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RealizedMulti-Power Variation Process for JumpDetection
in the Nigerian All Share Index

Mabel Eruore Adeosun and Olabisi Oreofe Ugbebor

Abstract. In this paper, we studied the particular cases of higher-order realized multipower
variation process, their asymptotic properties comprising the probability limits and limit dis-
tributions were highlighted. The respective asymptotic variances of the limit distributions
were obtained and jump detection models were developed from the asymptotic results. The
modelswere obtained from the particular cases of the higher-order of the realizedmultipower
variation process, in a class of continuous stochastic volatility semimartingale process. These
are extensions of the method of jump detection by Barndorff-Nielsen and Shephard (2006),
for large discrete data. An Empirical Application of the models to the Nigerian All Share In-
dex (NASI) data shows that themodels are robust to jumps and suggest that stochasticmodels
with added jump components will give a better representation of the NASI price process.

1 Introduction

Jumps are sudden discontinuities that occur spontaneously in the trajectories of price processes,
which could be as a result of sudden and unpredictable inflows of information into the market.
The effect on the dynamics of a price process cannot be overemphasized; it can lead to additional
risk parameters in the process of a risky asset as well as a sporadic change in the dynamics of
the process. In recent times, several attempts have been made by researchers to suggest empirical
models that best describe the behavior of the Nigerian stockmarket price process (see [1, 2, 3, 4, 5,
6, 7]). However, detecting the presence or absence of jumps in discontinuous paths in theNigerian
stock market price process is rarely investigated in the literature. To determine the dynamics of
any process, there is the need to examine and estimate some very important asymptotic features,
the presence or absence of jumps in available discretely observed price data. In this paper, we
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,therefore, establish jumpdetectionmodels via the realisedmultipower variation process. We then
applied themodels to theNigerianAll Share Index (NASI) discretely observed data by considering
the NASI log- price process as X = {Xt}t≥0 defined on a given interval [0, t] such that the
observations of this process are made for all discrete times 0 = t0, t1, · · · , tn = t. The jth

observed time is given as:

j∆ = j

[
t

n

]
=⇒ n =

[
t

∆

]
, j = 1, 2, · · · , n (1.1)

where∆ is the time interval between two successive observations, assumed to be of equal distance,
and n is the number of observations. These observations are of utmost importance since they
give the kind of stochastic process governed by an underlying stock. The challenge of capturing
jumps in discretely observed processes, in the face of available high-frequency data on the Internet
(especially when n is so large that∆ is vanishingly small) is on the increase.

Given that∆ is the equal time interval between two successive observations within [0, t], and
given a positive real constant r, the rth - order realized power variation of such a process is given
as:

{X∆}[r] = ∆
1−r/2

[t/∆]∑
j=1

∣∣Xj∆ −X(j−1)∆

∣∣r (1.2)

whereXj∆ is thejth observed log-return price for j = 1, 2, · · · , n.

The rth - order power variation process is given as the limit in probability of the rth - order
realized power variation (RPV):

{X}[r] = P− lim
∆→0

{X∆}[r]. (1.3)

An estimation of the Quadratic Variation (QV) denoted by [X]t is obtained for r = 2 of the
realized variation in (2). In [8], the Realized Variance (RV) is proven to be a consistent estima-
tor ( as n → ∞) of [X]t, when X is assumed to be a class of continuous stochastic volatility
semimartingales (Svsmc) .

Given thatXt belongs to the class of continuous stochastic volatility semimartingales (Svsmc),
([9, 10]) such that:

Xt =

∫ t

0
αsds+

∫ t

0
σsdWs (1.4)

where At =
∫ t
0 αsds is an adapted, càdlàg process with ”finite variation” which implies that the

variation of each path t → At is bounded over each finite interval in [0, t] andMt =
∫ t
0 σsdWs is

a continuous local martingale and an Ito integral of the spot volatility process σt > 0with respect
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to a standard Brownian motionWt. The Integrated Volatility (IV) process is also assumed finite.
Then, the limit distribution of functions of (3 above, its convergence in probability and the central
limit theorem results were obtained in [11, 12]. Based on the procedure given in [11, 12], a jump
detection method was achieved in [13]. The main limitation of the results of the RPV, subject to
an Svsmc process is that when jumps are added to a class of models described in (4) above, the
RV can no longer estimate the IV, but instead it gives a result of the sum of the IV and the QV of
the jump component. Hence, the need for a robust process that cannot be affected when jumps
are incorporated in the process.

