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General Decay of Solutions in One-Dimensional Porous-Elastic
withMemory and Distributed Delay Term

Abdelbaki Choucha, Djamel Ouchenane and Khaled Zennir

Abstract. As a continuity to the study by T. A. Apalara in [3], we consider a one-dimensional
porous-elastic system with the presence of both memory and distributed delay terms in the
second equation. Using the well known energymethod combinedwith Lyapunov functionals
approach, we prove a general decay result given inTheorem 2.1.

1 Introduction

Researchers from various fields were interested in elasticity problems, and they have beenmainely
attracted by the qualitative studies of different type of this problems andmany results can be found
in the literature. In the one-dimensional case, for instance, the combination of the elastic equa-
tions with thermal consequences causes a negative exponential to control the decay of solutions.
The one-dimensional porous-elastic model is given by

ρ0utt = µuxx + βφx, in (0, l)× (0, L) ,

ρ0kφtt = αφtt − βux − τφt − ξφ, in (0, l)× (0, L) ,

and it has been studied by many authors. The first contribution in this direction was obtained
by [21]. To be more precise, which was developed in [14], the authors showed that the classical
elasticity theory to porous media by introducing the concept of a continuum theory of granular
materials with interstitial voids into the theory of elastic solids with voids. In addition to the
usual elastic effects, the materials with voids possess a microstructure with the property that the
mass at each point is obtained as the product of the mass density of the material matrix by the
volume fraction. This concept was introduced in the pioneered work in [17], when the authors
have advanced nonlinear theory of elastic materials with voids (See [9], [10]). The basic evolution
equations for one-dimensional theories of porous materials with memory effect are given by

ρutt = Tx, Jϕtt = Hx +G, (1.1)
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where T is the stress tensor, H is the equilibrated stress vector and G is the equilibrated body
force. The variables u and ϕ are the displacement of the solid elastic material and the volume
fraction, respectively. The constitutive equations are

T = µux + bϕ,H = δϕx −
∫ t

0
g (t− s)ϕx (s) ds,G = −bux − ξϕ. (1.2)

In [21] substituting (1.2) into (1.1) is concerned{
ρutt − µuxx − bϕx = 0, in (0, 1)× (0,∞) ,

Jϕtt − δϕxx + bux + ξϕ+
∫ t
0 g (t− s)ϕxx (x, s) ds = 0, in (0, 1)× (0,∞) .

(1.3)

A porous-elastic system with memory term and Neumann-Dirichlet boundary conditions where
g is the relaxation function it has been proved a general decay result, for more detail (see [3]).
Quintanilla in [21] considered{

ρutt = µuxx + bϕx, x ∈ (0, L) , t > 0,

Jϕtt = δϕxx − bux − ξϕ− τϕt, x ∈ (0, L) , t > 0,
(1.4)

with initial and mixed boundary conditions and supposed that the damping in the porous equa-
tion (−τϕt) is not enough to obtain an exponential decay but only a slow decay can be obtained.
To improve this decay several other damping mechanisms were considered. In [7] Casas and
Quintanilla have considered

ρutt = µuxx + bϕx − βθx, x ∈ (0, L) , t > 0,

Jϕtt = δϕxx − bux − ξϕ+mθ − τϕt, x ∈ (0, L) , t > 0,

cθt = kθxx − βuxt −mϕt, x ∈ (0, L) , t > 0,

(1.5)

where θ is the temperature difference with initial and Dirichlet-Neumann boundary conditions.
The authors applied the semigroup theory and the method proposed and developed in [27] to
establish the exponential decay of the solutions. Later, with τ = 0, in [8] the same authors have
proposed that the heat effect alone is not strong sufficient to bring an exponential decay but only a
slowdecay could be established. However, the heat effect togetherwithmicro-temperature created
an exponential decay result. Similarly, when τ = 0 and γuxxt is added to the first equation in (1.1),
in [19], the authors have proved the lack of exponential stability. However, by taking some regular
initial data a polynomial stability is obtained. Also, for τ = 0, problem (1.1) was considered in
[25] with the following boundary conditions

u (0, t) = ϕ (0, t) = θ (0, t) = θ (L, t) = 0, t ≥ 0,

u (L, t) = −
∫ t
0 g1 (t− s) [µux (L, s) + bϕ (L, s)] ds, t ≥ 0,

ϕ (L, t) = −δ
∫ t
0 g2 (t− s)ϕx (L, s) ds, t ≥ 0,
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where g1 and g2 are positive decreasing functions. They obtained a general decay result in which
the usual exponential and polynomial decay rates are just special cases. ([15], [23], [20], [24], [25]
and the references therein).

