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Position Vectors of Curves Generalizing General Helices
and Slant Helices in Euclidean 3-Space

Abderrazak El Haimi, Malika Izid and Amina Ouazzani Chahdi

Abstract. In this paper, we give a new characterization of a k-slant helix which is a general-
ization of general helix and slant helix. Thereafter, we construct a vector differential equation
of the third order to determine the parametric representation of a k-slant helix according to
standard frame in Euclidean 3-space. Finally, we apply thismethod to find the position vector
of some examples of 2-slant helix by means of intrinsic equations.

1 Introduction

In differential geometry, a curve called general helix is defined by the property that its tangent
vector field makes a constant angle with a fixed straight line which is the axis of the general helix
in Euclidean 3−space. A classical result stated by M.A. Lancret in 1802 and first proved by B.
Saint Venant in 1845 (see [6, 11] for details) says that: A necessary and sufficient condition that a
curve be a general helix is that the ratio

σ0 =
τ
κ ,

is constant along the curve, where κ and τ denote the curvature and the torsion of the curve,
respectively. If both κ and τ are non-zero constants, then the curve is called a circular helix.

Izumiya and Takeuchi [13] have introduced the concept of the slant helix by saying that the
principal normal lines make a constant angle with a fixed straight line and they characterize a
slant helix if and only if the geodesic curvature

σ1 =
σ′
0

κ(1+σ2
0)

3
2
,

of principal image of the principal normal indicatrix is a constant function.
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In [5], the authors investigate a curve whose spherical images ( the tangent indicatrix and
binormal indicatrix ) are slant helices and called it as a C−slant helix where C = N ′

∥N ′∥ (N the
principal normal of the curve). They characterize a C−slant helix if and only if the geodesic
curvature

σ2 =
σ′
1

κ
√

1+σ2
0(1+σ2

1)
3
2
,

of the principal image of the vector field C indicatrix is a constant fonction.

The determining of the position vector of some different curves according to the intrinsic
equations κ = κ (s) and τ = τ (s) (where κ and τ are the curvature and torsion of the curve)
is considered as a one of important subjects. Recently, the parametric representation of general
helices and slant helices as an important special curves in Euclidean spaceE3 are deduced by Ali
[1, 2].

The purpose of this paper is to determine the position vector of k-slant helices (see [3, 4])
which a generalization of general helices and slant helices. Firstly, we give a new characterization
of k−slant helices and construct a vector differential equation of the third order to determine the
parametric representation of k−slant helices. By applying thismethod, we present some examples
of 2−slant helix.

2 Preliminaries

In Euclidean space E3, we known that each unit speed curve has at least four continuous deriva-
tives, one can associate three orthogonal unit vector fields T,N and B are the tangent, the prin-
cipal normal and the binormal vector fields respectively [7].

Let ψ : I ⊂ R −→ E3, ψ = ψ (s) , be an arbitrary curve in E3. Recall that the curve ψ is
said to be unit speed or parametrized by the arc-length if ⟨ψ′ (s) , ψ′ (s)⟩ = 1 for any s ∈ I.Thus,
we will assume throughout this work that ψ is a unit speed curve, where ⟨, ⟩ denotes the standard
inner product given by :

⟨, ⟩ = dx21 + dx22 + dx23.

Let (T (s) , N (s) , B (s)) be the Frenet moving frame along ψ. The Frenet equations for ψ
are given by [6] :  T ′ (s)

N ′ (s)

B′ (s)

 =

 0 κ (s) 0

−κ (s) 0 τ (s)

0 −τ (s) 0


 T (s)

N (s)

B (s)

 , (2.1)

where κ and τ are the curvature and the torsion of the curve ψ in terms of Frenet frame, respec-
tively.
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Denote by {N,C,W = N ∧ C} the alternativemoving frame along the curveψ in Euclidean
3-space. Note thatN,C = N ′

∥N ′∥ andW = τT+κB√
τ2+κ2

are the unit principal normal, the dérivative of
principal normal vector and theDarboux vector, respectively. For the derivatives of the alternative
moving frame, we have : N ′ (s)

C ′ (s)

W ′ (s)

 =

 0 f1 (s) 0

−f1 (s) 0 g1 (s)

0 −g1 (s) 0


 N (s)

C (s)

W (s)

 , (2.2)

where f1 =
√
τ2 + κ2 = κ

√
1 + σ20 and g1 = σ1f1, are curvatures of the curve ψ in terms of

the alternative moving frame.