The realizedmulti-power variation process defined on a 1-dimensional semi martingale pro-
cess in its generalized form is given as:

{X}[r1,...,rm]
∆,t = ∆1−δ(r1,...,rm)

c(t,m,∆)∑
j=1

f(xj , ri). (1.5)

as defined in [14], with δ(r1, . . . , rm) = 1
2

∑m
i=1 ri, c(t,m,∆) = [t/∆]−(m−1) and f(xj , ri) =∏m−1

i=0

∣∣xj+i

∣∣ri+1 forn > m. The asymptotic properties of (1.5) above, has been extensively given
in [11, 15]. Particular cases of (1.5) are the Bipower, Tripower and the Quadpower processes
which can be found in [16, 17, 18].
The BNS method for jump detection named after ”Barndorff-Nielsen and Shephard” was estab-
lished in [17] for Xt ∈ Svsmc subject to the above stated assumptions for the processes σ2

t , αt

andWt. This method was basically derived from the asymptotic distribution of the difference of
a particular realized bipower variation process: {X}[1,1]∆,t and the realized variance process [X]

[2]
∆,t.

That is, form = 2, and r1 = r2 = 1 in (1.5) above, then,

∆
−1
2

(
µ−2
1 {X}[1,1]∆,t − [X]

[2]
∆,t

)
√∫ t

0 σ
4
sds

L→ N
(
0, φBPV

)
(1.6)

where φBPV is the asymptotic variance of the convergence in law result given in (1.6) above

φBPV = µ−4
1 + 2µ−2

1 − 5 ≃ 0.6091, µ1 =

√
2√
π

(1.7)

The main contribution of this work to the description in (1.5), (1.6), and (1.7), as well as to
the work given in [17] entails a derivation of the asymptotic theories for particular cases of the
realized multi-power variation (RMPV ) process by considering the convergence in distribution
(law) of the difference of the realized variance RV and particular cases of the RMPV process.
Hence, we obtain the asymptotic variances of the particular cases that is, φRBV , φRTV , φQPV ,
φPPV , φHPV , φHPPV , φOpV , φNPV , φDPV , and φUPV respectively for the realized Bipower,
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Tripower, Quadpower, Pentpower, Hexpower, Heptpower, Octpower, Nonpower, Decpower and
Unopower variation processes. Based on the results obtained, we develop jump detection models
from the asymptotic properties of the particular cases of the RMPV process; these results are
extensions of the results in [17, 19, 20].

1.1 Data Realization

The empirical data set to be tested in this work is the data of the Nigerian All Share Index (NASI)
obtained from the Nigerian Stock Exchange via www.nse.com.ng/market-data/indices, accessed
on the 13th August 2018; these are closingmarket indices comprising the general indices of 5, 522
daily observations.

The remaining part of the paper is structured as follows: basic definitions of the concepts
are given in Section 2, the asymptotic results of the RMPV process are spelled out in Section
3. The RMPV jump test models derived from the asymptotic properties in particular cases and
an empirical application of models to the NASI data are given in Section 4, discussions and a
concluding remark are in Section 5.

2 Basic definitions andMethods

We give some basic definitions and the jump detection method based on the bipower variation
process as can be found in [17] in this section.

2.1 Basic definitions

The following definitions [9, 10, 21] are based on the assumption that the process Xt is defined
on the filtered probability space (Ω,F ,P,F)

Definition 1. A Martingale:. A process {Mt} which is adapted to the filtration (Ft)t≥0 and
E
(∣∣Mt

∣∣2) < ∞, is called a martingale if E
(
Mt/Fs

)
= Ms for all t ≥ s, where 0 ≤ s ≤ t.