The viscoelastic damping is represented by amemory term in the formof a convolutionwhich
arises in the constitutive equation between the stress σ (x, t) and the strain ϵ (x, t) (See [12], [3])

σ (x, t) = ϵ (x, t) +

∫ t

0
g (t− s) ϵ (x, s) ds.

This type of viscoelastic dissipation could be said to coincide to viscosity with null initial history
because it is assumed that the strains have been zero for−∞ < t < 0 or, equivalently, if any past
strains have occurred sufficiently long ago that the effect is trivial. In other words, there will be a
time prior to which all the strains which have previously occurred will have a trivial contribution.
Thus, an experiment generally starts at some time (t = 0) when the material is free of stresses.

We must mention the pioneer works recently published by [4], the author considered a one-
dimensional porous thermo-elastic systemwithmemory effects and proved a general decay result,
for which exponential and polynomial decay results are special cases, depending only on the ker-
nel of the memory effects. The obtained result were established irrespective of the wave speeds of
the system (See [2], [5]). In [13] the authors investigated a porous thermo-elastic system where
the heat conduction is given by Cattaneo’s law and where the energy associated with the solu-
tion is not necessary positive. They introduced a stability number and proved an exponential and
polynomial decay results.
Our purpose in this paper is to give a general decay result of solutions in one dimensional porous-
elastic system with memory and distributed delay term, our result is new and improves previous
results in the literature.

LetH = (0, 1) × (τ1, τ2) × (0,∞), in the present paper, we are interested in the following
problem 

ρutt − µuxx − bϕx = 0,

Jϕtt − δϕxx + bux + ξϕ+
∫ t
0 g (t− s)ϕxx (x, s) ds+ µ1ϕt∫ τ2

τ1
|µ2(s)|ϕt (x, t− s) ds = 0,

where
(x, s, t) ∈ H.

As in [16], taking the following new variable

z(x, ρ, s, t) = ϕt(x, t− sρ),

then we obtain {
szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0,

z(x, 0, s, t) = ϕt(x, t).
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Consequently, the problem is equivalent to
ρutt − µuxx − bϕx = 0,

Jϕtt − δϕxx + bux + ξϕ+
∫ t
0 g (t− s)ϕxx (x, s) ds+ µ1ϕt

+
∫ τ2
τ1

|µ2(s)|ϕt (x, t− s ) ds = 0,

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0.

(1.6)

where
(x, ρ, s, t) ∈ (0, 1)×H.

The system with memory and delay term acting only on the porous equation together with the
initial data {

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) ,

ϕ (x, 0) = ϕ0 (x) , ϕt (x, 0) = ϕ1 (x) , x ∈ (0, 1) ,
(1.7)

and Neumann-Dirichlet boundary conditions

ux (0, t) = ux (1, t) = ϕ (0, t) = ϕ (1, t) = 0, t ≥ 0. (1.8)

Here, u is the longitudinal displacement, ϕ is the volume fraction of the solid elastic material
and ρ, µ, b, J, δ, ξ are positive constants with µ, ξ, b satisfying µξ > b2. The integral represents
the memory and delay term with τ1, τ2 > 0 are a time delay, µ1 is positive constant, µ2 is an
L∞function and g is the relaxation function satisfying
(H1) g ∈ C1(R+,R+) is a non-increasing function satisfying

g (0) > 0, b−
∫ ∞

0
g (s) ds = l > 0. (1.9)

(H2) There exists a positive non-increasing differentiable function ϑ ∈ (R+,R+) satisfying

g′ (t) ≤ −ϑ (t) g (t) , t ≥ 0. (1.10)

