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Position Vectors of Curves Generalizing General Helices

and Slant Helices in Euclidean 3-Space

Abderrazak El Haimi, Malika Izid and Amina Ouazzani Chahdi

Abstract. In this paper, we give a new characterization of a k-slant helix which is a general-
ization of general helix and slant helix. Thereafter, we construct a vector differential equation
of the third order to determine the parametric representation of a k-slant helix according to
standard frame in Euclidean 3-space. Finally, we apply this method to find the position vector
of some examples of 2-slant helix by means of intrinsic equations.

1 Introduction

In differential geometry, a curve called general helix is defined by the property that its tangent
vector field makes a constant angle with a fixed straight line which is the axis of the general helix
in Euclidean 3—space. A classical result stated by M.A. Lancret in 1802 and first proved by B.
Saint Venant in 1845 (see [6, 11] for details) says that: A necessary and sufficient condition that a
curve be a general helix is that the ratio

_ T
O-O—Ea

is constant along the curve, where x and 7 denote the curvature and the torsion of the curve,

respectively. If both x and 7 are non-zero constants, then the curve is called a circular helix.

Izumiya and Takeuchi [13] have introduced the concept of the slant helix by saying that the
principal normal lines make a constant angle with a fixed straight line and they characterize a
slant helix if and only if the geodesic curvature

!
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o = —42—=
H(1+0'(2))%

i

of principal image of the principal normal indicatrix is a constant function.
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In [5], the authors investigate a curve whose spherical images ( the tangent indicatrix and
binormal indicatrix ) are slant helices and called it as a C'—slant helix where C' = H%i\\ (N the
principal normal of the curve). They characterize a C'—slant helix if and only if the geodesic

curvature
o]

n\/1+03(1+0%)% 7

of the principal image of the vector field C' indicatrix is a constant fonction.

o9 =

The determining of the position vector of some different curves according to the intrinsic
equations k = K (s) and 7 = 7 (s) (where k and 7 are the curvature and torsion of the curve)
is considered as a one of important subjects. Recently, the parametric representation of general
helices and slant helices as an important special curves in Euclidean space E° are deduced by Ali
[1,2].

The purpose of this paper is to determine the position vector of k-slant helices (see [3, 4])
which a generalization of general helices and slant helices. Firstly, we give a new characterization
of k—slant helices and construct a vector differential equation of the third order to determine the
parametric representation of k—slant helices. By applying this method, we present some examples
of 2—slant helix.

2 Preliminaries

In Euclidean space E3, we known that each unit speed curve has at least four continuous deriva-
tives, one can associate three orthogonal unit vector fields 7', NV and B are the tangent, the prin-
cipal normal and the binormal vector fields respectively [7].

Letv : I C R — E3 4 = 1 (s), be an arbitrary curve in E3. Recall that the curve 1 is
said to be unit speed or parametrized by the arc-length if (¢ (s) , ¢’ (s)) = 1forany s € I. Thus,
we will assume throughout this work that ¢ is a unit speed curve, where (, ) denotes the standard
inner product given by :

(,) = da? + da3 + dx3.

Let (T (s), N (s), B (s)) be the Frenet moving frame along v. The Frenet equations for 1)
are given by [6] :

T’ (s) 0 K (s) 0 T (s)
N (s) | =| —k(s) 0 7 (s) N(s) |, (2.1)
B’ (s) 0 —7(s) B (s)

where k and 7 are the curvature and the torsion of the curve ¢ in terms of Frenet frame, respec-

tively.
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Denoteby { N, C, W = N A C'} the alternative moving frame along the curve ¢ in Euclidean

) N/ _ 1T4+kB . .. S
3-space. Note that N, C' = i andW = iz are the unit principal normal, the dérivative of
principal normal vector and the Darboux vector, respectively. For the derivatives of the alternative

moving frame, we have :

N'(s) 0 f1(s) 0 N (s)
C'(s) | =| —fi(s) 0 g1 (s) C(s) |, (2.2)
W' (s) 0 —-g1(s) O W (s)

where fi = VT2 + k2 = k/1+ 08 and g1 = o1 f1, are curvatures of the curve 1 in terms of
the alternative moving frame.

3 k-slant helix and its characterizations

Letty = 1) (s) anatural representation of a unit speed curve in Euclidean 3-space, andlet (T (s) , N (s), B (s))
denotes the Frenet frame of ¢ with  (s), 7 (s) the curvature and the torsion of the curve v, re-
spectively.

We denote by Cy =1 (s),

O (s) = =1 and Wit (5) = Ci (8) A Crsn (s), ke {1,2,..}.

