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SOME MORE RESULTS ON R-NORM INFORMATION MEASURE

SATISH KUMAR

Abstract. In the present communication, I have defined the new information measure called “α-R-norm informa-

tion measure”. It has been characterized using infimum oiperation in Section 2 and axiomatically in Section 3. Its

properties have been studied in Section 4, joint and conditional α-R-norm information measure are studied in Sec-

tion 5.

1. Introduction

Bockee and Lubbe [5] studied R-norm information measure of a discrete probability dis-

tribution

P = (p1, p2, . . . , pn), pi ≥ 0, i = 1,2, . . . ,n

where
n
∑

i=1

pi = 1

and

R∗
= {R : R > 0,R 6= 1}

given by

HR (P ) =
R

R −1

[

1−
( n
∑

i=1

pR
i

)

1
R

]

, (1.1)

The R-norm information measure (1.1) is a real function ∆n → R+, defined on ∆n where

n ≥ 2 and R+ is the set of positive real numbers. This measure is different from Shannon’s

entropy [9], Renyi [8] and Havrda and Charvat [7] and Daroczy [6].

The most interesting property of this measure is that when R → 1, R-norm information

measure (1.1) approaches to Shannon’s entropy and in case R → ∞, HR (P ) → (1−max pi ),

i = 1,2, . . . ,n.

The measure (1.1) has been generalized by Hooda and Anant [2] as:

H
β

R
(P ) =

R

R +β−2

[

1−
( n
∑

i=1

p
R

2−β

i

)

2−β
R

]

, 0 <β≤ 1, R(> 0) 6= 1 (1.2)
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(1.2) has been called as the generalized R-norm entropy if degree β which reduces to (1.1)

when β= 1. In case R = 1, (1.2) reduces to

H
β
1 (P ) =

1

β−1

[

1−
( n
∑

i=1

p
1

2−β

i

)2−β
]

, 0 <β≤ 1. (1.3)

Setting r =
1

2−β
in (1.3), we get

H r (P )=
r

r −1

[

1−
( n
∑

i=1

pr
i

)

1
r

]

,
1

2
< r ≤ 1. (1.4)

which is a measure mentioned by Arimoto [3] as an example of a generalized class of infor-

mation measure. It may be marked that (1.4) also approaches to Shannon’s entropy as r → 1.

Hooda-Anant [2] studied (1.2) as a generalization of Shannon’s and Bockee-Lubbe [5] us-

ing infimum operation.

In the present communication, our main endeavour is to generalize (1.1) as α-R-norm infor-

mation measure as:

Hα
R (P ) =

R

R −α

[

1−
( n
∑

i=1

p
R
α

i

)

α
R

]

, 0 <α≤ 1, R(> 0) 6= 1. (1.5)

Naturally (1.5) reduces to (1.1).

Measure (1.5) is a non-additive measure which by applying infimum operation is charac-

terized in Section (2) and axiomatically through functional equation in Section (3). Algebraic

and analytical properties are studied in Section (4), Section (5) deals with for joint and condi-

tional generalized α-R-norm information measrue for joint and conditional distribution.

2. Characterization

Applying Infimum Operation

In this section, we consider the α-R-norm information measure (1.5) as weighted arith-

metic mean representation of elementary R-norm entropies of α of occurrences of various

single outcomes.

Theorem 1. Let

f α
R (∗Pi ) =

R

R −α

[

1−∗ p
R−α

R

i

]

, R > 0, R 6= 1, 0 <α≤ 1, (2.1)

then Hα
R (P ) = inf

∗p

n
∑

i=1

pi f α
R (∗pi ) (2.2)

where the operation infimum is taken over the probability distribution

(∗p1,∗ p2, . . . ,∗ pn) ∈∆n .
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Proof. Let us consider

n
∑

i=1

pi f α
R (∗pi ) =

R

R −α

[ n
∑

i=1

pi

(

1−∗ p
R−α

R

i

)

]

. (2.3)

We minimize (2.3) subject to the natural constraint

n
∑

i=1

∗pi = 1. (2.4)

For this we consider Lagrangian

L =
R

R −α

[

1−
n
∑

i=1

pi
∗p

R−α
R

i

]

+λ
[ n

∑

i=1

∗pi −1
]

. (2.5)

Differentiating (2.5) w.r.t. ∗pi , we have

∂L

∂∗pi
=−pi ·

∗p
α
R

i
+λ. (2.6)

For extreme value, we put (2.6) equal to zero which gives

∗pi =
λ−

R
α

p
−

R
α

i

. (2.7)

We mark here that

∂2L

∂∗p2
i

> 0,

when ∗pi =
λ−

R
α

p
−

R
α

i

,
∂2L

∂∗p2
i

> 0.