Definition 2. A Semimartingale: Aprocess {Xt} is called a total semimartingale ifX is a càdlàg,
adapted and the stochastic integral ofX is continuous. Moreso, it is called a classical semimartin-
gale if it can be decomposed into two adapted, càdlàg processes: {Mt} and {At}, such that,

Xt = Mt +At (2.1)

whereAt is a locally finite variation process andMt is a local martingale whereA(0) = M(0) =

0.
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Definition 3. Svsmc and Svsmjprocesses: Given that the log-returns is a semimartingale, as
given in definition 2 above, such that the processesMt, σt > 0 andAt satisfy the conditions given
in (1.4) above, then Xt is said to be in a class of continuous stochastic volatility semimartingale
process (Svsmc). Given also thatXt is with a continuous partXc

t ∈ Svsmc and a discontinuous
partXj

t ,
Such that:

Xt = Xc
t +Xj

t (2.2)

where,Xj
t is the discontinuous (jump) process defined as:

Xj
t =

N(t)∑
i=1

γi (2.3)

where N(t) is a simple counting process, which stands for the number of jumps at time t and
γi is a non- zero stochastic process. Then Xt is said to belong to a class of stochastic volatility
semimartingale with added jumps (Xt ∈ Svsmj).
Thus, we have

Xt = X0 +

∫ t

0
αsds+

∫ t

0
σsdWs +

N(t)∑
i=1

γi (2.4)

with processes αt, σt,Wt, γi and N(t) as defined above. .

2.2 The BNS jump detection method

The BNS jump-test ([17, 19, 20]) is classified into the linear jump test and the ratio-jump test
comprising:the feasible linear jump test, ratio test and adjusted ratio test given respectively as:

P̂ =
∆

−1
2

(
µ2
1{X}[1,1]∆,t − [X]

[2]
∆,t

)
√

µ4
1{X}[1,1,1,1]∆,t

(2.5)

Q̂ =
∆

−1
2

(
µ2
1{X}[1,1]∆,t /[X]

[2]
∆,t − 1

)
√
{X}[1,1,1,1]∆,t /

(
{X}[1,1]∆,t

)2 (2.6)

R̂ =
∆

−1
2

(
µ2
1{X}[1,1]∆,t /[X]

[2]
∆,t − 1

)
max

(
1
t ,

√
{X}[1,1,1,1]∆,t /

(
{X}[1,1]∆,t

)2) (2.7)
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where, P̂ , Q̂ and R̂ converges in law toN
(
0, φBPV

)
.

Given that,

{X}[1,1,1,1]∆,t =

[ t
∆
]∑

j=4

|xj ||xj−1||xj−2||xj−3| (2.8)

and

{X}[1,1]∆,t =

[ t
∆
]∑

j=2

|xj ||xj−1| (2.9)

The hypothesis for the BNS jump test is as follows:

H0 : Xt ∈ Svsmc (2.10)

H1 : Xt ∈ Svsmj

3 Asymptotic results for the realised multipower variation process

We give here some asymptotic properties of the RMPV process.

3.1 Convergence in probability of the realised multipower variation process

Theorem 3.1. ([19, 20]) Let the process Xt ∈ Svsmc, defined on (Ω,F ,P,F) which can be ex-
pressed as given in (1.4) above. Then for αt = 0, the multipower variation process {X}[r1,...,rm]

t

satisfies the following:

{X}[r1,...,rm]
t

P→ µr1 . . . µrm

∫ t

0
|σs|2(δ(r1,...,rm))ds (3.1)

where,

2δ(r1, . . . , rm) =

m∑
i=1

ri, µri = E(|ν|r), ν ∼ N(0, 1)

3.2 Convergence in Distribution result for the difference of the RV and the RMPV
process

The methods adopted by [17, 22, 23, 24] to test for jumps in the log price process were built on
the idea of the theory of convergence in distribution for the difference of the RV and a special
case of the realised bipower variation process. The RMPV version of the convergence result in
[17, 22, 23, 24] is given in the following theorem:
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Theorem 3.2. ([20]) LetXt ∈ Svsmc, then as∆ → 0, and At = 0

1√
∆
∫ t
0 σ

4ds

(
µ−m

2
m

{X}[r1,...,rm]
∆,t −

[
X
][2]
∆,t

)
L→ N(0, φMPV ) (3.2)

where φRMV is the asymptotic variance of the convergence in distribution of the difference of the
RV and the RMPV process, given as:

φMPV (m, vi) = V ar(|ν|2) + µ−2m
2
m

ω2
m − µ−m

2
m

mCov
(
|ν|2,

m∏
i=1

|νi|
2
m

)
(3.3)

where

µ 2
m

= E(|ν|
2
m ) =

2
1
m
Γ(m+ 1

2
)

√
π

, (3.4)

ω2
m = V ar

( m∏
i=1

|νi|
2
m
)
+ 2

m−1∑
j=1

Cov

(
m∏
i=1

|νi|
2
m ,

m∏
i=1

|νi+j |
2
m

)
(3.5)

4 The JumpDetectionModels

In this section, we shall derive the jump testmodels for the particular cases of theRMPV process
from the asymptotic results obtained in section 3 of this work and then apply the models to the
Nigeria All Share Index (NASI) data.

4.1 The RMPV Jump test Models

With reference to [17], we observe basically three types of test for jumps based on the first order
RMPV process, namely: the linear jump test, the ratio jump test and adjusted ratio jump test.
For the RMPVprocess {X}[r1,r2,...,rm]

∆,t , the linear jump test is based on the asymptotic result given
in (3.2).
Given that {X}[2]∆,t

L→
∫ t
0 σ

2ds in [8], thenwe can obtain the ratio jump test from (3.2) by dividing
through by {X}[2]∆,t =

∫ t
0 σ

2ds to obtain

(
µ−m
2/m

{X}[r1,...,rm]
∆,t

{X}[2]∆,t

− 1

)

∆1/2φRMV

√ ∫ t
0 σ4ds

(
∫ t
0 σ2ds)2

L→ N(0, 1) (4.1)
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In this work, we shall use the feasible adjusted ratio jump test for the particular cases of the model
in (4.1) by the following steps below:

i. Since the values of the component
∫ t
0 σ

4
sds and

∫ t
0 σ

2
sds cannot be observed when working

with the NASI discrete data, we shall need estimators of the quantities. Thus, using (3.1) to obtain
these estimators, let q̂ be the estimator for

∫ t
0 σ

4
sds and p̂ be the estimator for

∫ t
0 σ

2
sds where, p̂ is

the realized quad power variation {X}[1,1,1,1]∆,t process given as:

q̂ = µ−4
1

n∑
j=4

|xj ||xj+1||xj+2||xj+3| = µ−4
1

n∑
j=4

3∏
i=0

|xj+i| (4.2)

and the estimator for
∫ t
0 σ

2
sds is the realized bipower variation process {X}[1,1]∆,t , p̂ given as;

p̂ = µ−2
1

n∑
j=2

|xj ||xj+1| = µ−2
1 {X}[1,1]∆,t (4.3)

Therefore, from the above we obtain a feasible ratio jump test for the RMPV model given as:

(
µ−m
2/m

{X}[r1,...,rm]
∆,t

{X}[2]∆,t

− 1

)
φRMV ∆1/2

√
q̂
p̂2

= Ẑm (4.4)

where Ẑm ∼ N(0, 1).
ii. By Jensen’s inequality, for small samples, in the feasible test [25];

q̂

p̂2
≥ 1

Hence, we employ the adjusted ratio for the estimators q̂
p̂2

to get

max
(
1,

q̂

p̂2

)
. Thus, we obtain the feasible adjusted ratio jump test for the RMPV model as follows:

Ẑm =

µ−m
2/m

{X}[r1,...,rm]
∆,t

{X}[2]∆,t

− 1

φRMV ∆1/2

√
max

(
1, q̂

p̂2

) (4.5)
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(4.5) is the jump test model that will be used in this work for particular cases, subject to the
following hypothesis:
H0 :Xt ∈ Svsmc.
H1 :Xt ∈ Svsmj

Thus for the BP case, we have form = 2, and r1 = r2 = 1 in (4.5) that,

Ẑ2 =

µ−2
1 {X}[1,1]∆,t

{X}[2]∆,t

− 1

φBP∆1/2

√
max

(
1, q̂

p̂2

) (4.6)

where, φBP = 0.6090 and Ẑ2 ∼ N(0, 1).
For the realized tripower variation model, we have for m = 3, and r1 = r2 = r3 = 2

