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Vector Variational Inequalities InG-Convex Spaces

Maryam Salehnejad and Mahdi Azhini

Abstract. In this paper, we study some existence theorems of solutions for vector variational
inequality by using the generalized KKM theorem. Also, we investigate the properties of so-
lution set of the Minty vector variational inequality in G–convex spaces. Finally, we prove
the equivalence between a Browder fixed point theorem type and the vector variational in-
equality in G-convex spaces.

1 Introduction

Thevariational inequality theory, whichwas introduced by Stampacchia [19], provides very useful
techniques for studying problems in optimization, transportation, economics, contact problems
in elasticity and other branches of mathematics. The existence of solutions and properties of so-
lutions set for variational inequality were studied by many authors in linear topological spaces
(see [14, 15]). These results are dependent on the linear structure of spaces. Since 1987, some
authors have introduced a new concept of convexity on spaces without any linear structure. So,
these problems generalized to nonlinear spaces (see [17, 21, 22]). Xian Wu et al [24] presented
the character of solution sets for nonlinear variational inequalities in H–spaces in 1999. Addi-
tionally, J.Wang [23] proved the existence of solutions of a type of variational inequality for scalar
functions in the framework of FC–spaces in 2012. Another type of generalizations of variational
inequalities is generalization to vector case. The theory of vector variational inequalities was ini-
tiated by Giannessi [5] in finite dimensional Euclidean spaces. In recent years, vector variational
inequalities have extended because of their broad applications such as vector optimization, vec-
tor equilibria, vector traffic equilibria and other problems of practical interest (see [1, 4, 6]). For
instance, TranThi Mai and Do Van Luu [11] in 2018, studied Fritz John necessary conditions for
weakly efficient solutions of nonsmooth vector variational inequality problems with constraints
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in terms of convexificators. Moreover, T. Chen et al [3] in 2019, investigated new existence the-
orems for vector equilibrium by vector variational inequality theorems. Let E be a nonempty
subset of a Hausdorff topological G-convex space and f : E → V and ϕ : E × E → V are
vector valued functions. In this article, we generalize the results presented by X.Wu et al [24] and
J.Wang [23] to vector valued functions on G–convex spaces. Particularly, we study the existence
of solutions for the following vector variational inequality (in short VVI) by using the generalized
KKMTheorem.

ϕ(x, y) + f(y)− f(x) ∈ P (1.1)

Additionally, we investigate the Minty type theorem and the properties of the solutions set for
vector variational inequality (1.1) in G-convex spaces. This paper is organized as follows. In sec-
tion 2, we present some preliminaries and definitions which are required. In the third section,
we prove the existence theorem for vector variational inequality problem in G-convex spaces and
also examine the characteristics of the solutions. Finally, in section 4 , we prove the equivalence
between the Browder fixed point Theorem and the vector variational problem (1.1) in G-convex
spaces as an application.

2 Preliminaries

LetX be a topological space and E be a nonempty subset ofX . We denote by ⟨E⟩, the family of
all nonempty finite subsets ofE. Let∆n be the standard n–simplex (e1, . . . , en) inRn+1. If J is
a nonempty subset of {0, 1, . . . , n}, we denote by∆J the convex hull of the vertices {ej , j ∈ J}.
The following notion of a generalized convex (or G–convex) space was introduced by Park and
Kim [12]. Let X be a topological space and D is a nonempty set, (X,D; Γ) is said to be a G–
convex space if for each A = {a0, . . . , an} ∈ ⟨D⟩, there exists a subset Γ(A) = ΓA of X and a
continuous function ϕA : ∆n → Γ(A) such that J ⊂ A implies ϕA(∆J) ⊂ Γ(J).

WhenD ⊂ X , (X,D; Γ) will be denoted by (X ⊃ D; Γ) and ifX = D, we write (X; Γ) in
place of (E,E; Γ). For aG–convex space (X ⊃ D; Γ),

1. a subset Y ofX is said to be Γ–convex if for eachN ∈ ⟨D⟩,N ⊂ Y implies ΓN ⊂ Y ;

2. the Γ–convex hull of a subset Y ofX , denoted by Γ − Co(Y ), is defined by

Γ − Co(Y ) =
∩

{Z ⊂ X : Z is a Γ–convex subset containing Y }.

