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∗-Weyl Curvature Tensor within the Framework of Sasakian
and (κ, µ)-Contact Manifolds

Venkatesha Venkatesha and H. Aruna Kumara

Abstract. The object of the present paper is to study ∗-Weyl curvature tensor within the
framework of Sasakian and (κ, µ)-contact manifolds.

1 Introduction

LetM be a (2n+1)-dimensional Riemannianmanifold withmetric g and let TM be the Lie alge-
bra of differentiable vector fields inM . The Ricci operatorQ of (M, g) is defined by g(QX,Y ) =

Ric(X,Y ), where Ric denotes the Ricci tensor of type (0,2) on M and X,Y ∈ TM . Weyl
([20, 21]) constructed a generalized curvature tensor on a Riemannian manifold which vanishes
whenever the metric is (locally) conformally equivalent to a flat metric. TheWeyl conformal cur-
vature tensor is defined by

C(X,Y )Z =R(X,Y )Z − 1

2n− 1
{g(QY,Z)X − g(QX,Z)Y + g(Y, Z)QX

− g(X,Z)QY }+ r

2n(2n− 1)
{g(Y, Z)X − g(X,Z)Y },

for X,Y, Z ∈ TM , where R and r denotes the Riemannian curvature tensor and the scalar
curvature of M respectively. If n = 1 then C(X,Y )Z = 0 and if n ≥ 1 then M is locally
conformal flat if and only if C(X,Y )Z = 0. The condition of locally conformal flat holds for
3-dimensional Riemannian manifolds if and only if the Cotton tensor ofM , which is given by

K(X,Y ) = (∇XQ)Y − (∇YQ)X − 1

4
{(Xr)Y − (Y r)X},

vanishes identically.
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In [16] Okumura showed that a conformally flat Sasakian manifold of dimension >3 is of
constant curvature 1 and in [19] Tanno extended this result to theK-contact case and for dimen-
sions ≥3. Noting that the Ricci operator Q commutes with the fundamental collineation φ for a
Sasakian manifold, but this commutativity need not hold for a contact metric manifold, Blair and
Koufogiorgos [3] proved that a conformally flat contact metric manifold on which Q commutes
with φ, is of constant curvature 1. This generalized the above mentioned result of Okumura. In
[9], the authors classified a classes of conformally flat contact metric manifolds and characterized
a conformally flat contact manifolds as a hypersurfaces of 4-dimensional Kaehler Einstein mani-
folds. Miyazawa and Yamaguchi [15] proved that a conformally symmetric Sasakian manifold is
also locally isometric to the unit sphere. Chaki and Tarafdar [6] obtained the same result for a
Sasakian manifold satisfying the conditionR(X,Y ) · C = 0, forX,Y ∈ TM .

In 1959 Tachibana [17] defined ∗-Ricci tensor Ric∗ on almost Hermitian manifold. In [11]
Hamada gave the definition of ∗-Ricci tensorRic∗ in the following way

Ric∗(X,Y ) =
1

2
trace(Z → R(X,φY )φZ), (1.1)

for all X,Y ∈ TM . He also presented ∗-Einstein, i.e., g(Q∗X,Y ) = λg(X,Y ), where λ is a
constant multiple of g(X,Y ) and provided classification of ∗-Einstein hypersurfaces. Ivey and
Ryan in [13] extended the Hamada’s work and studied the equivalence of ∗-Einstein condition
with other geometric conditions such as the pseudo-Einstein and the pseudo-Ryan condition. By
using the concept of ∗-Ricci tensor, the present authors with Naik [12] studied the some curvature
properies on contact metric generalized (κ, µ)-space form.