(H3) µ2 : [τ1, τ2] → R is a bounded function satisfying∫ τ2

τ1

|µ2(s)|ds ≤ µ1. (1.11)

Time delays arise in many applications because most phenomena naturally depend not only on
the present state but also on some past occurrences In recent years, the control of PDEs with time
delay effects has become an active area of research, see for example [26] and references therein. In
many cases it was shown that delay is a source of instability unless additional condition or control
terms are used, see [11] Therefore, the stability issue of systems with delay is of theoretical and
practical great importance.
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It is well know that, in the single wave equation, if µ2 = 0 that is, in absence of a decay, the
energy of system exponentially decays (see [4]) On the contrary, if µ1 = 0, that is, there exists
only the delay part in the interior, the system becomes unstable (see [11]). It is shown that a small
delay in a boundary control can turn such a well-behaved hyperbolic system into a wild one and
therefore, delay becomes a source of instability. To stabilize a hyperbolic system involving input
delay terms, additional control terms will be necessary (see [16], [18]).
Inwhat follows, we consider (u, ϕ) to be a solution of system (1.6)-(1.8) with the regularity needed
to justify the calculations in this paper. We specify Section 2 to the statements and prove of our
stability result. We use c throughout this paper to denote a generic positive constant. Meanwhile,
from (1.6) and (1.8), it follows that

d2

dt2

∫ 1

0
u (x, t) dx = 0. (1.12)

So, by solving (1.12) and using the initial data of u, we get∫ 1

0
u (x, t) dx = t

∫ 1

0
u1 (x) dx+

∫ 1

0
u0 (x) dx.

Consequently, if we let

−
u (x, t) = u (x, t)− t

∫ 1

0
u1 (x) dx−

∫ 1

0
u0 (x) dx, (1.13)

we get ∫ 1

0

−
u (x, t) dx = 0, ∀t ≥ 0.

Therefore, the use of Poincare’s inequality for −u is justified. In addition, simple substitution shows
that

(−
u, ϕ

)
satisfies system (1.6) with initial data for −

u given as

−
u0 (x) = u0 (x)−

∫ 1

0
u0 (x) dx and −

u1 (x) = u1 (x)−
∫ 1

0
u1 (x) dx.

Henceforth, we work with −
u instead of u but write u for simplicity of notation.

2 Main Result

In this section, we state and prove our decay result for the energy of the system (1.6)-(1.8) using
the multiplier technique. We need the following lemmas.
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Lemma 2.1. The energy functional E, defined by

E (t) =
1

2

∫ 1

0

[
ρu2t + µu2x + Jϕ2

t +

(
δ −

∫ t

0
g (s) ds

)
ϕ2
x + ξϕ2 + 2buxϕ

]
dx

+
1

2
g ◦ ϕx +

1

2

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2 (x, ρ, s, t) dsdρdx, (2.1)

satisfies

E′ (t) =
1

2
g′ ◦ ϕx −

1

2
g (t)

∫ 1

0
ϕ2
xdx−

(
µ1 −

∫ τ2

τ1

|µ2(s)|ds
)∫ 1

0
ϕ2
tdx, (2.2)

and

E′(t) ≤ 1

2
g′ ◦ ϕx − η0

∫ 1

0
ϕ2
tdx ≤ 0, (2.3)

where η0 = µ1 −
∫ τ2
τ1

|µ2(s)|ds ≥ 0 and g ◦ v =
∫ 1
0

∫ t
0 g (t− s) (vx (t)− vx (s))

2 dsdx.

Proof. Multiplying the first equation of (1.6) byut and the second equation byϕt, then integration
by parts over (0, 1), and using (1.8), we get

1

2

d

dt

∫ 1

0

[
ρu2t + µu2x + Jϕ2

t + δϕ2
x + ξϕ2 + 2buxϕ

]
dx−

∫ 1

0
ϕxt

∫ t

0
g (t− s)ϕx (s) dsdx

+µ1

∫ 1

0
ϕ2
tdx+

∫ 1

0
ϕt

∫ τ2

τ1

|µ2(s)|z (x, 1, s, t) dsdx = 0. (2.4)

The last term in the left hand side of (2.4) is estimated as follows.