There are a lot of examples ofG-convex spaces:

Example 1. Every vector spaceX with convex hull is a G–convex space. Especially (R, Co) is a
G–convex space.
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Example 2. IfX is a convex subset of a vector space,D ⊂ X , andX has a topology such that each
ΓA is the convex hull ofA ∈ ⟨D⟩ equipped with the Euclidean topology, then (X,D; Γ) becomes
a convex space generalizing the one due to Lassonde [10]. (X,D; Γ) is aG–convex space.

Example 3. If X = D and ΓA is assumed to be contractible or, more generally, infinitely con-
nected (that is, n-connected for all n ≥ 0 ) and if for eachA,B ∈ ⟨X⟩ ,A ⊂ B impliesΓA ⊂ ΓB ,
then (X; Γ) becomes an H-space due to Horvath [7, 8]. H-spaces are examples of G–convex
spaces.

Remark 1. It is easily to see:

1. For any Y ⊆ X, Y ⊆ Γ − Co(Y ).

2. Y ⊆ X is Γ–convex⇔ Y = Γ − Co(Y ).

3. For any Y ⊆ X, Γ − Co(Y ) is Γ–convex.

4. If Y ⊆ Z ⊆ X, Γ − Co(Y ) ⊆ Γ − Co(Z).

5. For any Y ⊆ X finite, ΓY ⊆ Γ − Co(Y ).

For further details, see [12, 13].

Definition 1 ([20]). Let Y be a nonempty set and E be a nonempty subset of a G–convex space
(X,D; Γ). T : Y → 2E is called a generalizedKKMmapping if for anyfinite set {y0, y1, . . . , yn} ⊂
Y , there exists {x0, x1, . . . , xn} ∈ ⟨E ∩ D⟩ such that for any subset {xi0 , xi1 , . . . , xik} ⊂
{x0, . . . , xn}, 0 ≤ k ≤ n, we have

Γ ({xi0 , . . . , xik}) ⊂
k∪

j=0

T (yij )

Let V be a real vector space, a nonempty subset P of V is called a convex cone if λP ⊂ P

for all λ ≥ 0 and P + P ⊂ P . The cone P is called pointed if P ∩ (−P ) = {0}. Also P is solid
if intP ̸= ∅ (where intP denotes the interior of P ). The partial order ≤P on V induced by a
pointed convex cone P is defined by x ≤P y if and only if y − x ∈ P for x, y in V . The notation
x <P y means x ≤P y and x ̸= y.

The weak order<P on ordered vector space (V, P )with intP is defined as x < y if and only
if y − x ∈ intP for x, y in V .

Definition 2. Let (X; Γ) be aG–convex space and E be a nonempty and Γ–convex subset ofX
and (V, P ) be an ordered vector space. Let γ ∈ V and ϕ : E × E → V . Then
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1. ϕ is said to be cone–γ–quasi–convex (concave) related to the second variant if {y ∈ E :

ϕ(x, y) /∈ γ + P} ({y ∈ E : ϕ(x, y) ∈ γ + P}) is a Γ–convex subset of E for any x ∈ E.
We say that ϕ is cone–quasi–convex (quasi–concave) related to the second variant if for
each γ ∈ V and for any x ∈ E, ϕ is cone–γ–quasi–convex (quasi–concave).

2. ϕ is said to be cone–γ–generalized quasi–convex (concave) in second variant, if for each
{y0, . . . , yn} ⊂ E, there exists a finite subset {x0, x1, . . . , xn} ⊂ E such that for any
subset {xi0 , . . . , xik} ⊂ {x0, . . . , xn} and x∗ ∈ Γ − Co{xi0 , . . . , xik}, there exists
j ∈ {0, . . . , k} such that

ϕ(x∗, yij ) ∈ γ + P(
ϕ(x∗, yij ) ∈ γ − P

)
3. f : E → V is called strongly cone–quasi–convex if f is cone–quasi–convex and for each
γ ∈ V , if f(y1) /∈ γ + P and f(y2) /∈ γ + intP implies that f(y) /∈ γ + P for all
y ∈ Γ − Co{y1, y2} \ {y1, y2}.