Recently, Kaimakamis and Panagiotidou [14] introduced the notion of ∗-Weyl curvature ten-
sor on real hypersurfaces in non-flat complex space forms and it is defined in the following way

C∗(X,Y )Z = R(X,Y )Z − 1

2n− 1
{g(Q∗Y, Z)X − g(Q∗X,Z)Y + g(Y, Z)Q∗X

− g(X,Z)Q∗Y }+ r∗

2n(2n− 1)
{g(Y, Z)X − g(X,Z)Y }, (1.2)

for all X,Y, Z ∈ TM , where Q∗ is the ∗-Ricci operator and r∗ is the ∗-scalar curvature corre-
sponding toQ∗ ofM .

Motivated by the above studies, in this paper we study certain curvature conditions on the
∗-Weyl curvature tensor in Sasakian and (κ, µ)-contact manifolds. The paper is organized as
follows: In section 2, we give brief introduction of contact metric manifolds. In section 3, we
study ∗-Weyl curvature tensor within the background of Sasakian manifolds. Here, we show that
Sasakin manifold with vanishing ∗-Weyl curvature tensor is ψ(F )2n+1, and also proved that if
Sasakian manifold satisfies R · C∗ = 0, then it is η-Einstein. In section 4, we study ∗-Weyl
curvature tensor in (κ, µ)-contact manifolds. In this section, we show that a non-Sasakian (κ, µ)-
contact manifold with vanishing ∗-Weyl curvature tensor is a flat for n = 1 and locally isometric
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to a Riemannian product En+1 × Sn(4). Finally, it is proved that if non-Sasakian (κ, µ)-contact
manifold satisfies∇C∗ = π ⊗ C∗, then it is locally isometric to a Riemannian product En+1 ×
Sn(4).

2 Preliminaries

First, we shall review the basic definitions and formulas of contact metric manifolds. A (2n+1)-
dimensional smooth manifold M is said to be contact if it admits a global 1-form η such that
η ∧ (dη)n ̸= 0 onM . This 1-form is called a contact 1-form. For a contact 1-form η, there exists
a unique vector field ξ such that dη(ξ,X) = 0 and η(ξ) = 1. Polarizing dη on the contact sub-
bundle D (defined by η = 0), we obtain a Riemannian metric g and a (1,1)-tensor field φ such
that

dη(X,Y ) = g(X,φY ), η(X) = g(X, ξ), φ2X = −X + η(X)ξ, (2.1)

for allX,Y ∈ TM . From these equations one can also deduce that

φξ = 0, η ◦ φ = 0, g(φX,φY ) = g(X,Y )− η(X)η(Y ). (2.2)

The structure (φ, ξ, η, g) onM is known as a contact metric structure and the metric g is called
an associated metric. A Riemannian manifoldM together with the structure (φ, ξ, η, g) is said
to be a contact metric manifold and we denote it by (M,φ, ξ, η, g). On a contact metric manifold
(see [1])

∇Xξ = −φX − φhX, hφ+ φh = 0, (2.3)

for any vector fieldX,Y onM and∇ denotes the operator of covariant differentiation of g. If the
vector field ξ is Killing (equivalently, h = 0) with respect to g, then the contact metric manifold
M is said to beK-contact. On a Sasakian manifold, the following formulas are known [1]

∇Xξ = −φX, (2.4)

Qξ = 2nξ, (2.5)

where Q denote the Ricci operator ofM . A contact metric manifold is said to be Sasakian if it
satisfies

(∇Xφ)Y = g(X,Y )ξ − η(Y )X. (2.6)

On a Sasakian manifold, the curvature tensor satisfies

R(X,Y )ξ = η(Y )X − η(X)Y. (2.7)

Also, the contact metric structure onM is said to be Sasakian if the almost Kaehler structure on
the metric cone (M ×R+, r2g + dr2) overM , is Kaehler [1]. A Sasakian manifold is K-contact
but the converse is true only in dimension 3. For more details see [1] and [5].