Therefore, we can see that (Cy, Ci+1, Wiy1) is the Frenet frame of s — Cy_1 (s). Then the

derivative formulae of Frenet frame are given by:

Cr (s) 0 Ji—1(s) 0 Cy ()
Chi1 (5) = | —fi-1(s) 0 gk—1(5) Cr+1(s) | 3.1)
Wi (s) 0 —gk-1(s) 0 Wit (s)

where fj;_1 and gi_; are the curvatures of the curve Cj,_; in terms of (C, Ck1, Wi41) moving

frame. We can easily see that fo = x and gg = 7.

If we write this curve in the other parametric representation Cj_; = Cy_1 (t) wheret =

[ fi—1 (s) ds, we have the new Frenet equations as follows:

C; (t) 0 1 0 Ck (t)
CI,chl (t) = -1 0 Ok—1 (t) Crt1 (t) , (3.2)
Wiy (1) 0 —ok-1(t) 0 Wiy (1)

gk—1

where 0,1 = f—
k—1
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Definition 1. Let ) : I C R — E° be a unit speed curve in Euclidean 3-space. A curve 4 is
called a k—slant helix if the unit vector field C'; 1 makes a constant angle V' with a fixed direction
U, that is,

(Ck41,U) = cosV, V = constant

along the curve 9.

Lemma 3.1. Let) : [ C R — E3 be a unit speed curve in Euclidean 3—space. Then the curve 1

is a k—slant helix if and only if the geodesic curvature

!
Tk—1

I Ve SN S IS

of the principal image of the vector field C indicatrix is a constant function.

O

Proof. 1t 1) is a k—slant helix, we can see that the curve Cj_ is a slant helix. Then

o = —— A=l (33)
Fra(14ei_y)

fr-1= fk—2m (3.4)

!
Tk

[N

is a constant function. Since

if we put (6) in (5) , we obtain

3 -
fr—24 /1+O’i_2(1+0%_1) 2

By continuing this process k-times, we get

O =

!
k-1

Ok

The following lemma gives a new characterization for k—slant helices in E3.

Lemma3.2. Lett) : I — E3 bea curve that is parameterized by arclenght. The curve is a k—slant
helix (its vector fields Cy, 1 make a constant angle, with a fixed unit direction U in E®) if and only

if

_ mffk,lds
_ =+ .
k-1 (S) \/lfmz(ffkflds)zj (3 5)

where m = ﬁ, and < Ciy1,U >=n.
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Proof. (=) Let U be a unit fixed vector satisfying
< Ci41,U >=n. (3.6)
Differentiating the Eq.(8) with respect to the variable t = [ f_1 (s) ds and using the derivative

formulae (4) , we get
< —Ck(t) + O_kf]_(t)Wk+]_ (t), U >=0. (3.7)

Therefore,
< C(t), U >=op-1(t) < Wi (8),U > .

If we put < Wy41(t), U >= b, we can write
U =b(t)ok-1(t)Cr(t) + nCria(t) + b(t) W1 (t).

From the unitary of the vector U we get

(3.8)

Therefore, the vector U can be written as

U = +o4-1(t),/ 1+0 (t)Ck( ) +nCrya(t) £ ﬁWkﬂ(ﬂ- (3.9)

Differentiating the Eq.(9), we obtain
< 1 (OWita1(t) = (1 + 07_1) Crpa (), U >= 0. (3.10)
By Egs.(12), (10) and (8) , we get the following differential equation

m=4— k=l _
(1""’1%—1)7

Y

where m = \/1’17 Integration the above equation, we obtain

Tkl —4m(t+c1), (3.11)

\V 1+01%—1

where ¢; is an integration constant. The integration constant can disappear with a parameter

change t — ¢ — ¢;. Solving the Eq.(13) with oy as unknown we have

Op_1 = i\/#%ﬁ, (3.12)

we obtain the result as desired.
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(<=) Suppose that

+ mfi—1(s) [ fe—1(s)ds )
\/l—rrﬂ(ffk,l(s)ds)2

The function o _1 can be written as 0,1 (t) = :l:#t2752 and let us consider the vector

Jk—1 (8) =

U(t) =n (tCk + Cgy1 = 7‘1_mm2t2Wk+1) .

Differentiating the vector U bye using the derivative formula (4),

dau

or 1 2
ﬁ:n<ck+t0k+1 Cy + ok 1Wk+1:F\/—2t2Wk+1:F ko1 Vi—mie C’kH) =0.