Hence the value of ∗pi given by (2.7) is minimum and using (2.4) in (2.7), we can find the value

of λ and consequently, we have

∗pi =
p

R
α

i
·

n
∑

i=1
pi ·

R
α

, 0<α≤ 1, R(> 0) 6= 1. (2.8)

Now we consider RHS of (2.2)

inf
∗pi

n
∑

i=1

pi f α
R (∗pi ) =

R

R −α

[

1−
n
∑

i=1

pi
∗p

R−α
R

i

]

=
R

R −α











1−

n
∑

i=1
p

R
α

i

( n
∑

i=1
p

R
α

i

) R−α
R
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=
R

R −α

[

1−
( n
∑

i=1

p
R
α

i

)

α
R

]

= Hα
R (P ).

Further without loss of generality, we may assume that corresponding to the observed

probability distribution P ∈∆n , there is a prior probability distribution Q ∈ ∆n and replacing

f α
R (∗pi ) by f α

R (qi ) in (2.2), we have

Hα
R (P ) = inf

qi

n
∑

i=1

pi f α
R (qi ). (2.9)

In case we do not apply the operation of infimum to (2.9), then it depends on two proba-

bility distributions P and Q . For R = 1, f α
R (q) is an analogue of

1

1−α
(1−q1−α) which reduces

to log1/q when α→ 1. Thus (2.9) is equal to

1

α−1

( n
∑

i=1

pi q1−α
i −1

)

(2.10)

which is a generalized inaccuracy measure of degree α.

(2.10) reduces to inaccruacy measure of degreeα characterized by Sharma-Taneja [10]. There-

fore, there is no harm to represents (2.10) through f α
R

(q).

Hα
R (P ;Q) =

n
∑

i=1

pi f α
R (qi )

=
R

R −α

[ n
∑

i=1

pi

(

1−q
R−α

R

i

)

]

, R(> 0) 6= 1, 0<α≤ 1. (2.11)

Infact (2.11) can also be described as the average of elementaryα-R-norm inaccuracies f α
R

(qi ),

i = 1,2, . . . ,n and so called α-R-normed inaccuracy measure of degree α. Thus it seems plau-

sible that (2.11) may be characterized and then by taking its infimum we can arrive at (1.5).

In the following theorem, we characterize the elementary information function f α
R

(q) by

assuming only two axioms and applying infimum operation.

Theorem 2. Let f be a real valued continuous self-information function defined on (0,1]

satisfying the following axioms

Axiom A1. f (x, y) = f (x)+ f (y)−
R −α

R
f (x) f (y).

Axiom A2. f
( 1

n

)

=
R

R −α

(

1−n
R−α

R

)

, R(> 0) 6= 1, 0<α≤ 1

and n = 2,3, . . .. is maximality constant.

Then f α
R

(q) defined in (2.9) holds.

Proof. Considering f (x) =
R

R −α
(1−φ(x)) in axiom A1, we get

R

R −α
[1−φ(x y)] =

R

R −α
[1−φ(x)]+

R

R −α
[1−φ(y)]
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−
R

R −α
[(1−φ(x))(1−φ(y))]

or,

φ(x y) = φ(x)φ(y). (2.12)

But the relation (2.12) is a well known Cauchy’s functional equation (refer Aczel [1]). The

continuous solution of (2.12) is given by φ(x) = xa , where a 6= 0 is an arbitrary constant.

On using axiom A2, we get a =
R −α

R
and hence

f (x) =
R

R −α

[

1− x
R−α

R

]

which is exactly of the form of (1.1).

Next, the measure (1.5) can be easily obtained by applying infimum operation on the

equation (2.11) on the lines of the Theorem I.

Remarks. For an incomplete probability distribution scheme

P = (p1, p2, . . . , pn), pi ≥ 0,
n
∑

i=1

pi = 1, f α
R (qi ), i = 1,2, . . . ,n,

associated with individual events may be worked out. Then as in case (2.10), we may define

Hα
R (p1, p2, . . . , pn ; q1, q2, . . . , qn) =

n
∑

i=1
pi f α

R
(qi )

n
∑

i=1
pi

, (2.13)

By using infimum operation with respect to qi ’s the equation (2.13) gives

Hα
R (P )=

R

R −α











1−















n
∑

i=1
p

R
α

i

n
∑

i=1
pi















α
R










(2.14)

which is the α-R-norm entropy of degree α of incomplete probability distribution.