386 V. Venkatesha and H. Aruna Kumara

3 ∗-Weyl Curvature Tensor and SasakianManifolds

We are now in a position to find the expression of ∗-Weyl curvature tensor in the background of
Sasakian manifolds. In [10], Ghosh and Patra derive the expression of ∗-Ricci tensor on Sasakian
manifold, which is of the form

Ric∗(X,Y ) = Ric(X,Y )− (2n− 1)g(X,Y )− η(X)η(Y ). (3.1)

Contracting this overX yields

r∗ = r − 4n2. (3.2)

Using (3.1) and (3.2) in (1.2), we obtain

C∗(X,Y )Z = R(X,Y )Z − 1

2n− 1
{g(QY,Z)X − g(QX,Z)Y + g(Y, Z)QX

− g(X,Z)QY }+ 1

2n− 1
{η(Y )η(Z)X − η(X)η(Z)Y + g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ}+ (
r − 4n2

2n(2n− 1)
+ 2){g(Y, Z)X − g(X,Z)Y }. (3.3)

LetM be a Sasakian manifold with vanishing ∗-Weyl curvature tensor, that is, C∗(X,Y )Z = 0.
Relation for C∗(X,Y )Z = 0 implies that

R(X,Y )Z =
1

2n− 1
{g(QY,Z)X − g(QX,Z)Y + g(Y, Z)QX − g(X,Z)QY }

− 1

2n− 1
{η(Y )η(Z)X − η(X)η(Z)Y + g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ} − (
r − 4n2

2n(2n− 1)
+ 2){g(Y, Z)X − g(X,Z)Y }. (3.4)

Covariant differentiation of above relation alongW and then contracting the resultant equation
overW yields

2(n− 1)

2n− 1
{g((∇XQ)Y, Z)− g((∇YQ)X,Z)}

=
2(n− 1)

4n(2n− 1)
{(Xr)g(Y, Z)− (Y r)g(X,Z)}

− 1

2n− 1
{2g(X,φY )η(Z) + g(X,φZ)η(Y )− g(Y, φZ)η(X)}. (3.5)

In a Sasakian manifold we have the following relation:

(∇XQ)ξ = QφX − 2nφX. (3.6)
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For a Sasakian manifold we know that ξ is Killing and hence LξRic = 0. Therefore, by (2.4) we
easily get ∇ξQ = φQ − Qφ. For a Sasakian manifold Q and φ commute ( see [1]) and hence
∇ξQ = 0. Now replacing Y by ξ in (3.5), recalling the last relation and (3.6) we find

2(n− 1)g(QφX,Z)− (4n(n− 1) + 1)g(φX,Z)− 2(n− 1)

4n
(Xr)η(Z) = 0.

Replacing Z by φZ in the foregoing equation and making use of (2.2) we obtain

Ric(X,Z) = ag(X,Z)− bη(X)η(Z), (3.7)

where a = 4n(n−1)+1
2(n−1) and b = 1

2(n−1) . Substituting (3.7) in (3.4), we obtain

R(X,Y, Z,W ) = p[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] + +q[g(X,W )η(Y )η(Z)

− g(X,Z)η(Y )η(W ) + g(Y, Z)η(X)η(W )− g(Y,W )η(X)η(Z)], (3.8)

where p = { 2a
2n−1 − r−4n2

2n(2n−1) − 2} and q = − b+1
2n−1 . The relation (3.8) leads to

R(X,Y, Z,W ) = F (Y, Z)F (X,W )− F (X,Z)F (Y,W ), (3.9)

where

F (X,Y ) =
√
pg(X,Y ) +

q
√
p
η(X)η(Y ). (3.10)

An n-dimensional Riemannianmanifold whose curvature tensorR of type (0,4) satisfies the con-
dition (3.9), where F is a symmetric tensor of type (0, 2) is called a special manifold with the
associated symmetric tensor F , and is denoted by ψ(F )n. Such type of manifolds have been
studied by Chern [7] in 1956.
By virtue of (3.9), we have the following;

Theorem 3.1. A Sasakian manifold with vanishing ∗-Weyl curvature tensor is ψ(F )2n+1 with as-
sociated symmetric tensor F given by (3.10).