3 in (4.5)
that,

Ẑ3 =

µ−3
2/3

{X}[2/3,2/3,2/3]∆,t

{X}[2]∆,t

− 1

φTP∆1/2

√
max

(
1, q̂

p̂2

) (4.7)

where, φRTP ≈ 1.0613

TheRQV jump test model, we have form = 4, and r1 = ... = r4 =
1
4 in (4.5) that,

Ẑ4 =

µ−4
1/2

{X}[1/4,1/4,1/4,1/4]∆,t

{X}[2]∆,t

− 1

φRQV ∆1/2

√
max

(
1, q̂

p̂2

) (4.8)

where, φRQP ≈ 1.3770

TheRPV jump test model form = 5, and r1 = ... = r5 =
2
5 in (4.5) that,

Ẑ5 =

µ−5
2/5

{X}[2/5,2/5,2/5,2/5,2/5]∆,t

{X}[2]∆,t

− 1

φRPV ∆1/2

√
max

(
1, q̂

p̂2

) (4.9)

where, φRQP ≈ 1.6053

TheRHXV jump test model form = 6, and r1 = ... = r6 =
1
3 in (4.5) that,

Ẑ6 =

µ−6
1/3

{X}[1/3,1/3,1/3,1/3,1/3,1/3]∆,t

{X}[2]∆,t

− 1

φRHXV ∆1/2

√
max

(
1, q̂

p̂2

) (4.10)
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where, φRHXV ≈ 1.7769

TheRHpV jump test model, form = 7, and r1 = ... = r7 =
2
7 in (4.5) that,

Ẑ7 =

µ−7
2/7

{X}[2/7,2/7,2/7,2/7,2/7,2/7,2/7]∆,t

{X}[2]∆,t

− 1

φRHpV ∆
1/2

√
max

(
1, q̂

p̂2

) (4.11)

where, φRHpV ≈ 1.9100

TheROpV jump test model, form = 8, and r1 = ... = r8 =
1
4 in (4.5) that,

Ẑ8 =

µ−8
1/4

{X}[1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4]∆,t

{X}[2]∆,t

− 1

φROpV ∆
1/2

√
max

(
1, q̂

p̂2

) (4.12)

where, φROpV ≈ 2.0161

The RNV jump test model, form = 9, and r1 = ... = r9 =
2
9 in (4.5) that,

Ẑ9 =

µ−9
2/9

{X}[2/9,2/9,2/9,2/9,2/9,2/9,2/9,2/9,2/9]∆,t

{X}[2]∆,t

− 1

φRNV ∆1/2

√
max

(
1, q̂

p̂2

) (4.13)

where, φRNV ≈ 2.1026

The RDV jump test model, form = 10, and r1 = ... = r10 =
1
5 in (4.5) that,

Ẑ10 =

µ−10
1/5

{X}[1/5,1/5,1/5,1/5,1/5,1/5,1/5,1/5,1/5,1/5]∆,t

{X}[2]∆,t

− 1

φRDV ∆1/2

√
max

(
1, q̂

p̂2

) (4.14)

where, φRDV ≈ 2.1744

THe RUV jump test model form = 11, and r1 = ... = r11 =
2
11 in (4.5) that,

Ẑ11 =

µ−11
2/11

{X}[2/11,2/11,2/11,2/11,2/11,2/11,2/11,2/11,2/11,2/11,2/11]∆,t

{X}[2]∆,t

− 1

φRUV ∆1/2

√
max

(
1, q̂

p̂2

) (4.15)

where, φRUV ≈ 2.2348
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Figure 1: Evidence of jumps in the NASI price process for 1000 to 4000 observations

Remark 1. The values of the asymptotic variances φRBV , φRTV , φQPV , φPPV , φHPV , φHPPV ,
φOpV , φNPV , φDPV and φUPV above, were obtained from (3.3) -(3.5) for m = 2, · · · , 11 re-
spectively.