−
∫ 1

0
ϕxt

∫ t

0
g (t− s)ϕx (s) dsdx

=

∫ 1

0
ϕxt

∫ t

0
g (t− s) (ϕx (t)− ϕx (s)) dsdx−

∫ t

0
g (s) ds

∫ 1

0
ϕxtϕxdx

=
1

2

d

dt
g ◦ ϕx −

1

2

d

dt

∫ t

0
g (s) ds

∫ 1

0
ϕ2
xdx− 1

2
g′ ◦ ϕx +

1

2
g (t)

∫ 1

0
ϕ2
xdx. (2.5)

Now, multiplying the last equation in (1.6) by z|µ2(s)|, and integrating the result over (0, 1) ×
(0, 1)× (τ1, τ2)

d

dt

1

2

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, ρ, s, t)dsdρdx

= −
∫ 1

0

∫ 1

0

∫ τ2

τ1

|µ2(s)|zzρ (x, ρ, s, t) dsdρdx

= −1

2

∫ 1

0

∫ 1

0

∫ τ2

τ1

|µ2(s)|
d

dρ
z2 (x, ρ, s, t) dsdρdx
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=
1

2

∫ 1

0

∫ τ2

τ1

|µ2(s)|(z2 (x, 0, s, t)− z2(x, 1, s, t))dsdx

=
1

2

∫ τ2

τ1

|µ2(s)|ds
∫ 1

0
ϕ2
tdx− 1

2

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2 (x, 1, s, t) dsdx.

Now, using Young’s inequality, we have

E′(t) ≤ 1

2
g′ ◦ ϕx −

1

2
g (t)

∫ 1

0
ϕ2
xdx−

(
µ1 −

∫ τ2

τ1

|µ2(s)|ds
)∫ 1

0
ϕ2
tdx

≤ 1

2
g′ ◦ ϕx −

(
µ1 −

∫ τ2

τ1

|µ2(s)|ds
)∫ 1

0
ϕ2
tdx, (2.6)

then, by (H3), there exists a positive constant η0 such that

E′(t) ≤ 1

2
g′ ◦ ϕx − η0

∫ 1

0
ϕ2
tdx, (2.7)

then we obtain E is a non-increasing function.

Lemma 2.2. The functional

D1 (t) := J

∫ 1

0
ϕtϕdx+

bρ

µ

∫ 1

0
ϕ

∫ x

0
ut (y) dydx, (2.8)

satisfies

D′
1 (t) ≤ − l

2

∫ 1

0
ϕ2
xdx− µ3

∫ 1

0
ϕ2dx+ ε1

∫ 1

0
u2tdx+ c(1 +

1

ε 1
)

∫ 1

0
ϕ2
tdx

+cg ◦ ϕx + c

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2 (x, 1, s, t) dsdx, (2.9)

where µ3 = ξ − b2

µ > 0.

Proof. Direct computation using integration by parts and Young’s inequality, for ε1 > 0, yields

D′
1 (t) = −δ

∫ 1

0
ϕ2
xdx−

(
ξ − b2

µ

)∫ 1

0
ϕ2dx+ J

∫ 1

0
ϕ2
tdx+

bρ

µ

∫ 1

0
ϕt

∫ x

0
ut (y) dydx

+

∫ 1

0
ϕx

∫ t

0
g (t− s)ϕx (s) dsdx− µ1

∫ 1

0
ϕtϕdx−

∫ 1

0
ϕ

∫ τ2

τ1

|µ2(s)|z(x, 1, s, t)dsdx

≤ −δ

∫ 1

0
ϕ2
xdx−

(
ξ − b2

µ

)∫ 1

0
ϕ2dx+ c

(
1 +

1

ε1

)∫ 1

0
ϕ2
tdx+ ε1

∫ 1

0

(∫ x

0
ut (y) dy

)2

dx

+

∫ 1

0
ϕx

∫ t

0
g (t− s)ϕx (s) dsdx− µ1

∫ 1

0
ϕtϕdx−

∫ 1

0
ϕ

∫ τ2

τ1

|µ2(s)|z(x, 1, s, t)dsdx.