4. f : E → V is called cone–w–convex iff for each γ ∈ V , if f(y1) /∈ γ + P and f(y2) /∈
γ + intP implies that f(y) /∈ γ + P for all y ∈ Γ − Co{y1, y2} \ {y1, y2}.

Theorem 2.1 (KKM Lemma, [9]). LetD be the set of vertices of n–simplex∆N and F : D ⊸ ∆N

a KKMmap with closed (respectively open) values. Then
∩

x∈D
F (x) ̸= ∅.

Definition 3. LetX be a topological space. We say that Y ⊆ X is compactly closed subset ofX ,
if for every compact setK ⊂ X , the setK ∩ Y is closed inK .

Theorem2.2. LetE be a nonemptyΓ–convex subset of aG–convex space (X; Γ) andG : E → 2X

be such that for any y ∈ E,G(y) is compactly closed. Then:

1. If G is a generalized KKM mapping, then the family of sets {G(y) : y ∈ E} has the finite
intersection property.

2. If the family {G(y) : y ∈ E} has the finite intersection property and Γ(x) = {x} for each
x ∈ X , thenG is a generalized KKM mapping.

Proof. (1) Let G : E → 2X is a generalized KKM mapping with compactly closed values, and
suppose {y0, . . . , yn} be arbitrary finite subset ofE. SinceG is a generalizedKKMmapping, there
exists finite subset {x0, . . . , xn} ⊂ X such that for any subset {xi0 , . . . , xik} ⊂ {x0, . . . , xn},

Γ ({xi0 , . . . , xik}) ⊂
k∪

j=0

G(yij ),
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especially,Γ ({x0, . . . , xn}) ⊂
n∪

i=0
G(yi). As (X; Γ) isG–Convex space, there exists a continuous

map ϕn : ∆n → Γ ({x0, x1, . . . , xn}) such that

ϕn(∆J) ⊂ Γ(J) ∀J ⊂ {x0, . . . , xn}, (2.1)

especially, ϕn(∆n) ⊆ Γ ({x0, x1, . . . , xn}) ⊆
n∪

i=0
G(yi). So,

∆n ⊂
n∪

i=0

ϕ−1
n (G(yi) ∩ ϕn(∆n)) . (2.2)

SinceG(yi)∩ϕn(∆n) is closed in the compact subsetϕn(∆n)ofΓ({x0, . . . , xn}), thenϕ−1
n (G(yi)∩

ϕn(∆n)) is closed in ∆n. Note that F : ∆J → 2∆n , which is defined by ei ⊸ ϕ−1
n (G(yi) ∩

ϕn(∆n)), by (2.2) is a KKMmap.

Hence, by the KKM lemma, we have:

n∩
i=0

ϕ−1
n (G(yi) ∩ ϕn(∆n)) ̸= ϕ

which easily shows
n∩

i=0
G(yi) ̸= ϕ.

(2) Suppose that {G(y) : y ∈ E} has the finite intersection property, so for y0, . . . , yn ∈ E, we

have
n∩

i=0
G(yi) ̸= ϕ. Consider x′ ∈

n∩
i=0

G(yi) and let xi = x′ for i = 0, 1, . . . , n. For any finite

nonempty subset {xi0 , . . . , xik} ⊂ {x0, . . . , xn}, we conclude

Γ ({xi0 , . . . , xik}) = {x′} ⊂
n∩

i=0

G(yi) ⊂
k∪

j=0

G(yij ).

this means thatG : E → 2X is generalized KKMmap.

We can easily prove the following result usingTheorem 2.2.

Theorem 2.3. Suppose G : E → 2X is a generalized KKM mapping and compactly closed valued
and for someM ∈ ⟨E⟩,

∩
x∈M

G(x) is compact, then
∩

x∈E
G(x) ̸= ϕ.