3 k-slant helix and its characterizations

Letψ = ψ (s) a natural representation of a unit speed curve inEuclidean 3-space, and let (T (s) , N (s) , B (s))

denotes the Frenet frame of ψ with κ (s) , τ (s) the curvature and the torsion of the curve ψ, re-
spectively.

We denote by C0 = ψ (s) ,

Ck (s) =
C′

k−1(s)

∥C′
k−1(s)∥

and Wk+1 (s) = Ck (s) ∧ Ck+1 (s) , k ∈ {1, 2, ..} .

Therefore, we can see that (Ck, Ck+1,Wk+1) is the Frenet frame of s→ Ck−1 (s) . Then the
derivative formulae of Frenet frame are given by: C ′

k (s)

C ′
k+1 (s)

W ′
k+1 (s)

 =

 0 fk−1 (s) 0

−fk−1 (s) 0 gk−1 (s)

0 −gk−1 (s) 0


 Ck (s)

Ck+1 (s)

Wk+1 (s)

 , (3.1)

where fk−1 and gk−1 are the curvatures of the curveCk−1 in terms of (Ck, Ck+1,Wk+1)moving
frame. We can easily see that f0 = κ and g0 = τ .

If we write this curve in the other parametric representation Ck−1 = Ck−1 (t) where t =∫
fk−1 (s) ds, we have the new Frenet equations as follows: C ′

k (t)

C ′
k+1 (t)

W ′
k+1 (t)

 =

 0 1 0

−1 0 σk−1 (t)

0 −σk−1 (t) 0


 Ck (t)

Ck+1 (t)

Wk+1 (t)

 , (3.2)

where σk−1 =
gk−1

fk−1
.
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Definition 1. Let ψ : I ⊂ R −→ E3 be a unit speed curve in Euclidean 3-space. A curve ψ is
called a k−slant helix if the unit vector fieldCk+1 makes a constant angle V with a fixed direction
U , that is,

⟨Ck+1, U⟩ = cosV, V = constant

along the curve ψ.

Lemma 3.1. Let ψ : I ⊂ R −→ E3 be a unit speed curve in Euclidean 3−space. Then the curve ψ
is a k−slant helix if and only if the geodesic curvature

σk =
σ′
k−1

κ
√

1+σ2
0

√
1+σ2

1 ...
√

1+σ2
k−2(1+σ

2
k−1)

3
2
,

of the principal image of the vector field Ck+1 indicatrix is a constant function.

Proof. If ψ is a k−slant helix, we can see that the curve Ck−1 is a slant helix. Then

σk =
σ′
k−1

fk−1(1+σ2
k−1)

3
2
, (3.3)

is a constant function. Since
fk−1 =

√
f2k−2 + g2k−2

fk−1 = fk−2

√
1 + σ2k−2 (3.4)

if we put (6) in (5) , we obtain

σk =
σ′
k−1

fk−2

√
1+σ2

k−2(1+σ
2
k−1)

3
2
.

By continuing this process k-times, we get

σk =
σ′
k−1

κ
√

1+σ2
0

√
1+σ2

1 ...
√

1+σ2
k−2(1+σ

2
k−1)

3
2
.

The following lemma gives a new characterization for k−slant helices in E3.