(2.10)
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By Cauchy-Schwartz inequality, it is clear that∫ 1

0

(∫ x

0
ut (y) dy

)2

dx ≤
∫ 1

0

(∫ 1

0
utdx

)2

dx ≤
∫ 1

0
ut

2dx.

So, estimate (2.10) becomes

D′
1 (t) ≤ −δ

∫ 1

0
ϕ2
xdx−

(
ξ − b2

µ

)∫ 1

0
ϕ2dx+ c

(
1 +

1

ε1

)∫ 1

0
ϕ2
tdx+ ε1

∫ 1

0
ut

2dx

−µ1

∫ 1

0
ϕtϕdx−

∫ 1

0
ϕ

∫ τ2

τ1

|µ2(s)|z(x, 1, s, t)dsdx

+

∫ 1

0
ϕx

∫ t

0
g (t− s)ϕx (s) dsdx. (2.11)

The last term in the RHS of (2.11) is estimated as follows:∫ 1

0
ϕx

∫ t

0
g (t− s)ϕx (s) dsdx

=

∫ t

0
g (s) ds

∫ 1

0
ϕ2
xdx−

∫ 1

0
ϕx

∫ t

0
g (t− s) (ϕx (t)− ϕx (s)) dsdx

≤
(
δ1 +

∫ t

0
g (s) ds

)∫ 1

0
ϕ2
xdx+

1

4δ1

(∫ t

0
g (s) ds

)
g ◦ ϕx, (2.12)

where we have used Cauchy-Schwartz, Young’s and poincare’s inequalities, for δ1, ε2, ε3 > 0.
By substituting (2.12) into(2.10), we obtain

D′
1 (t) ≤ −

(
δ −

∫ t

0
g (s) ds− δ1 − µ1cδ2 − µ1cδ3

)∫ 1

0
ϕ2
xdx−

(
ξ − b2

µ

)∫ 1

0
ϕ2dx

+ε1

∫ 1

0
u2tdx+

(
c(1 +

1

ε1
) +

µ1

4δ2

)∫ 1

0
ϕ2
tdx+

1

4δ1

(∫ t

0
g (s) ds

)
g ◦ ϕx

+
1

4δ3

∫ t

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t)dsdx. (2.13)

Bearing in mind that µξ > b2 and using the fact that δ −
∫ t
0 g (s) ds ≥ l,

and letting δ1 =
l

6
, δ2 = δ3 =

l

6cµ1
, we obtain estimate (2.9).

In the following Lemma, we use the essential hypothesis that the wave speeds of the system
are equal

µ

ρ
=

δ

J
. (2.14)

Lemma 2.3. Assume that (H1) and (2.14) hold. Then the functional

D2 (t) :=

∫ 1

0
ϕxutdx+

∫ 1

0
ϕtuxdx− ρ

µJ

∫ 1

0
ut

∫ t

0
g (t− s)ϕx (s) dsdx,
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satisfies, for any ε2 > 0

D′
2 (t) ≤ − b

2J

∫ 1

0
u2xdx+ c

(
1 +

1

ε2

)∫ 1

0
ϕ2
xdx+ cε2

∫ 1

0
u2tdx (2.15)

+c

∫ 1

0
ϕ2
t + cg ◦ ϕx −

c

ε2
g′ ◦ ϕx + cµ1

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t)dx.