3 Main Results

In sequel, suppose thatX is a Hausdorff topological space, (X; Γ) is a G–convex space and E is
a nonempty Γ–convex subset ofX . Also, (V, P ) is an ordered topological vector space and P is
a closed pointed convex cone such that intP ̸= ϕ.
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In this section, we present some existence results for vector variational inequality (1.1) and
then we will consider the Minty type theorem and monotone vector variational inequality.

Theorem 3.1. Suppose that f : E → V , ϕ : E × E → V and g(x, y) = ϕ(x, y) + f(y)− f(x)

are functions satisfying:

1. g(x, y) is cone–0–generalized quasi–convex in y.

2. For every y ∈ E, {x ∈ E : g(x, y) ∈ P} is compactly closed.

3. There exists a compact subsetK ofX and y∗ ∈ E ∩K such that

g(x, y∗) ∈ − intP for all x ∈ E \K.

Then VVI (1.1) has a solution in E ∩K , i.e., there exists an x̄ ∈ E ∩K such that

g(x̄, y) = ϕ(x̄, y) + f(y)− f(x̄) ∈ P for all y ∈ E.

Proof. For each y ∈ E, let G(y) = {x ∈ E : g(x, y) ∈ P}. Then G is a set–valued mapping
from E into 2E .

Condition (1) imply thatG is a generalizedKKMmapping. Because for anyfinite set {y0, . . . , yn}⊂
E, there exists {x0, . . . , xn} ⊂ E such that for any subset {xi0 , ..., xik} ⊂ {x0, . . . , xn} and any
x∗ ∈ Γ −Co{xi0 , ..., xik}, there exists j ∈ {0, ..., k} such that g(x∗, yij ) ∈ P . According to the
definition ofG, we have x∗ ∈ G(yij ).
As x∗ ∈ Γ − Co{xi0 , ..., xik} is arbitrary, we have

Γ − Co{xi0 , ..., xik} ⊂
k∪

j=0

G(yij ).

So, by Remark 1, Γ{xi0 , ..., xik} ⊂ Γ − Co{xi0 , ..., xik} ⊂
∪k

j=0G(yij ).This means that G :

E → 2E is a generalized KKMmapping. By assumption (2),G is a compactly closed valued map.
From condition (3) and havingP is pointed, we havex /∈ G(y∗) for all x ∈ E\K , soG(y∗) ⊂ K .
Considering that G is compactly closed valued, then G(y∗) is compact. Hence, by Theorem 2.3,∩
y∈E

G(y) ̸= ϕ. Therefore, there exist an x̄ ∈
∩
y∈E

G(y) ⊂ G(y∗) ⊂ K such that

g(x̄, y) ∈ P for all y ∈ E,

i.e.
ϕ(x̄, y) + f(y)− f(x̄) ∈ P for all y ∈ E,

so the solutions of VVI (1.1) is in E ∩K .



Vector Variational Inequalities InG-Convex Spaces 153

Remark 2. If the condition 3 in theorem 3.1 replaced by the following condition:
(3)′ For some y0 ∈ E, {x ∈ E : ϕ(x, y0) + f(y0)− f(x) ∈ P} is compact.
Then VVI (1.1) has a solution inE. Because according to the proof ofTheorem 3.1,G is a gener-
alized KKMmapping with compactly closed valued. With regard to condition (3)′ andTheorem
2.3, the result is obtained.

Definition 4 ([18]). A function f : E → V is said to be lower semi–continuous (upper semi–
continuous) if for every γ ∈ V , {x ∈ E : f(x) ∈ γ −P} ({x ∈ E : f(x) ∈ γ +P}) is closed in
E.

The following is a generalization of Theorem 3.2 of [23] to vector case and for G-convex
spaces.

Theorem 3.2. Suppose f : E → V and ϕ : E × E → V with ϕ(x, x) ∈ P for all x ∈ E and the
following conditions satisfy:

1. There exist a compact subsetK ofX and y∗ ∈ E ∩K such that

ϕ(x, y∗) + f(y∗)− f(x) ∈ − intP for all x ∈ E \K.