Therefore, the vector U is constant and < Cjy1,U >= n, which completes the proof. O

4 Position vectors of k—slant helices

To determine the parametric representation of the position vector of a space curve called a k—slant
helix (its vector fields Cj; make a constant angle with a fixed direction), we firstly establish that
for any arbitrary curve, the vector C; satisfies a vector differential equation of the third order

as follows:

Theorem 4.1. Let ¢ = 1) (s) be a unit speed curve in Euclidean 3—space. Suppose 1) = 1) () is
another parametric representation of this curve by the parameter t = [ fir_1ds. Then, the vector

Cl41 satisfies a vector differential equation of the third order as follows:

O [ak 5 (Cin () + (1 + 0k (1) Ckﬂ(t))}/ + Crya(t) =0, (4.1)

where o1 (t) = %

Proof. If we differentiate the second equation of the derivative formulae (4) and using the first

and third equations of (4), we get

Wi () = 57— [Cllar (1) + (14 031 (1)) G (9)] (42)

Differentiating the equation (16) and using the third equation from (4), we obtain a vector dif-
ferential equation of the third order (15) as desired. O

Then Eq.(15) is not easy to solve in the general case. If one solves this equation, we get the

following lemma:
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Lemma 4.1. The position vector of an arbitrary space curve can be determined as follows:

W (s) :/(/fg </../fk_2 (/fk_10k+1ds> ds..ds> d5> ds. (4.3)

Proof. Let 1) = 1) (s) a natural representation of an arbitrary curve. By using the first equation of
formula (3) , we have

dC
Cky1 = ﬁ et (4.4)
For k > 1, we get
dC—
Cr = 75+ (4.5)

Substituting (19) in (18), we obtain
—_1 d 1 dCk_
Chp1 = fr—1 ds (fk—z ;8 1) ’
By continuing this process k—times, we get
Crog = Ld (1 d( 1 d( d(1d
ML= Fuovds \Fe—zds \fa—sds \""ds \fo ds ) ")) )"

dC, __ 4T __ d*¥
where <L = G- = 5. O

We can solve the Eq.(15) in the case of a k—slant helix.

Lemma4.2. Let ¢ = 1) (s) a natural representation of a k—slant helix (its vector fields C.1 make
a constant angle V' with a fixed direction). Suppose 1) = 1) (t) is another parametric representation
of this curve by the parameter t = [ fi_1ds. Then the vector C1 satisfies a vector differential
equation of the third order:

(1 —m?t?) Oy — 3m*tCy 4 + Chyy =0,

where m = VﬁW andn = cos (V).

Proof. If 9 is a k-slant helix, we can write

m [ fr_1ds mt

== .
—m2(f fk—1ds)2 Vi-m?2t?

Ofk—1 — i\/l

By differentiating the last formula, we obtain

=3
2

O';ﬂ_l =+m (1 — m2t2) (4.6)

and )
op_y = £3m?* (1 - m*t*) ™ . (4.7)
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Therfore the equation (15) becomes

—ol_C o (1+U]%—1)Cllc+1 B Ug_1(1+0£_1)ck+1

k1 k41 —
Or—107 4 + Okp—10}_4 + Ok—100_ 4 o107, +3C%y11 = 0. (4.8)
Substituting (20) and (21) in (22) , we obtain the formula as desired. O

Theorem 4.2. The position vector ¢ = (11,12, 13) of a k—salnt helix is computed in the natural
representation form as follows

Yi(s) =2 [ ([ fo ([ f1 ([ .- ([ fe—1cos [*arcsin (m [ fr_1(s)ds)] ds) ..ds) ds) ds) ds,

(

Ya(s) =2 [ ([ fo (S f1 (J - ([ fe—1sin [% arcsin (m [ fr_1(s)ds)] ds) ..ds) ds) ds) ds,

Y3(s) =n [ (f fo (f fi (f (f fkflds) ..ds) ds) ds) ds,
(4.9)

n = cos (V) and V is the angle between the fixed straight line (axis of a

where m = C
V1=n?2’

k—slant helix) and the vector Cy,41 of the curve.

Proof. The curve 1) isa k—slant helix, i.e. the vector Cj1 1 makes a constant angle, V' = arccos(n),
with the constant vector called the axis of the k—slant helix. Then the vector C}., 1 satisfies a vector
differential equation:

(1 —m?t?) Oy — 3m*C) 4 + Chyy = 0. (4.10)

So, without loss of generality, we can take the axis of the k—slant helix parallel to e3, where
(e1, €2, €3) is an orthonormal frame in E3, then

Ck+1 (t) = Ck+11 (t) e1 + Ck+12 (t) €2 + nes. (4.11)

From the unitary of the vector C 1, we get
C2,, +CEy, =1-—n2=17 (4.12)
The solution of Eq.(26) is given as follows:

Cry1,(t) = 75 cos (A(1)),
(4.13)

Cr1,(t) = 5 sin (A(2)),

where A is an arbitrary function of ¢. Every component of the vector Cj satisfied the Eq.(24) .
So, substituting the components Cj1, () and Ci1,(t) in the Eq.(24) , we have the following
differential equations of the function A ()

3N(t) [m2tN (t) — (1 — m?t?)] cos(A(t))