It is also worth mentioning that if we take arithmetic average with weights as continuous

function w( ), then we get the general expression

Hα
R (P ;Q)=

∑

W (pi ) f α
R

(qi )

n
∑

i=1
W (pi )

. (2.15)

By considering different weight w( ) satisfying the condition

W (pq) =W (p)W (q), where W ( ) 6= 0,

we can obtain various generalized α-R-normed information measures.
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3. Axiomatic characterization of α-R-norm information measure

In this section, we attempt to characterize (2.11) by considering it as inaccuracy measure

for two distributors P and Q ∈ ∆n and arrive at (1.5) by applying infimum operation with

respect to qi ’s, i = 1,2, . . . ,n.

Let Sn = ∆n ×∆n → R, n = 2,3, . . . and Gn be a sequence of functions of pi ’s and qi ’s, i =

1,2, . . . ,n over Sn satisfying the following axioms.

Axiom 1. Gn(P,Q) = a1 +a2

n
∑

i=1
h(pi qi ), where a1 and a2 are non-zero constants and

pi qi ∈ j = (0,1)× (0,1)∪ {(0, y) : 0 < y ≤ 1}∪ {(1, y ′);0 < y ′
≤ 1}.

Axiom 2. For P,Q ∈∆n and P ′Q ′ ∈∆m , Gn satisfies the following property

Gnm(PP ′,QQ ′) =Gn(P,Q)+Gm(P ′,Q ′)−
1

a1
Gn(P,Q)Gm(P ′,Q ′).

Axiom 3. h(p, q) is a continuous function of its arguments p and q .

Axiom 4. Let all p ′

i
s and q ′

i
s are equiprobable posterior and prior probabilities of events,

respectively then

Gn

( 1

n
,

1

n
, . . .

1

n
;

1

n
,

1

n
, . . .

1

n

)

=
R

R −α

[

1−n
α−R

R

]

,

where n = 2,3, . . ., R(> 0) 6= 1 and 0<α≤ 1.

Theorem 3. The inaccuracy measure (2.11) is uniquely determined by the Axioms 1 to 4.

First of all, we prove the following three lemmas to facilitate the proof of the theorem:

Lemma 1. By Axioms 1−2, we have

n
∑

i=1

m
∑

j=1

h(pi p ′
j ; qi q ′

j ) =
(

−
a2

a1

) n
∑

i=1

h(pi , qi )
n
∑

j=1

h(p ′
j ; q ′

j ) (3.1)

where (pi , qi ), (p ′

j
, q ′

j
) ∈ j for i = 1,2, . . . ,n and j = 1,2, . . . ,m.

Lemma 2. The continuous solution that satisfies (3.1) is the continuous solution of the

functional equation

h(pp ′, qq ′) =
(

−
a2

a1

)

h(p, q)h(p ′, q ′). (3.2)

Proof. Let a, b, c, d and a′, b′, c ′, d ′ be positive integers such that 1 ≤ a′ ≤ a, 1 ≤ b′ ≤ b,

1≤ c ′ ≤ c and 1≤ d ′ ≤ d .

Setting
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n = a −a′
+1= b −b′

+1

and

m = c −c ′+1 = d −d ′
+1

pi =
1

a
(i = 1,2, . . . , a −a′), pa−a′+1 =

a′

a
,

qi =
1

b
(i = 1,2, . . . ,b −b′), qb−b′+1 =

b′

b
,

p ′
j =

1

c
( j = 1,2, . . . ,c −c ′), pc−c ′+1 =

c ′

c
,

q ′
j =

1

d
( j = 1,2, . . . ,d −d ′), pd−d ′+1 =

d ′

d
,

in equation (3.1), we have

(a −a′)(c −c ′)h
( 1

ac
,

1

bd

)

+ (c −c ′)h
( a′

ac
,

b′

bd

)

+ (a −a′)h
( c ′

ac
,

d ′

bd

)

+h
( a′c ′

ac
,

b′d ′

bd

)

=

(

−
a2

a1

)[

(a −a′)h
( 1

a
,

1

b

)

+h
( a′

a
,

b′

b

)]

×

[

(c −c ′)h
(1

c
,

1

d

)

+h
( c ′

c
,

d ′

d

)]

(3.3)

taking a′ = b′ = c ′ = d ′ = 1 in (3.3), we get

h
( 1

ac
,

1

ba

)

=

(

−
a2

a1

)

h
( 1

a
,

1

b

)

h
(1

c
,

1

d

)

. (3.4)