4.2 Empirical Application

An empirical Application of the models in Eqns. (4.6)-(4.15) was carried out on the Nigerian All
Share Index comprising of 5, 522 daily market indices. We set the null hypothesis H0 to be “No
jump” in the log-return of the NASI process. That is,

H0 : No jumps in the log-returns of the NASI data.

H1 : Jumps are in the log-return of the NASI data.

The test was carried out on a significant level of 5%(0.05). In the analysis, we used the R-program
to compute asymptotic variance φPMV for the particular cases, that is we computed; φRBV ,
φRTV , φRQV , φRPV , φRHXV , φRHpV , φROV , φROV , φRNV , φRDV , and φRUV . The dif-
ferent values of Ẑm for values of m = 2, . . . , 11 as given in (4.6)- (4.15) were also computed.
The p-values (estimated probability value) and the test-Statistics valuesZm form = 1 · · · 11were
obtained via the R-Program. Computationally, we calculated the realized variance {X}[2]∆,t of the
NASI data and the respective rth-power variation process. Since we are dealing with a two-tailed
test, we rejectH0 if Ẑm > Ẑtab.
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Figure 2: Evidence of jumps in the NASI price process for 4000 and above observations

{X}[r1,...,rm]
∆,t φRMPV (m,µr) Ẑm p-value {X}[2]∆,t rth RPV

m=2, (RBP) 0.6090 3.8995 9.64E − 05 0.7251 0.6715
m=3, (RTP) 1.0613 8.0285 9.87E − 15 0.7251 0.5794
m=4 (RQP) 1.3770 8.7791 1.65 E-18 0.7251 0.5436
m=5 (RPP) 1.6053 9.3854 6.26 E-21 0.7251 0.5156

m=6 (RHXP ) 1.7769 9.8718 5.52 E -23 0.7251 0.4932
m=7 (RHpP ) 1.9100 10.2100 1.79 E -24 0.7251 0.4765
m=8 (ROP ) 2.0161 10.6183 2.45 E -26 0.7251 0.4594
m=9 (RNP ) 2.1026 10.9508 6.59 E -28 0.7251 0.4453
m=10 (RDP ) 2.1744 11.2778 1.69 E -29 0.7251 0.4321
m=11 (RUP ) 2.2348 11.5801 5.20 E-31 0.7251 0.4201

Table 1: Results of the Jump detection in the NASI data via the RMPV models

4.3 Distributions of theRV and theRMV P models of the NASI Data

We shall take a look at the behavior of the difference of the realized variance and each of the par-
ticular realized multipower variation processes by plotting their graphs in the case of the daily
observed NASI data.
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Figure 3: Distribution of RV and RPV; RV and RTPV
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Figure 4: Distribution of RV and RQPV; RV and RPPV
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Figure 5: Distribution of RV and RHXPV; RV and RHpPV
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Figure 6: Distribution of RV and OPV; RV and NPV

5 Discussions and Conclusion

If Xt ∈ Svsmj , then the quadratic variation of the jump part of Xt can be obtained from the
difference of X [1,1]

∆,t and [X]
[2]
∆,t; which establishes a method for jump detection as can be seen

in [16, 17]. However, an extension of the above-mentioned concept has been carried out in this
work. The jump test models (Eqns. (4.7)− Eqns. (4.14)) for higher-order particular cases of the
realised multipower variation process restricted to

∑m
i=1 ri = 2, have been shown to be better

estimators of jumps than the bipower variation case. The distribution of the particular cases of
the RMPV models as shown in figs. (3)-(6) presents slight deviants between the distributions
of the particular cases of the realized multipower variation. However, the asymptotic variances
obtained in particular cases, satisfy the following inequality:

φRBV < φRTV < φQPV < φPPV < φHPV < φHPPV < φOpV < φNPV < φDPV < φUPV

Based on the jump test analysis result on the NASI data given in table 1 above, with a significant
level of 5%, we reject the null hypothesis since all Ẑm > Ẑtab and conclude that jumps are present
in the NASI price process. Observations made on the sizes of the jumps present in the path of
the NASI price process, as given in Figs 1 and 2, show that the jump sizes vary at different times
of occurrence and large jumps are more prominent in the later paths of the process. Hence, we
suggest that stochastic models with imputed jump components will be better representations of
the NASI price process.
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