Lemma3.2. Letψ : I −→ E3 be a curve that is parameterized by arclenght. The curve is a k−slant
helix (its vector fields Ck+1 make a constant angle, with a fixed unit direction U in E3) if and only
if

σk−1 (s) = ± m
∫
fk−1ds√

1−m2(
∫
fk−1ds)

2
, (3.5)

wherem = n√
1−n2

, and< Ck+1, U >= n.
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Proof. (=⇒) Let U be a unit fixed vector satisfying

< Ck+1, U >= n. (3.6)

Differentiating the Eq.(8) with respect to the variable t =
∫
fk−1 (s) ds and using the derivative

formulae (4) , we get
< −Ck(t) + σk−1(t)Wk+1(t), U >= 0. (3.7)

Therefore,
< Ck(t), U >= σk−1(t) < Wk+1(t), U > .

If we put< Wk+1(t), U >= b, we can write

U = b(t)σk−1(t)Ck(t) + nCk+1(t) + b(t)Wk+1(t).

From the unitary of the vector U we get

b = ±
√

1−n2

1+σk−1
2 . (3.8)

Therefore, the vector U can be written as

U = ±σk−1(t)

√
1−n2

1+σ2
k−1(t)

Ck(t) + nCk+1(t)±
√

1−n2

1+σ2
k−1(t)

Wk+1(t). (3.9)

Differentiating the Eq.(9), we obtain

< σ′k−1(t)Wk+1(t)−
(
1 + σ2k−1

)
Ck+1(t), U >= 0. (3.10)

By Eqs.(12) , (10) and (8) , we get the following differential equation

m = ± σ′
k−1

(1+σ2
k−1)

3
2
,

wherem = n√
1−n2

. Integration the above equation, we obtain

σk−1√
1+σ2

k−1

= ±m (t+ c1) , (3.11)

where c1 is an integration constant. The integration constant can disappear with a parameter
change t −→ t− c1. Solving the Eq.(13) with σk−1 as unknown we have

σk−1 = ± mt√
1−m2t2

, (3.12)

we obtain the result as desired.
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(⇐=) Suppose that
gk−1 (s) = ± mfk−1(s)

∫
fk−1(s)ds√

1−m2(
∫
fk−1(s)ds)

2
.

The function σk−1 can be written as σk−1 (t) = ± mt√
1−m2t2

and let us consider the vector

U(t) = n
(
tCk + Ck+1 ±

√
1−m2t2

m Wk+1

)
.

Differentiating the vector U bye using the derivative formula (4),

dU
dt = n

(
Ck + tCk+1 − Ck + σk−1Wk+1 ∓ mt√

1−m2t2
Wk+1 ∓ σk−1

√
1−m2t2

m Ck+1

)
= 0.

Therefore, the vector U is constant and< Ck+1, U >= n, which completes the proof.

4 Position vectors of k−slant helices

Todetermine the parametric representation of the position vector of a space curve called a k−slant
helix (its vector fields Ck+1 make a constant angle with a fixed direction), we firstly establish that
for any arbitrary curve, the vector Ck+1 satisfies a vector differential equation of the third order
as follows:

Theorem 4.1. Let ψ = ψ (s) be a unit speed curve in Euclidean 3−space. Suppose ψ = ψ (t) is
another parametric representation of this curve by the parameter t =

∫
fk−1ds.Then, the vector

Ck+1 satisfies a vector differential equation of the third order as follows:

1
σk−1(t)

[
1

σ′
k−1(t)

(
C ′′
k+1(t) +

(
1 + σ2k−1(t)

)
Ck+1(t)

)]′
+ Ck+1(t) = 0, (4.1)

where σk−1 (t) =
gk−1(t)
fk−1(t)

.

Proof. If we differentiate the second equation of the derivative formulae (4) and using the first
and third equations of (4), we get

Wk+1 (t) =
1

σ′
k−1

[
C ′′
k+1 (t) +

(
1 + σ2k−1 (t)

)
Ck+1 (t)

]
. (4.2)

Differentiating the equation (16) and using the third equation from (4), we obtain a vector dif-
ferential equation of the third order (15) as desired.