In view of (3.8), we have following result;

Theorem 3.2. A Sasakian manifold with vanishing ∗-Weyl curvature tensor is a manifold of quasi
constant curvature.

A Riemannian manifold (M, g) is said to be semisymmetric if R · R = 0. Now we study,
Sasakian manifold with ∗-Weyl curvature tensor satsifying relationR · C∗ = 0 and prove that

Theorem3.3. If a (2n+1)-dimensional Sasakianmanifold satisfiesR·C∗ = 0, then it is η-Einstein
manifold.
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Proof. Let us consider a (2n+1)-dimensional Sasakianmanifold satisfying (R(X,Y )·C∗)(U, V )W =

0. Then, by definition we have

R(X,Y )C∗(U, V )W − C∗(R(X,Y )U, V )W

− C∗(U,R(X,Y )V )W − C∗(U, V )R(X,Y )W = 0.

ReplacingX by ξ in the above equation and then taking inner product of resultant equation, we
obtain

η(R(ξ, Y )C∗(U, V )W )− η(C∗(R(ξ, Y )U, V )W )

− η(C∗(U,R(ξ, Y )V )W )− η(C∗(U, V )R(ξ, Y )W ) = 0. (3.11)

In view of (2.7), it follows from (3.11) that

C∗(U, V,W, Y )− η(C∗(U, V )W )η(Y )− g(Y, U)η(C∗(ξ, V )W )

+ η(U)η(C∗(Y, V )W )− g(Y, V )η(C∗(U, ξ)W ) + η(V )η(C∗(U, Y )W )

− g(Y,W )η(C∗(U, V )ξ) + η(W )η(C∗(U, V )Y ) = 0.

Replacing Y by U in the above equation, we have

C∗(U, V,W,U)− g(U,U)η(C∗(ξ, V )W )

− g(U, V )η(C∗(U, ξ)W ) + η(W )η(C∗(U, V )U) = 0. (3.12)

By virtue of (3.3), one can easily see that

η(C∗(X,Y )Z) =− 1

2n− 1
{Ric(Y, Z)η(X)−Ric(X,Z)η(Y )}

+ (
r

2n(2n− 1)
− 4){g(Y, Z)η(X)− g(X,Z)η(Y )}, (3.13)

η(C∗(X,Y )ξ) =0, (3.14)

η(C∗(X, ξ)Z) =
1

2n− 1
Ric(X,Z)− 2n

2n− 1
η(X)η(Z)

− (
r

2n(2n− 1)
− 4){g(X,Z)− η(X)η(Z)}, (3.15)

2n+1∑
i=1

C∗(ei, Y, Z, ei) =
2n(2n− 2) + 1

2n− 1
g(Y, Z) + η(Y )η(Z), (3.16)

where {ei}2n+1
i=1 is an orthonormal basis of the tangent space at any point of the manifold. Taking

U = ei in (3.12) and summing over i and making use of (3.13)-(3.16), we get

Ric(V,W ) = αg(V,W )− βη(V )η(W ),

where α = 20n2−12n+1−r
2n and β=20n2−8n+1−r

2n . The above relation shows that the manifold is
Sasakian. This completes the proof.
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4 ∗-Weyl Curvature Tensor and (κ, µ)-contact Manifolds

In [2], Blair et al. introduced and studied a new type of contact metric manifold known as a
(κ, µ)-contact manifold. Later on, Boeckx [4] classified these manifolds completely. A contact
metric manifold (M,φ, ξ, η, g) is said to be (κ, µ)-space if the curvature tensor satisfies