Taking a′ = b′ = 1 in (3.3) and using (3.4), we have

h
( c ′

ac
,

d ′

bd

)

=

(

−
a2

a1

)

h
( 1

a
,

1

b

)

h
( c ′

c
,

d ′

d

)

. (3.5)

Again taking c ′ = d ′ = 1 in (3.3), we have

h
( a′

ac
,

b′

bd

)

=

(

−
a2

a1

)

h
(1

c
,

1

d

)

h
( a′

a
,

b′

b

)

. (3.6)

Now (3.3) together with (3.4), (3.5) and (3.6) reduces to

h
( a′b′

ab
,

c ′d ′

bd

)

=

(

−
a2

a1

)

h
( a′

a
,

b′

b

)

h
( c ′

c
,

d ′

d

)

. (3.7)

Setting
a′

a
= p,

b′

b
= q ,

c ′

c
= p ′,

d ′

d
= q ′ in (3.7), we get the required result (3.2) for rational

numbers which by continuting of h holds for all real p, q, p ′, q ′ ∈ J .

In the next Lemma, we get the most general solution of (3.2).

Lemma 3. The most general continuous solutions of equation (3.2) are given by

h(p, q) =
(

−
a1

a2

)

pu qv , u 6= 0, v 6= 0. (3.8)
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and

h(p, q) = 0. (3.9)

Proof. Taking g (p, q)=
(

−
a2

a1

)

h(p, q) in (3.2), we have

g (pp ′, qq ′) = g (p, q)g (p ′, q ′). (3.10)

The most general continuous solution of (3.10) c.f. Aczel [1] is given by

g (p, q)= pu qv , u 6= 0, v 6= 0. (3.11)

and

g (p, q)= 0. (3.12)

On substituting g (p, q) =
(

−
a1

a1

)

h(p, q) in (3.11) and (3.12), we get (3.8) and (3.9) respec-

tively. This proves the Lemma 3.

Proof of theorem. Substituting the solution (3.8) in Axiom 1, we have

Gn(P,Q) = a1

(

1−
n
∑

i=1

pu
i qv

i

)

, u, v 6= 0. (3.13)

Using Axiom 4 in (3.13), we get

a1 =
R

R −α
, u = 1 and v =

R −α

R
.

Substituting these values in (3.13), we have

Gn(P,Q) = Hα
R (P,Q)

and hence this completes the proof of the Theorem 3.

Remark. In this equation (3.8) if u = 0 and v = 0 then h(p, q) =
(

−
a1

a2

)

which is a trivial

solution and is of no interest. The solution (3.9) does not even contain any variable and hence

it is again discarded.

4. Properties of H
α

R
(P)

This section presents the algebraic and analytical properties of the α-R-norm information

measure Hα
R (P ) and satisfies the following properties.

1. Hα
R

(P ) = Hα
R

(p1, p2, . . . , pn) is a symmetric function of (p1, p2, . . . , pn).

2. Hα
R

(P ) is expansible i.e. Hα
R

(p1, p2, . . . , pn ,0) = Hα
R

(p1, p2, . . . , pn ).

3. Hα
R (P ) is decisive i.e. Hα

R (1,0) = Hα
R (0,1) = 0.
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4. Hα
R

(P ) is non-recursive.

5. Hα
R

(P,Q) = Hα
R

(P )+Hα
R

(Q)−
R −α

R
Hα

R (P )Hα
R (Q) i.e. Hα

R
(P ) is non-additive.

Proof. Properties 1 to 3 can be verified easily, now we consider 4.

Hα
R

( p1

p1 +p2
,

p2

p1 +p2

)

=
R

R −α






1−







p
R
α

1 +p
R
α

2

(p1 +p2)
R
α







α
R





(4.1)

and

Hα
R (p1 +p2, p3, . . . , pn ) =

R

R −α

[

1−
{

(p1 +p3)
R
α +p

R
α

3 +·· ·+p
R
α
n

}

α
R

]

. (4.2)

By combining (4.1) and (4.2), we have

Hα
R (p1 +p2, p3, . . . , pn)+ (p1 +p2)Hα

R

( p1

p1 +p2
,

p2

p1 +p2

)

6= Hα
R (p1, p2, . . . , pn).

Thus Hα
R

(p1, p2, . . . , pn) is non-recursive.

Property 5. Let A1, A2, . . . , An and B1,B2, . . . ,Bm be the two sets of events associated with

probability distributions P ∈ ∆n and Q ∈ ∆m . We denote the probability of the joint occur-

rence of events

Ai = (i = 1,2, . . . ,n) and B j = ( j = 1,2, . . . ,m) on p(Ai ∩B j ).