2. f(y) + ϕ(x, y) is cone–quasi–convex related to y.

3. f(x)− ϕ(x, y) is lower semi–continuous related to x.

Then VVI (1.1) has a solution in E ∩K .

Proof. We first prove that the set–valued mapping G : E → 2E defined by G(y) = {x ∈
E : f(y) + ϕ(x, y) − f(x) ∈ P} is a generalized KKM mapping. Suppose that this is not, so,
there exist {y0, . . . , yn} ⊂ E such that for any {x0, . . . , xn} ⊂ E, there exist {xi0 , . . . , xik} ⊂
{x0, . . . , xn} such that

Γ{xi0 , . . . , xik} ̸⊂
k∪

j=0

G(yij ).

If we assume xi = yi, i = 0, . . . , n, then there exist {yi0 , . . . , yik} ⊂ {y1, . . . , yn} such that

Γ{yi0 , . . . , yik} ̸⊂
k∪

j=0

G(yij ),

therefore there exist x∗ ∈ Γ{yi0 , . . . , yik} such that x∗ /∈ G(yij ) for j = 0, . . . , k. Since f(x) +
ϕ(x, y) is cone–quasi–convex related to y and {yi0 , . . . , yik} ⊂ {y ∈ E; f(y) + ϕ(x∗, y) /∈
f(x∗) +P}, then Γ{yi0 , . . . , yik} ⊂ {y ∈ E; f(y) + ϕ(x∗, y) /∈ f(x∗) +P}. So x∗ ∈ {y ∈ E :
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f(y) + ϕ(x∗, y) /∈ f(x∗) + P}. Hence f(x∗) + ϕ(x∗, x∗) /∈ f(x∗) + P i.e. ϕ(x∗, x∗) /∈ P , this
contradicts ϕ(x, x) ∈ P for all x ∈ E. Therefore,G is a generalized KKMmapping.

According to assumption (1), x /∈ G(y∗) for all x ∈ E \ K , so G(y∗) ⊂ K , i.e. G(y∗) is
a compact subset of X . On the other hand, because f(x) − ϕ(x, y) is lower semi–continuous
related to x, G(y) is a closed subset of X for y ∈ E. Theorem 2.3 implies

∩
y∈E

G(y) ̸= ϕ and

since
∩
y∈E

G(y) ⊂ G(y∗) ⊂ K , so VVI (1.1) has a solution in E ∩K .

The following theorem has been proved by S. Park [16] for scalar functions in compact G–
convex spaces. In addition to extending to vector mode, we have eliminated the condition of
compactness from space.

Theorem 3.3. Let (X; Γ) be a G–convex space and ϕ, ψ : E × E → V and f : E → V are
functions satisfying

1. ϕ(x, y) ∈ ψ(x, y) + P for each (x, y) ∈ E × E and ψ(x, x) ∈ P for all x ∈ E.

2. For each x ∈ E, ψ(x, y) + f(y) is cone–quasi–convex related to y.

3. For each y ∈ E, f(x)− ϕ(x, y) is lower semi–continuous related to x.

4. There exists a nonempty compact subsetK ofX and a point y∗ ∈ X such that

ϕ(x, y∗) + f(y∗)− f(x) ∈ − intP for all x ∈ E \K.

Then there exists an x ∈ X ∩K such that

ϕ(x̄, y) + f(y)− f(x̄) ∈ P for all y ∈ E.

Proof. We define the set–valued maps T,G : E → 2E as follows

G(y) = {x ∈ E : ϕ(x, y) + f(y)− f(x) ∈ P}

T (y) = {x ∈ E : ψ(x, y) + f(y)− f(x) ∈ P}.

According to assumption (1), we have T (y) ⊂ G(y) for all y ∈ E.