_ [/\,(t) _ 3m2t)\”(t) . (1 _ m2t2) ()\/3(75) . )\///(t))] sin()\(t)) —0. (4.14)
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BN(t) [m*tN () — (1 — m?t?)] sin(A(t))

+ [N(t) = 3m2tN"(t) — (L — m2t2) (M3(t) — N"(t))] cos(A(t)) = 0. (15)
It is easy to prove that the above two equations lead to the following two equations:
m* N () — (1 —m?*) X'(t) = 0, (4.16)
N(t) = 3m*t\"(t) — (1 — m*t?) (\3(¢) — N"'(t)) = 0. (4.17)
The general solution of Eq.(30) is
A(t) = ¢y arcsin(mt) + cq, (4.18)

where ¢; and ¢ are constants of integration. The constant ¢z can be disappear if we change the

parameter A —> A + ca. Substituting the solution (32) in the Eq.(31) , we obtain the following
condition:
am (L+m?(1—ec1)) =0,

1
which leads to ¢; = 1%"‘2 = —, wherem # O and ¢; # 0.
n

Now, the vector C},y; take the following form:

Clt1, (t) = Z cos (L arcsinmt)

Cry1,(t) = 1= sin (% arcsin mt) , (4.19)

Ch15(t) = n.

If we substitute the Eq.(33) in the Eq.(17) , we have the Eq.(23) , which completes the proof. [

5 Applications

In this section, we introduce the position vectors of some 2—slant helices, by using new parametric

representations.
C! !
Corollary 5.1. The position vector ) = (11,1, 13) of a 2—slant helix whose the vector C3 = HC?, I = H%’H
2

makes a constant angle with a fixed straight line in the space is expressed in the natural representation
form as follows :

([ 1(s) =2 [ [[ fo(s) [ fi(s) cos [ arcsin (m [ fi(s)ds)] ds] ds] ds,
Pa(s) = 2 [ [[ fo(s) [[ fi(s)sin [Larcsin (m [ fi(s)ds)] ds] ds] ds, (5.1)

va(s) = n [ [ fols) [ fi(s)ds] ds] ds
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with f1(s) = \/902(s) + fo?(s), m = 2= and n = cos(V), or in the parametric form

n

i

U cos [ £ arcsin (mf)] df] dG} de,

[f sin [L arcsin (m#)] df] dH] e, (5.2)

=nf 5 [f Ggede} do,

or in the useful parametric form

p

D1 (1) = m4 f cos Z; [f }?Ezg cos (nt) [f cos () cos (nt) dt] dt} dt,

b (1) = 1 fcos< [ [ 55?(33 cos (nt) [ [ sin (t) cos (nt) dt] dt} dt, (5.3)

s (1) = 2 [ <ot ( [ 428 cos (nt) sin (nt) dt) dt,
n
—n2’

between the fixed straight line ( axis of a 2—slant helix ) and the vector C3 of the curve.

where 0 = [ fi(s)ds,t = Larcsin(mf), m = n = cos (V) and V is the angle

Now, we take several choices for the curvature f( and torsion gg of a regular curve. We check

that the curve is a 2—slant hélix, and next, we apply corollary 5.1.

Example 1. The case of a 2—slant helix with

fo= Lt cos(jus) cos (1 cos(,us)) and gg = _£ cos(us) sin (1 cos(us)) )
m m m m

Therefore f; = £ cos (us) and gy = £ sin (us) ,we have oo = m. Substituting fp and f; in the

Eq.(34) , we have the explicit parametric representation of such curve as follows:

Y1 (s) = g%’é [f cos(us) cos (£ cos(us)) [n+1 sin(2H yis) 4+ - sin ("T_l,us)] ds] ds,

o (s) = ;ij (f cos(ps) cos (L cos(us)) (n+1 cos(2t yis) + - cos (%us)) ds) ds,

P3(s) = =2 [ cos(us) sin (£ cos(us)) + m cos (= cos(us)) ds.

Example 2. The case of a slant-slant helix with

fo= V#cos( s) and go = \/%sin (s).
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Therefore f1 = \/% and g = 1,we have o9 = —m. Substituting fo = \/% cos(s) =
cos(nt) g ( L cos (nt)),and f; = s = 908 iy the Eq.(36) , we have the explicit

sin(nt) m V1—m?2s2 sin(nt)
parametric representation of such curve as follows:

P1(t) = % [ sin (nt) [f cos (nt) cos (= cos (nt)) [Sin(gﬂl)t) + Sin(fln:ll)t)} dt] dt,

Pa(t) = % [ sin (nt) [f cos (nt) cos (= cos (nt)) [Cos(ffrgl)t) + Cosql:nn)t)} dt} dt,

P3(t) = =2 (cos (nt) cos (L cos (nt)) — 2msin (X cos (nt))) ,

m

where 0 = —2/1 — m?s2 and t = Larcsin (m#).
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