R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }, (4.1)

for all vector fieldsX,Y onM and for some real numbers (κ, µ). This type of space arises through
aD-homothetic deformation ([18]) to a contact metric manifold which satisfies R(X,Y )ξ = 0.
The class of (κ, µ)-spaces covers Sasakian manifolds (for κ = 1) and the trivial sphere bundle
En+1 × Sn(4) (for κ = µ = 0). There exist examples of non-Sasakian (κ, µ)-contact metric
manifolds. For instance, the unit tangent bundles of Riemannianmanifolds of constant curvature
κ ̸= 1. Since aD-homothetic deformation preserves (κ, µ)-contact structures, one can construct
a lot of examples of (κ, µ)-contact structures (see [2]). The following formulas are also valid for a
non-Sasakian (κ, µ)-contact manifolds [2]:

QX = [2(n− 1)− nµ]X + [2(n− 1) + µ]hX

+ [2(1− n) + n(2κ+ µ)]η(X)ξ, (4.2)

(∇Xh)Y − (∇Y h)X = (1− κ)[2g(X,φY )ξ + η(X)φY − η(Y )φX]

+ (1− µ)[η(X)φhY − η(Y )φhX, (4.3)

Qξ = 2nκξ, (4.4)

h2 = (κ− 1)φ2, κ < 1, (4.5)

equality holds when κ = 1 (equivalently, h = 0), i.e.,M is Sasakian. For the non-Sasakian case,
i.e., κ < 1, the (κ, µ)-nullity condition determines the curvature of M completely. In view of
this, Boeckx [4] proved that a non-Sasakian (κ, µ)-contact manifold is locally homogeneous and
hence analytic. Moreover, the constant scalar curvature r of such structures is given by

r = 2n(2(n− 1) + κ− nµ),

which is constant. On a (κ, µ)-contact manifold we have

(∇ξQ)X = µ(2(n− 1) + µ)hφX, (4.6)

for any vector field X on M . In [10], Ghosh and Patra gave a expression of ∗-Ricci tensor on
non-Sasakian (κ, µ)-contact manifolds, which is of the form

Ric∗(X,Y ) = (nµ+ κ){−g(X,Y ) + η(X)η(Y )}. (4.7)
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Contracting this overX provides

r∗ = −2n(nµ+ κ). (4.8)

Making use of (4.7) and (4.8) in (1.2), we ultimately have

C∗(X,Y )Z =R(X,Y )Z − nµ+ κ

2n− 1
{η(Y )η(Z)X − η(X)η(Z)Y − g(Y, Z)X

+ g(Y, Z)η(X)ξ + g(X,Z)Y − g(X,Z)η(Y )ξ}. (4.9)

LetM be a (κ, µ)-contactmanifoldwith vanishing ∗-Weyl curvarure tensor, i.e.,C∗(X,Y )Z =

0. Relation (4.9) for C∗(X,Y )Z = 0 implies

R(X,Y )Z =
nµ+ κ

2n− 1
{η(Y )η(Z)X − η(X)η(Z)Y − g(Y, Z)X

+g(Y, Z)η(X)ξ + g(X,Z)Y − g(X,Z)η(Y )ξ}.

Substituting Z by ξ in the above equation, we obtain

R(X,Y )ξ = 0.

Hence by Blair’s theorem (see [1], p.122)M is locally flat in dimension 3, and in higher dimension
it is locally isometric to the trivial bundle En+1 × Sn(4). Thus we state the following theorem;

Theorem 4.1. LetM be a non-Sasakian (κ, µ)-contact manifold with vanishing ∗-Weyl curvature
tensor. ThenM is flat for n = 1 and for n > 1, M is locally isometric to a Riemannian product
En+1 × Sn(4).

