venkatesha Department of Mathematics Kuvempu University Shankaraghatta Karnataka 577451 India
E-mail: vensmath@gmail.com

H. Aruna Kumara Department of Mathematics, Kuvempu University, Shankaraghatta, Karnataka 577451, India
E-mail: arunmathsku@gmail.com