Then the α-R-norm entropy is given by

Hα
R (P ∗Q)=

R

R −α

[

1−
{ n

∑

i=1

m
∑

j=1

p
R
α

i
(Ai ∩Bi )

}

α
R

]

.

Since the events considered here are stochastically independent therefore, we have

Hα
R (P ∗Q) =

R

R −α

[

1−
{ n

∑

i=1

p
R
α

i
(Ai )

}

α
R
{ m

∑

j=1

p
R
α

j
(B j )

}

α
R

]

=
R

R −α

[

1−
{ n

∑

i=1

p
R
α

i

}

α
R
{ m

∑

j=1

p
R
α

j

}

α
R

]

=
R

R −α
−

R

R −α

[

(

1−
R −α

R
Hα

R (P )
)(

1−
R −α

R
Hα

R (Q)
)

]

= Hα
R (P )+Hα

R (Q)−
R −α

R
Hα

R (P )Hα
R (Q) (4.3)

Corollary. The Property 5, can also be extended for m stochastically independent distribu-

tors P0,P1, . . . ,Pm−1 having n0,n1, . . . ,nm−1 elements respectively. Let

Hα
R (P0) = ·· · = Hα

R (Pm−1) = w.
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Then

Hα
R (P∗) =

R

R −α

[

1−
{

1−
R −α

R
w

}m]

(4.4)

where P∗ stands for the product space of m stochastically independent distributor P0,P1, . . . ,Pm−1.

Proof. In (4.3), we have proved the results for product of two probability distributors on

similar lines, it is very easy to show that

Hα
R (P0P1P2) = Hα

R (P0)+Hα
R (P1)+Hα

R (P2)

−
R −α

R

[

Hα
R (P0)Hα

R (P1)+Hα
R (P0)Hα

R (P2)+Hα
R (P1)Hα

R (P2)
]

+

(R −α

R

)

Hα
R (P0)Hα

R (P1)Hα
R (P2).

Further, by mathematical Induction, we arrive at

Hα
R (P∗) = Hα

R (P0)+Hα
R (P1)+·· ·+Hα

R (Pm−1)

−
R −α

R

[

Hα
R (P0)Hα

R (P1)+Hα
R (P0)Hα

R (P2)+·· ·

]

+
R −α

R

[

Hα
R (P0)Hα

R (P1)Hα
R (P2)+·· ·

]

+(−1)m−1
(R −α

R

)m−1
Hα

R (P0)Hα
R (P1) · · ·Hα

R (Pm−1). (4.5)

Setting Hα
R

(P0) = ·· · = Hα
R

(Pm−1) = w , we have

Hα
R (P∗) = mw −

(R −α

R

)

(

m

2

)

w2
+

(R −α

R

)2
(

m

3

)

w3

+(−1)m−1
(R −α

R

)m−1
(

m

m

)

wn

= (−1)

[

−

(

m

1

)

w +

(

m

2

)

(R −α

R

)

w2
−

(

m

3

)

(R −α

R

)2
w3

+·· ·+ (−1)m
(R −α

R

)m−1
(

m

m

)

wm

]

= −
R

R −α

[

1−

(

m

1

)

R −α

R
w +

(

m

2

)

(R −α

R

)2
w2

−

(

m

3

)

(R −α

R

)3
w3

+·· ·+ (−1)m

(

m

m

)

(R −α

R

)m
wm

−1

]

= −
R

R −α

[

(

1−
R −α

R
w

)m

−1

]

=
R

R −α

[

1−
(

1−
R −α

R
w

)m
]

, which is (4.4).
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This completes the proof of the Property 5.

Theorem 4. Let Hα
R (P ) = Hα

R (p1, p2, . . . , pn) be the generalizedα-R-norm information mea-

sure. Then for P ∈∆n and R ∈ R+ and 0<α≤ 1, we have

(a) Hα
R

(P ) is Non-negative.

(b) Hα
R (P ) ≥ Hα

R (1,0,0, . . . ,0) = 0.

(c) Hα
R

(P ) ≤ Hα
R

( 1

n
,

1

n
, . . . ,

1

n

)

=
R

R −α

[

1−n
α−R

R

]

.

(d) Hα
R

(P ) is a monotonic function of P.

(e) Hα
R

(P ) is continuous at R ∈ R+.

(f) Hα
R

(P ) is stable in pi , i = 1,2, . . . ,n.

(g) Hα
R (P ) is small for small probabilities.

(h) Hα
R

(P ) is a concave function for all pi .