ARiemannianmanifold (M, g) is said to be recurrent if there exists a 1-formω such that Rie-
mannian curvature tensorR satisfies∇R = π⊗R, where∇ is Levi-Civita connection of g. This
type of manifold appears as a generalization of symmetric manifold. In [8] Ghosh studied con-
formally recurrent (κ, µ)-contact manifold of dimension> 3 and show that it is locally isometric
to either (i) unit sphere S2n+1(1) or (ii) En+1 × Sn(4). Now we study, non-Sasakian (κ, µ)-
contact manifold with ∗-Weyl curvature tensor satisfying recurrent relation, i.e.,∇C∗ = π⊗C∗

and prove that

Theorem 4.2. If a non-Sasakian (κ, µ)-contact manifoldM , (n > 1) satisfies ∇C∗ = π ⊗ C∗,
thenM is locally isometric to the trivial bundle En+1 × Sn(4).

Proof. By hypothesis we have

(∇WC
∗)(X,Y )Z = π(W )C∗(X,Y )Z. (4.10)



∗-Weyl Curvature Tensor within the Framework ... 391

Contracting (4.10) overW provide

(divC∗)(X,Y )Z = C∗(X,Y, Z, P ), (4.11)

whereP is the recurrence vector metrically associated to the recurrence form π. Taking covariant
differentiation of (4.9) alongW and then contracting the resultant equation overW and using
Trh = Trφh = 0, we entails that

(divC∗)(X,Y )Z = g((∇XQ)Y, Z)− g((∇YQ)X,Z)− nµ+ κ

2n− 1
{2g(X,φY )η(Z)

+ g(X,φZ + hφZ)η(Y )− g(Y, φZ + hφZ)η(X)}. (4.12)

Combining (4.11) and (4.12), we find that

g((∇XQ)Y, Z)− g((∇YQ)X,Z) =
nµ+ κ

2n− 1
{2g(X,φY )η(Z)

+ g(X,φZ + hφZ)η(Y )− g(Y, φZ + hφZ)η(X)}+ C∗(X,Y, Z, P ). (4.13)

Next, differentiating covariantly (4.4) along an arbitrary vector fieldX and using (2.3) we get

(∇XQ)ξ = QφX +QφhX − 2nκ(φX + φhX). (4.14)

Substituting Z by ξ in (4.13) and making use of (4.14) we find that

g(QφX + φQX +QφhX + hφQX − 4nκφX, Y )

=
2(nµ+ κ)

2n− 1
g(X,φY ) + C∗(X,Y, ξ, P ). (4.15)

ReplacingX byφX ,Y byφY andZ by ξ in (4.9) andby virtue of (4.1), it follows thatC∗(φX,φY )ξ =

0. Thus settingX = φX , Y = φY in (4.15) and making use of last equality we obtain

QφX + φQX − φQhX − hQφX − 4nκφX +
2(nµ+ κ)

2n− 1
φX = 0.

By virtue of (4.2), the foregoing equation reduces to

κµ− nµ− 2κ− µ+
2(nµ+ κ)

2n− 1
= 0. (4.16)

Taking the covariant differentiation of (4.2) and making use of (2.3) gives

(∇XQ)Y = [2(n− 1) + µ](∇Xh)Y − [2(1− n) + n(2κ+ µ)]

{g(φX − φhX, Y )ξ + η(Y )(φX + φhX)}. (4.17)
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InterchangingX and Y in (4.17) and substracting the resultant equation with (4.17) and by virtue
of (4.3) and (4.16) we find that

g((∇XQ)Y, Z)− g((∇YQ)X,Z) =
2(nµ+ κ)

2n− 1
{2g(X,φY )η(Z)

+η(X)g(φY,Z)− η(Y )g(φX,Z)}+ (3µ− µ2 − nµ+ 2nκ)

{η(X)g(φhY,Z)− η(Y )g(φhX,Z)}. (4.18)

By virtue of (4.13), the foregoing equation reduces to

C∗(X,Y, Z, P ) =
nµ+ κ

2n− 1
{2g(X,φY )η(Z) + η(X)g(φY,Z)

−η(Y )g(φX,Z)}+ {(3µ− µ2 − nµ+ 2nκ)− nµ+ κ

2n− 1
}

{η(X)g(φhY,Z)− η(Y )g(φhX,Z)}. (4.19)

ReplacingX by φX , Y by φY and Z by ξ in (4.19), it follows that

nµ+ κ = 0, (4.20)

where we used C∗(φX,φY )ξ = 0. Setting Z = P andX = ξ in (4.19) and by virtue of (4.20)
yields

(3µ− µ2 − nµ+ 2nκ)g(φhY, P ) = 0.