By a similar argument as in the proof ofTheorem 3.2, T is a generalizedKKMmapping. So,G
is a generalized KKMmap. It follows from condition (3) thatG is closed valued map. Condition
(4) implies that x /∈ G(y∗) for all x ∈ E \ K , therefore G(y∗) ⊂ K , then G(y∗) is a compact
subset of X . By Theorem 2.3 we have

∩
y∈E

G(y) ̸= ∅. Moreover,
∩
y∈E

G(y) ⊂ G(y∗) ⊂ K . So,

the solution of VVI (1.1) is in E ∩K .
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Now, we present a Minty type theorem in G–convex spaces. The so called Minty vector
variational inequality (in short MVVI) is to find x̄ ∈ E such that

f(y)− ϕ(y, x̄)− f(x̄) ∈ P for all y ∈ E.

Definition 5. The function ϕ : E ×E → V is said to be cone–monotone if ϕ(x, y) + ϕ(y, x) ∈
−P for any x, y in E.
In addition, if ϕ also satisfies the condition ϕ(x, y) + ϕ(y, x) = 0 if and only if x = y, then ϕ is
said to be strictly cone–monotone.

We explain the relationships between the solution set of VVI and MVVI.

Theorem 3.4. Suppose that ϕ : E × E → V is a monotone function with ϕ(x, x) ∈ P for all
x ∈ E and f : E → V be a function that the following conditions are fulfilled:

1. for each y ∈ E, f(·)−ϕ(·, y) is lower semi–continuous onΓ −Co{x1, x2} for each x1, x2 ∈
E

2. for each x ∈ E, f(y) + ϕ(x, y) is cone–w–convex in y.
Also, we suppose that Γ − Co{x1, x2} for any x1, x2 ∈ E.
Then x̄ ∈ E satisfies

f(y) + ϕ(x̄, y)− f(x̄) ∈ P for all y ∈ E

iff
f(y)− ϕ(y, x̄)− f(x̄) ∈ P for all y ∈ E

Proof. For each y ∈ E, let

G(y) = {x ∈ E : f(y) + ϕ(x, y)− f(x) ∈ P}

H(y) = {x ∈ E : f(y)− ϕ(y, x)− f(x) ∈ P}.

It is sufficient to prove that
∩
y∈E

G(y) =
∩
y∈E

H(y). First, suppose that
∩
y∈E

G(y) ̸= ∅. For

x̄ ∈
∩
y∈E

G(y), we have

f(y) + ϕ(x̄, y) ∈ f(x̄) + P for all y ∈ E (3.1)

Since ϕ is monotone then we can deduce−ϕ(y, x̄) ∈ ϕ(x̄, y) + P for all y ∈ E. So

f(y)− ϕ(y, x̄) ∈ f(y) + ϕ(x̄, y) + P for all y ∈ E (3.2)
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By (3.1), (3.2) we obtain

f(y)− ϕ(y, x̄) ∈ f(x̄) + P for all y ∈ E.

Therefore
∩
y∈E

G(y) ⊂
∩
y∈E

H(y). We claim that
∩
y∈E

H(y) ⊂
∩
y∈E

G(y). Suppose there exists

x̄ ∈
∩
y∈E

H(y) such that x̄ /∈
∩
y∈E

G(y), i.e.,

f(y)− ϕ(y, x̄) ∈ f(x̄) + P for all y ∈ E (3.3)

and there exists ȳ ∈ E such that x̄ /∈ G(ȳ), or

f(ȳ) + ϕ(x̄, ȳ) /∈ f(x̄) + P. (3.4)

Let U = {z ∈ Γ − Co{x̄, ȳ} : f(ȳ) + ϕ(z, ȳ) /∈ f(z) + P}. It is clear that x̄ ∈ U and ȳ /∈ U

(Note that ϕ(ȳ, ȳ) ∈ P ). Since f(·) − ϕ(·, y) is lower semi–continuous on Γ − Co{x̄, ȳ}, then
U is open in Γ − Co{x̄, ȳ}.