(i) lim
R→∞

Hα
R (P ) = 1−max .pi .

Proof. To prove that Hα
R

(P ) is non-negative, we consider the following cases:

Case I. When R >α or
R

α
> 1 then p

R
α

i
≤ pi∀ i

⇒

n
∑

i=1

p
R
α

i
≤

n
∑

i=1

pi = 1,

⇒

[ n
∑

i=1

p
R
α

i

]
α
R

≤ 1 (4.6)

Case II. When 0 < R <α or 0 <
R

α
< 1 then on the same lines, we have

[ n
∑

i=1

p
R
α

i

]
α
R

≥ 1. (4.7)

We know that
R

R −α
> 0 if R >α and

R

R −α
< 0 if R <α.

Hence from (4.6) and (4.7), we conclude that Hα
R

(P ) ≥ 0.

Property (b) follows if one of the probabilities is equal to 1 and others are equal to zero.

Property (c) is Axiom 2.

Also it is noted that the generalized α-R-norm information measure is maximal if all prob-

abilities are equal and is minimum if one probability is unit and others are zero.

(d) Hα
R

(P ) is monotonic iff Hα
R

(p,1−p) is non-decreasing on p ∈

[

0,
1

2

]

.
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From (1.5), we have

Hα
R (p,1−p) =

R

R −α

[

1−
{

(1−p)
R
α +p

R
α

}

α
R

]

. (4.8)

Let us define the function G(p) by

G(p)= 1−
[

(1−p)
R
α +p

R
α

]

α
R

.

Then
dG(p)

d p
≥ 0 for R >α

and
dG(p)

d p
≥ 0 for 0 < R <α.

From (4.8), we note that

d

d p
Hα

R (p,1−p) =
( R

R −α

)dG(p)

d p
which gives

d

d p
Hα

R (p,1−p) ≥ 0 for R ∈R+, p ∈ [0,1], 0<α≤ 1.

Thus Hα
R (p,1−p) is a non-decreasing function and hence monotomic.

(e) We know that
[ n

∑

i=1
p

R
α

i

]
α
R

is continuous for R ∈ [0,∞) and 0 <α≤ 1.

Hence, Hα
R

(P ) =
R

R −α

[

1−
( n
∑

i=1

p
R
α

i

)
α
R
]

is also continuous at

R ∈ R+ where 0 <α≤ 1.

(f) It is obvious

Hα
R (P,0) = Hα

R (P ). (4.9)

Also it is easy to see that

Ltp→1+ Hα
R (P ;1−p) = Hα

R (P,0). (4.10)

(g) From (4.8) it follows that

Ltp→1+ Hα
R (P,1−p) = Ltp→1+

R

R −α

[

1−
{

p
R
α + (1−p)

R
α

}

α
R

]

= 0.

This proves that Hα
R

(p) is small for small probabilities.

(h) Let us define the concave function.
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Definition. A function of over a set S is said to be concave if for all choices of x1, x2, . . . xm ∈

S and for all scalars λ1,λ2, . . . ,λm such that λi ≥ 0,
m
∑

i=1
λi = 1, the following holders

f
( m
∑

i=1

λi xi

)

≥

m
∑

i=1

λi f (xi ). (4.11)

Here we consider random variable x taking its values in the set S = (x1, x2, . . . , xm ) and r

probability distributions over S on follows:

Pk (x) =
{

pk (x1), . . . , pk (xm )
}

: pk (xi ) ≥ 0,
m
∑

i=1

pk (xi ) = 1, k = 1,2, . . . ,r.

Let us define another probability distribution over S

P0(x) =
{

p0(x1), . . . , p0(xm)
}

∃ ∀ i ′s.

P0(xi ) =
r
∑

k=1
λk pk (xi ), whereλ′

k
s are non-negative scalars stisfying

r
∑

k=1
λk = 1 then we have

D =

r
∑

k=1

λk Hα
R (Pk )−Hα

R (P0), R(> 0) 6= 1, 0 <α≤ 1.

Hα
R (P ) will be concave if D is less than zero for R(> 0) 6= 1 and 0 <α≤ 1, so we consider

D =

r
∑

k=1

λk Hα
R (Pk )−Hα

R (P0)

=

r
∑

k=1

λk

[

1−
{ m

∑

i=1

p
R
α

k
(xi )

}

α
R

]

R

R −α
−

R

R −α

[

1−
{ m

∑

i=1

p
R
α

0 (xi )
}

α
R

]

=
R

R −α

[

[ m
∑

i=1

( r
∑

k=1

λk pk (xi )
)

R
α
]

α
R
−

[ r
∑

k=1

λk

( m
∑

i=1

p
R
α

k
(xi )

)
α
R
]

]

. (4.12)

Now using the inequality
[ r

∑

k=1
ak xk

]t
≶

r
∑

k=1
ak xt

k
according as t ≶ 1, we have

[ r
∑

k=1

λk pk (xi )
]

R
α

≶
[ r

∑

k=1

λk p
R
α

k
(xi )

]

according as
R

α
≶ 1.