Then Eq.(15) is not easy to solve in the general case. If one solves this equation, we get the
following lemma:



Position Vectors of Curves Generalizing General Helices ... 473

Lemma 4.1. The position vector of an arbitrary space curve can be determined as follows:

ψ (s) =

∫ (∫
f0

(∫
..

∫
fk−2

(∫
fk−1Ck+1ds

)
ds..ds

)
ds

)
ds. (4.3)

Proof. Let ψ = ψ (s) a natural representation of an arbitrary curve. By using the first equation of
formula (3) , we have

Ck+1 =
1

fk−1

dCk
ds . (4.4)

For k ≥ 1, we get
Ck =

1
fk−2

dCk−1

ds . (4.5)

Substituting (19) in (18), we obtain

Ck+1 =
1

fk−1

d
ds

(
1

fk−2

dCk−1

ds

)
.

By continuing this process k−times, we get

Ck+1 =
1

fk−1

d
ds

(
1

fk−2

d
ds

(
1

fk−3

d
ds

(
... dds

(
1
f0
dC1
ds

)
...
)))

,

where dC1
ds = dT

ds = d2ψ
ds2

.

We can solve the Eq.(15) in the case of a k−slant helix.

Lemma 4.2. Let ψ = ψ (s) a natural representation of a k−slant helix (its vector fieldsCk+1 make
a constant angle V with a fixed direction). Suppose ψ = ψ (t) is another parametric representation
of this curve by the parameter t =

∫
fk−1ds. Then the vector Ck+1 satisfies a vector differential

equation of the third order:(
1−m2t2

)
C ′′′
k+1 − 3m2tC ′′

k+1 + C ′
k+1 = 0,

wherem = n√
1−n2

and n = cos (V ) .

Proof. If ψ is a k-slant helix, we can write

σk−1 = ± m
∫
fk−1ds√

1−m2(
∫
fk−1ds)

2
= ± mt√

1−m2t2
.

By differentiating the last formula, we obtain

σ′k−1 = ±m
(
1−m2t2

)−3
2 (4.6)

and
σ′′k−1 = ±3m3t

(
1−m2t2

)−5
2 . (4.7)
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Therfore the equation (15) becomes

−σ′′
k−1C

′′′
k+1

σk−1σ
′2
k−1

+
C′′

k+1

σk−1σ
′
k−1

+
(1+σ2

k−1)C
′
k+1

σk−1σ
′
k−1

− σ′′
k−1(1+σ

2
k−1)Ck+1

σk−1σ
′2
k−1

+ 3Ck+1 = 0. (4.8)

Substituting (20) and (21) in (22) , we obtain the formula as desired.

Theorem 4.2. The position vector ψ = (ψ1,ψ2, ψ3) of a k−salnt helix is computed in the natural
representation form as follows

ψ1(s) =
n
m

∫ (∫
f0

(∫
f1

(∫
..
(∫
fk−1 cos

[
1
n arcsin

(
m

∫
fk−1(s)ds

)]
ds
)
..ds

)
ds
)
ds
)
ds,

ψ2(s) =
n
m

∫ (∫
f0

(∫
f1

(∫
..
(∫
fk−1 sin

[
1
n arcsin

(
m

∫
fk−1(s)ds

)]
ds
)
..ds

)
ds
)
ds
)
ds,

ψ3(s) = n
∫ (∫

f0
(∫
f1

(∫
..
(∫
fk−1ds

)
..ds

)
ds
)
ds
)
ds,

(4.9)
where m = n√

1−n2
, n = cos (V ) and V is the angle between the fixed straight line (axis of a

k−slant helix) and the vector Ck+1 of the curve.