Thus we have two possible cases:

(i) 3µ− µ2 − nµ+ 2nκ = 0, (4.21)

(ii) hφP = 0. (4.22)

Case(i). Keeping in mind that nµ+ κ = 0. Solving (4.16) and (4.21) we have the following
solutions

κ = µ = 0, κ = µ = n+ 3 or κ =
n2 − 1

n
, µ = 2(1− n).

When κ = µ = 0, we obtain from (4.1) that R(X,Y )ξ = 0 and applying Blair’s theorem we see
thatM is locally isometric to the productEn+1×Sn(4). Since n > 1, the last two solutions leads
to a contradiction as κ < 1.

Case(ii). Operating (4.22) by h and making use of (4.5) it follows that P = π(ξ)ξ. Together
this with the condition (4.10) gives (∇WC

∗)(X,Y )Z = π(ξ)η(W )C∗(X,Y )Z . SubstitutingW
by φ2W in the last equality and contracting the resultant equation overW gives

(divC∗)(X,Y )Z = g((∇ξC
∗)(X,Y )Z, ξ). (4.23)
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Taking covariant differentiation of (4.1) along ξ provides

(∇ξR)(X,Y )ξ = µ2{η(Y )hφX − η(X)hφY }. (4.24)

On the other hand from (4.9) and together with the help of (4.24) we have

g((∇ξC
∗)(X,Y )Z, ξ) = −µ2{η(Y )g(hφX,Z)− η(X)g(hφY,Z)}. (4.25)

In view of (4.23) and (4.25) it follows that

(divC∗)(X,Y )Z = −µ2{η(Y )g(hφX,Z)− η(X)g(hφY,Z)}.

Making use of (4.12) in the foregoing equation yields

g((∇XQ)Y, Z)− g((∇YQ)X,Z) =
nµ+ κ

2n− 1
{2g(X,φY )η(Z)

+g(X,φZ + hφZ)η(Y )− g(Y, φZ + hφZ)η(X)}

−µ2{η(Y )g(hφX,Z)− η(X)g(hφY,Z)}. (4.26)

Setting Y = ξ in the above equation and making use of (2.2), (4.6) and (4.14), we find that

QφX +QφhX − 2nκ(φX + φhX) +
nµ+ κ

2n− 1
φX

−[µ(2(n− 1)− nµ) +
nµ+ κ

2n− 1
− µ2]hφX = 0. (4.27)

By virtue of (4.2), the foregoing equation reduces to

{κµ− nµ− 2κ− nµ+ κ

2n− 1
}g(φX, Y ) + {(3µ+ 2nκ− nµ)

−nµ+ κ

2n− 1
}g(hφX, Y ) = 0. (4.28)

Interchanging X and Y in (4.28) and adding the resultant equation with (4.28) and by virtue of
(2.2) we find that

(3µ+ 2nκ− nµ)− nµ+ κ

2n− 1
= 0. (4.29)

Solving (4.29) and (4.16) it follows that
κ = µ = 0 or κ = (n−1)(n+3)

n , µ = 2(n−1)(n+3)
n−3 , where we used nµ+ κ = 0, (in the last solution

n ̸= 3, because if n = 3, then from (4.29) it follows that κ = 0 and hence µ = 0). The first
solution shows thatM is locally isometric to the product En+1 × Sn(4). The last solution leads
to a contradiction as κ < 1. This completes the proof.
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