Therefore
[ m

∑

i=1

( r
∑

k=1

λk pk (xi )
)

R
α

]

≶
( m
∑

i=1

r
∑

k=1

λk p
R
α

k
(xi )

)

according as
R

α
≶ 1.

D1 =

[ m
∑

i=1

( r
∑

k=1

λk pk (xi )
)

R
α

]
α
R

≶

[ r
∑

k=1

λk

( m
∑

i=1

p
R
α

k
(xi )

)

]
α
R

according as
R

α
≶ 1. (4.13)
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Moreover,

[ r
∑

k=1

λk

( m
∑

i=1

p
R
α

k
(xi )

)

]
α
R

≶

[ r
∑

k=1

λk

( m
∑

i=1

p
R
α

k
(xi )

)

α
R

]

= D2 according as
R

α
≶ 1. (4.14)

Thus D2 ≶ D1 according as
R

α
≶ 1, which implies that D < 0 in view of the sign of

R

R −α

according as
R

α
≶ 1.

This proved that Hα
R

(P ) is concave function P .

(i) We set max pi = pk , asuming m0 = 1,2, . . ., R >α and 0<α≤ 1, we find

[ m
∑

i=1

p
R
α

i

]

α
R
≤

[

m0p
R
α

k

]

α
R
= m

α
R

0 pk . (4.15)

It is also noted that for R >α.
[ m

∑

i=1

p
R
α

i

]

α
R
≥ pk . (4.16)

Combing (4.15) and (4.16), we get

pk ≤

{ m
∑

i=1

p
R
α

i

}

α
R
≤ m

α
R

0 pk . (4.17)

Taking limits for R →∞ in (4.17), we have

lim
R→∞

{ m0
∑

i=1

p
R
α

i

}

α
R
= pk = max

i
.pi

and finally

lim
R→∞

Hα
R (P )= lim

R→∞

[

1−
{ m0

∑

i=1

p
R
α

i

)

α
R

]

= 1−max
i

.pi .

This completes the proof of Theorem 4.

5. Joint and conditional generalizedα-R-nom information measure

The present section depicts the joing and conditional probability distribution of two ran-

dom variables ξ and η having probability distributors P and Q over the sets X = {x1, x2, . . . , xn }

and Y = {y1, y2, . . . , yn } respectively. The generalized α-R-norm information of the random

variables Hα
R

(ξ) = Hα
R

(P ) and Hα
R

(η)= Hα
R

(Q), where

pi = Pr (ξi = xi ), i = 1,2, . . . ,n

pi = Pr (η j = y j ), j = 1,2, . . . ,m

are the probabilities of the possible values of the random variables. Similarly, we consider a

two-dimensional discrete random variable (ξ,η) with joint probability distributionπ = (π11,π12, . . . ,π1n )

πi j = Pr (ξi = xi ,η j = y j ), i = 1,2, . . . ,n, j = 1,2, . . . ,m
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is the joint probability for the values (xi , yi ) of (ξ,η).

We shall denote conditional probabilities by pi j and qi j such that πi j = pi j q j = q j i pi

pi =

m
∑

j=1

πi j and qi =

n
∑

j=1

πi j .

Definition. The joint α-R-norm information measure for R ∈ R+ and 0<α≤ 1 is given by

Hα
R (ξ,η) =

R

R −α

[

1−
{ n

∑

i=1

m
∑

j=1

πi j

}

α
R

]

. (5.1)

It may be seen that Hα
R (ξ,η) is symmetric in ξ and η. Due to non-additivity property if ξ

and η are stochastically independent. Then the following holds

Hα
R (ξ,η) = Hα

R (ξ)+Hα
R (η)−

R −α

R
Hα

R (ξ)Hα
R (η). (5.2)

Definition. The average conditional α-R-norm information of η given ξ for R ∈ R+ and

0<α≤ 1 is defined as

∗Hα
R (η/ξ) =

R

R −α

[

1−
n
∑

i=1

pi

{ m
∑

j=1

q
R
α

j i

}

α
R

]

. (5.3)

Or alternatively

∗∗Hα
R (η/ξ) =

R

R −α

[

1−
{ n

∑

i=1

pi

m
∑

j=1

q
R
α

j i

}

α
R

]

. (5.4)

The two conditional measures (5.3) and (5.4) differ by the way, the probability pi have

been taken. The expression (5.3) is a true mathematical expression over ξ, whereas the ex-

pression (5.4) is not.