Proof. Thecurveψ is a k−slant helix, i.e. the vectorCk+1makes a constant angle,V = arccos(n),
with the constant vector called the axis of the k−slant helix. Then the vectorCk+1 satisfies a vector
differential equation: (

1−m2t2
)
C ′′′
k+1 − 3m2tC ′′

k+1 + C ′
k+1 = 0. (4.10)

So, without loss of generality, we can take the axis of the k−slant helix parallel to e3, where
(e1, e2, e3) is an orthonormal frame in E3, then

Ck+1 (t) = Ck+11 (t) e1 + Ck+12 (t) e2 + ne3. (4.11)

From the unitary of the vector Ck+1, we get

C2
k+11 + C2

k+12 = 1− n2 = n2

m2 . (4.12)

The solution of Eq.(26) is given as follows:
Ck+11(t) =

n
m cos (λ(t)) ,

Ck+12(t) =
n
m sin (λ(t)) ,

(4.13)

where λ is an arbitrary function of t. Every component of the vector Ck+1 satisfied the Eq.(24) .
So, substituting the components Ck+11(t) and Ck+12(t) in the Eq.(24) , we have the following
differential equations of the function λ (t)

3λ′(t)
[
m2tλ′(t)−

(
1−m2t2

)]
cos(λ(t))

−
[
λ′(t)− 3m2tλ′′(t)−

(
1−m2t2

) (
λ′3(t)− λ′′′(t)

)]
sin(λ(t)) = 0,

(4.14)
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3λ′(t)
[
m2tλ′(t)−

(
1−m2t2

)]
sin(λ(t))

+
[
λ′(t)− 3m2tλ′′(t)−

(
1−m2t2

) (
λ′3(t)− λ′′′(t)

)]
cos(λ(t)) = 0.

(4.15)

It is easy to prove that the above two equations lead to the following two equations:

m2tλ′(t)−
(
1−m2t2

)
λ′′(t) = 0, (4.16)

λ′(t)− 3m2tλ′′(t)−
(
1−m2t2

) (
λ′3(t)− λ′′′(t)

)
= 0. (4.17)

The general solution of Eq.(30) is

λ(t) = c1 arcsin(mt) + c2, (4.18)

where c1 and c2 are constants of integration. The constant c2 can be disappear if we change the

parameter λ −→ λ + c2. Substituting the solution (32) in the Eq.(31) , we obtain the following
condition:

c1m
(
1 +m2 (1− c1)

)
= 0,

which leads to c1 =
√
1+m2

m =
1

n
, wherem ̸= 0 and c1 ̸= 0.

Now, the vector Ck+1 take the following form:

Ck+11(t) =
n
m cos

(
1
n arcsinmt

)
,

Ck+12(t) =
n
m sin

(
1
n arcsinmt

)
,

Ck+13(t) = n.

(4.19)

If we substitute the Eq.(33) in the Eq.(17) , we have the Eq.(23) , which completes the proof.

5 Applications

In this section, we introduce the position vectors of some 2−slant helices, by using newparametric
representations.

Corollary 5.1. Theposition vectorψ = (ψ1, ψ2, ψ3) of a 2−slant helixwhose the vector C3 =
C′

2

∥C′′
2 ∥

= N ′

∥N ′∥
makes a constant angle with a fixed straight line in the space is expressed in the natural representation
form as follows :

ψ1(s) =
n
m

∫ [∫
f0(s)

[∫
f1(s) cos

[
1
n arcsin

(
m

∫
f1(s)ds

)]
ds
]
ds
]
ds,

ψ2(s) =
n
m

∫ [∫
f0(s)

[∫
f1(s) sin

[
1
n arcsin

(
m

∫
f1(s)ds

)]
ds
]
ds
]
ds,

ψ3(s) = n
∫ [∫

f0(s)
[∫
f1(s)ds

]
ds
]
ds,

(5.1)
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with f1(s) =
√
g02(s) + f02(s), m = n√

1−n2
and n = cos(V ), or in the parametric form

ψ1 (θ) =
n
m

∫
1

f1(θ)

[∫ f0(θ)
f1(θ)