If (Γ−Co{x̄, ȳ)\{x̄, ȳ})∩U = ∅, thenU = {x̄} and so is closed inΓ−Co{x̄, ȳ}. It contra-
dicts the connectedness ofΓ −Co{x̄, ȳ}. Therefore, there exists z∗ ∈ (Γ − Co{x̄, ȳ} \ {x̄, ȳ})∩
U , i.e., z∗ ∈ Γ − Co{x̄, ȳ} \ {x̄, ȳ} and

f(ȳ) + ϕ(z∗, ȳ) /∈ f(z∗) + P. (3.5)

Setting y = z∗ in (3.3), we have

f(z∗)− ϕ(z∗, x̄) ∈ f(x̄) + P

i.e.
f(x̄) + ϕ(z∗, x̄) ∈ f(z∗)− P.

Since P is pointed, so (intP ) ∩ (−P ) = ∅, then

f(x̄) + ϕ(z∗, x̄) /∈ f(z∗) + intP. (3.6)

According to condition (2) together with (3.5) and (3.6), we have

f(x) + ϕ(z∗, x) /∈ f(z∗) + P for all x ∈ Γ − Co{x̄, ȳ}.

Hence, ϕ(z∗, z∗) /∈ P , a contradiction. So
∩
y∈E

H(y) ⊂
∩
y∈E

G(y).

If
∩
y∈E

G(y) = ∅, by the above argument it is easy to see that
∩
y∈E

H(y) = ∅ and so the proof is

complete.
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The following is an extension ofTheorem (3) in [24]. Note that theorem 3.3 has been proved
for scalar valued functions on H-spaces. We have generalized it to vector valued functions on
G-convex spaces.

Theorem 3.5. Let ϕ : E × E → V be a monotone function with ϕ(x, x) ∈ P for all x ∈ E and
f : E → V be a function. Suppose that the following conditions are fulfilled:

1. there exists a point y∗ ∈ X and a compact subsetK ofX such that

ϕ(x, y∗) + f(y∗)− f(x) ∈ − intP for all x ∈ E ∩K

2. for each x ∈ E, f(·) + ϕ(x, ·) is strongly cone–quasi–convex,

3. for each y ∈ E, f(·)− ϕ(·, y) is lower semi–continuous.
Also, we suppose that Γ − Co{x1, x2} for any x1, x2 ∈ E.

Then the solutions set of the vector variational inequality (1.1) and MVVI is a nonempty
compact subset of X . Furthermore, if ϕ is strictly cone–monotone, then the solution of VVI
(1.1) and MVVI is unique in E ∩K .

Proof. Suppose that S is the solution set for VVI (1.1) in E ∩ K . From Theorem 3.4, we have∩
y∈E

G(y) =
∩
y∈E

H(y), whereG(y) andH(y) are defined byG(y) = {x ∈ E : f(y)+ϕ(x, y)−

f(x) ∈ P},H(y) = {x ∈ E : f(y)− ϕ(y, x)− f(x) ∈ P}. ByTheorem 3.2, it is clear that S is
nonempty and S =

∩
y∈E

G(y). We show that S is compact subset ofX in E ∩K . According to

the assumption (3),G(y) is closed for all y ∈ E, so, S =
∩
y∈E

G(y) is closed. Given the condition

(1) and that P is pointed, we have S =
∩
y∈E

G(y) ⊂ G(y∗) ⊂ K . Therefore, S is nonempty

compact subset ofX in E ∩K .

We now prove that the solution VVI (1.1) is unique inE ∩K if ϕ is strictly cone-monotone.
Suppose that x1, x2 ∈ E ∩K be two solutions of VVI (1.1) with x1 ̸= x2. Then

f(y) + ϕ(x1, y)− f(x1) ∈ P for all y ∈ E (3.7)

and

f(y) + ϕ(x2, y)− f(x2) ∈ P for all y ∈ E. (3.8)

Putting y = x2 in (3.7) and y = x1 in (3.8), respectively, we have:

f(x2) + ϕ(x1, x2)− f(x1) ∈ P (3.9)

f(x1) + ϕ(x2, x1)− f(x2) ∈ P (3.10)

By (3.9) and (3.10) we obtain ϕ(x1, x2) + ϕ(x2, x1) ∈ P . Now, by monotonicity of ϕ, we have
ϕ(x1, x2) + ϕ(x2, x1) = 0, so x1 = x2.
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4 Applications

As applications, we now extend the Browder fixed point theorem, which is presented for set-
valued functions in Hausdorff topological vector spaces by Browder [2], to G-convex spaces by
using Theorem 3.2 and prove the equivalent relation between the Browder fixed point theorem
and vector variational inequality in G-convex spaces without linear structure.