The next theorem, proves three results for conditional α-R-norm information measures

given by (5.3) and (5.4).

Theorem 5. If ξ and η are discrete random variables then for

R ∈R+ and 0 <α≤ 1,

then the following results hold.

(i) ∗Hα
R (η/ξ) ≤ Hα

R (η), (5.5)

(ii) ∗∗Hα
R (η/ξ) ≤ Hα

R (η), (5.6)

(iii) ∗∗Hα
R (η/ξ) ≤ ∗Hα

R (η/ξ), (5.7)

(iv) ∗∗Hα
R (η/ξ) ≤ ∗Hα

R (η/ξ) ≤ Hα
R (η). (5.8)
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Proof. We know by [4] that for
R

α
> 1.

[ m
∑

j=1

{ n
∑

i=1

xi j

}

R
α

]
α
R

≤

[ n
∑

i=1

{ m
∑

j=1

x
R
α

i j

}

R
α

]
α
R

. (5.9)

Setting xi j =πi j ≥ 0 in (5.9), we have

[ m
∑

j=1

{ n
∑

i=1

xi j

}

R
α

]
α
R

≤

[ n
∑

i=1

{ m
∑

j=1

x
R
α

i j

}

α
R

]

. (5.10)

or
[ m

∑

j=1

q
R
α

j

]

α
R
≤

[ n
∑

i=1

{ m
∑

j=1

(q j i pi )
R
α

}

α
R

]

⇒ 1−

[ n
∑

i=1

pi

{ m
∑

j=1

q
R
α

j i

}

α
R

]

≤ 1−
[ m

∑

j=1

q
R
α

j

]

α
R

. (5.11)

Using
R

R −α
> 0 as R >α and 0 <α≤ 1.

We find that ∗Hα
R (η/ξ) ≤ Hα

R (η).

(5.12)

On the same line, we can prove that (5.12) holds for

0 < R <α and 0 <α≤ 1.

Hence (5.5) holds for all R ∈ R+ and 0 <α ≤ 1. The equality sign holds iff πi j is separable

in the sence πi j = pi q j .

From Jensen’s inequality for R >α and 0 <α≤ 1 we find

n
∑

i=1

pi q
R
α

j i
≥

[ n
∑

i=1

pi q j i

]

R
α
= q

R
α

j
. (5.13)

After summation over j and raising both sides to power
α

R
, we have

[ n
∑

i=1

pi

m
∑

j=1

q
R
α

j i

]

α
R
≥

[ m
∑

j=1

q
R
α

j

]

α
R

. (5.14)

Using
R

R −α
> 0 as R >α, we get

∗∗Hα
R (η/ξ) ≤ Hα

R (η). (5.15)

Equality holds for all i , q j i = qi which is equivalent to the independent property. For 0 < R <

α, the inequality (5.14) reverses. However, in view of
R

R −α
< 0 as 0 < R < α, 0 < α ≤ 1 (5.15)

still holds. Hence (5.6) is proved.
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Next for the proof of (5.7), we apply Jensen’s inequality and

[ n
∑

i=1

pi

{ m
∑

j=1

q
R
α

j

}

α
R

]

≤

[ n
∑

i=1

pi

m
∑

j=1

q
R
α

j i

]

α
R

(5.16)

for R >α, 0 <α≤ 1 and
[ n

∑

i=1

pi

{ m
∑

j=1

q
R
α

j

}

α
R

]

≥

[ n
∑

i=1

pi

m
∑

j=1

q
R
α

j i

]

α
R

(5.17)

for 0 < R <α, 0 <α≤ 1.

Using the fact
R

R −α
> 0 and (5.16),

We have ∗∗Hα
R (η/ξ) ≤∗ Hα

R (η/ξ).

From (5.17) for
R

R −α
< 0, we get the same result. Hence (5.7) is proved for all R ∈ R+ and

0<α≤ 1 (5.8) is a combination of (5.7) and (5.5). Hence the Theorem 5 is proved.

Note. In this paper, I have define a new function depending on the parameters α and R.

My motivation for studing this new function is that it generalize R-norm information measure

of a discrete probability distribution introduced by Bockee and Lubbe (1980).
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