[∫
cos

[
1
n arcsin (mθ)

]
dθ

]
dθ

]
dθ,

ψ2 (θ) =
n
m

∫
1

f1(θ)

[∫ f0(θ)
f1(θ)

[∫
sin

[
1
n arcsin (mθ)

]
dθ

]
dθ

]
dθ,

ψ3 (θ) = n
∫

1
f1(θ)

[∫ f0(θ)
f1(θ)

θdθ
]
dθ,

(5.2)

or in the useful parametric form

ψ1 (t) =
n4

m4

∫ cos(nt)
f1(θ)

[∫ f0(θ)
f1(θ)

cos (nt)
[∫

cos (t) cos (nt) dt
]
dt
]
dt,

ψ2 (t) =
n4

m4

∫ cos(nt)
f1(θ)

[∫ f0(θ)
f1(θ)

cos (nt)
[∫

sin (t) cos (nt) dt
]
dt
]
dt,

ψ3 (t) =
n3

m3

∫ cos(nt)
f1(θ)

(∫ f0(θ)
f1(θ)

cos (nt) sin (nt) dt
)
dt,

(5.3)

where θ =
∫
f1 (s) ds, t = 1

n arcsin (mθ) , m =
n√

1− n2
, n = cos (V ) and V is the angle

between the fixed straight line ( axis of a 2−slant helix ) and the vector C3 of the curve.

Now, we take several choices for the curvature f0 and torsion g0 of a regular curve. We check
that the curve is a 2−slant hélix, and next, we apply corollary 5.1.

Example 1. The case of a 2−slant helix with

f0 =
µ

m
cos(µs) cos

(
1

m
cos(µs)

)
and g0 =

−µ
m

cos(µs) sin
(

1

m
cos(µs)

)
.

Therefore f1 = µ
m cos (µs) and g1 =

µ
m sin (µs) ,we have σ2 = m. Substituting f0 and f1 in the

Eq.(34) , we have the explicit parametric representation of such curve as follows:

ψ1 (s) =
n2µ
2m3

∫ [∫
cos(µs) cos

(
1
m cos(µs)

) [
n
n+1 sin(

n+1
n µs) + n

n−1 sin
(
n−1
n µs

)]
ds
]
ds,

ψ2 (s) =
−n2µ
2m3

∫ (∫
cos(µs) cos

(
1
m cos(µs)

) (
n
n+1 cos(

n+1
n µs) + n

1−n cos
(
1−n
n µs

))
ds
)
ds,

ψ3(s) =
−n
m

∫
cos(µs) sin

(
1
m cos(µs)

)
+m cos

(
1
m cos(µs)

)
ds.

Example 2. The case of a slant-slant helix with

f0 =
ms√

1−m2s2
cos(s) and g0 =

ms√
1−m2s2

sin (s) .
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Therefore f1 = ms√
1−m2s2

and g1 = 1,we have σ2 = −m. Substituting f0 = ms√
1−m2s2

cos(s) =
cos(nt)
sin(nt) cos

(
1
m cos (nt)

)
, and f1 = ms√

1−m2s2
= cos(nt)

sin(nt) in the Eq.(36) , we have the explicit
parametric representation of such curve as follows:

ψ1(t) =
n4

2m4

∫
sin (nt)

[∫
cos (nt) cos

(
1
m cos (nt)

) [ sin((n+1)t)
n+1 + sin((n−1)t)

n−1

]
dt
]
dt,

ψ2(t) =
−n4

2m4

∫
sin (nt)

[∫
cos (nt) cos

(
1
m cos (nt)

) [ cos((n+1)t)
n+1 + cos((1−n)t)

1−n

]
dt
]
dt,

ψ3(t) =
−n
m

(
cos (nt) cos

(
1
m cos (nt)

)
− 2m sin

(
1
m cos (nt)

))
,

where θ = −1
m

√
1−m2s2 and t = 1

narcsin (mθ) .
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