Theorem 4.1. Let (X; Γ) be a G-convex space andE be a compact Γ–convex subset ofX . Suppose
that T : E → 2E is a set-valued mapping satisfy

(I) for each x ∈ E, T (x) is a nonempty Γ–convex subset of E and for each y ∈ E, T−1(y) is
an open subset of E;

Then T has a fixed point in E.

Proof. Suppose that the condition (I) is satisfied and T has no fixed point inE. So for each x ∈ E,
x /∈ T (x). For x, y ∈ E and a ∈ V , with a ∈ − intP , we define

ϕ(x, y) =

a, (x, y) ∈ graph(T )

0, (x, y) /∈ graph(T )

where graph(T ) = {(x, y) : y ∈ T (x)}. Then for each x ∈ E, we have ϕ(x, x) = 0. Now, we
investigate that all conditions of Theorem 3.2 are established. For γ ∈ V and x ∈ E, we have

{y ∈ E : ϕ(x, y) ∈ γ − intP} =


E, a− γ ∈ −P

T (x), γ = 0

∅, a− γ /∈ −P.

Since E and T (x) are Γ–convex, then ϕ(x, y) is cone-quasi-convex related to y. For each y ∈ E

and γ ∈ V ,

{x ∈ E : ϕ(x, y) ∈ γ + P} =


E, a− γ ∈ P

X \ T−1(y), γ = 0

∅, a− γ /∈ P.

This implies that ϕ(x, y) is upper semi-continuous related to the variant x, so −ϕ(x, y) is lower
semi-continuous related to x. From Theorem 3.2, there exists x̄ ∈ E such that ϕ(x̄, y) ∈ P for
all y ∈ E. Since ϕ(x, y) ∈ −P for all x, y ∈ E, we know that ϕ(x̄, y) = 0 for all y ∈ E, i.e.,
T (x̄) = ∅, which is a contradiction.
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Remark 3. It is easy to see that the condition (I) in the precedingTheorem 4.1 is equivalent to:
(II) for each x ∈ E, T (x) is an open subset of E, and for each y ∈ E, T−1(y) is a nonempty
Γ–convex subset of E.

Theorem 4.2. Browder type fixed point theorem (Theorem 4.1) is equivalent to vector variational
inequality (1.1).

Proof. We prove Theorem 4.1 by using the special vector variational inequality (1.1). Now we
prove the vector variational inequality (1.1) usingTheorem 4.1. If the conclusion of Theorem 3.2
is not true, then for each x ∈ E, there exists y ∈ E such that f(y)+ϕ(x, y) /∈ f(x)+P . Define
T : E → 2E as follows

T (x) = {y ∈ E : f(y) + ϕ(x, y) /∈ f(x) + P}.

T (x) is a nonempty Γ–convex subset of E for any x ∈ E and for any y ∈ E we have

T−1(y) = {x ∈ E : f(y) + ϕ(x, y) /∈ f(x) + P} = {x ∈ E : f(x)− ϕ(x, y) /∈ f(y)− P}

is an open subset of E (because f(x)− ϕ(x, y) is lower semi-continuous related to x, then {x ∈
E : f(x)− ϕ(x, y) ∈ f(y)− P} is closed i.e., {x ∈ E : f(x)− ϕ(x, y) /∈ f(y)− P} is open).
Therefore condition (I) ofTheorem 4.1 is established, then there exists x̄ ∈ E such that x̄ ∈ T (x̄),
i.e., f(x̄) + ϕ(x̄, x̄) /∈ f(x̄) + P and so ϕ(x̄, x̄) /∈ P . This is a contraction. Now, the proof is
complete.
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