Proof. By differentiatingD2, then using (1.6), integration by parts, and (1.8) we obtain

D′
2 (t) = − b

J

∫ 1

0
u2xdx+

(
δ

J
− µ

ρ

)∫ 1

0
uxϕxxdx+

b

ρ

∫ 1

0
ϕ2
xdx− ρg (0)

µJ

∫ 1

0
utϕxdx

− ξ

J

∫ 1

0
uxϕdx− b

µJ

∫ 1

0
ϕx

∫ t

0
g (t− s)ϕx (s) dsdx

− ρ

µJ

∫ 1

0
ut

∫ t

0
g′ (t− s)ϕx (s) dsdx

−µ1

J

∫ 1

0
ϕtuxdx− 1

J

∫ 1

0
ux

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t)dsdx. (2.16)

In what follows, we estimate the last five terms in the right hand side of (2.16), using Young’s,
Cauchy-Schwartz, and Poincare’s inequalities. For δ4, δ5, ε2 > 0, we have

− ξ

J

∫ 1

0
uxϕdx ≤ ξ

J
δ4

∫ 1

0
u2xdx+

ξ

4Jδ4

∫ 1

0
ϕ2dx.

By letting δ4 =
b

6ξ
, using Poincar’s inequality, we get

− ξ

J

∫ 1

0
uxϕdx ≤ b

6J

∫ 1

0
u2xdx+ c

∫ 1

0
ϕ2dx, (2.17)

− b

µJ

∫ 1

0
ϕx

∫ t

0
g (t− s)ϕx (s) dsdx

=
b

µJ

∫ 1

0
ϕx

∫ t

0
g (t− s) (ϕx (t)− ϕx (s)) dsdx− b

µJ

∫ t

0
g (s) ds

∫ 1

0
ϕ2
xdx

≤
(
δ5 −

b

µJ

)∫ t

0
g (s) ds

∫ 1

0
ϕ2
xdx+

c

δ5
g ◦ ϕx.

By letting δ5 =
b

µJ
we get

− b

µJ

∫ 1

0
ϕx

∫ t

0
g (t− s)ϕx (s) dsdx ≤ cg ◦ ϕx, (2.18)

− ρ

µJ

∫ 1

0
ut

∫ t

0
g′ (t− s)ϕx (s) dsdx
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=
b

µJ

∫ 1

0
ut

∫ t

0
g′ (t− s) (ϕx (t)− ϕx (s)) dsdx− b

µJ

∫ t

0
g′ (s) ds

∫ 1

0
utϕxdx

≤ ρε2
2µJ

∫ 1

0
u2tdx+

ρg (0)

µJ

∫ 1

0
utϕxdx− ρg (t)

µJ

∫ 1

0
utϕxdx

+
ρ

2µJε2

∫ 1

0
g′ (s) ds

∫ 1

0

∫ t

0
g′ (t− s) (ϕx (t)− ϕx (s))

2 dsdx

≤ ρε2
µJ

∫ 1

0
u2tdx+

ρ

2µJε2

(∫ 1

0
g′ (s) ds

)
g′ ◦ ϕx +

ρg (0)

µJ

∫ 1

0
utϕxdx

+
ρg (t)

2µJε2

∫ 1

0
utϕxdx

≤ ρε2
µJ

∫ 1

0
u2tdx+

ρ

2µJε2

(∫ 1

0
g′ (s) ds

)
g′ ◦ ϕx +

ρg (0)

µJ

∫ 1

0
utϕxdx

+
ρ (g(t))2

2µJε2

∫ 1

0
ϕ2
xdx

≤ cε2

∫ 1

0
u2tdx+

c

ε2

∫ 1

0
ϕ2
xdx+

ρg (0)

µJ

∫ 1

0
utϕxdx− c

ε2
g′ ◦ ϕx, (2.19)

−µ1

J

∫ 1

0
ϕtuxdx ≤ µ1δ6

2J

∫ 1

0
ϕ2
tdx+

µ1

2Jδ6

∫ 1

0
u2xdx, (2.20)

1

J

∫ 1

0
ux

∫ τ2

τ1

|µ2(s)|z(x, 1, s, t)dsdx

≤ δ7µ1

2J

∫ 1

0
u2xdx+

1

2Jδ7

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2(x, 1, s, t)ds. (2.21)

The replacement of (2.17)-(2.21) into (2.16), and by letting δ6 = δ7 =
b

4µ1
, bearing in the mind

(2.14), yields (2.15).

Lemma 2.4. The functional

D3 (t) := −ρ

∫ 1

0
utudx,

satisfies

D′
3 (t) ≤ −ρ

∫ 1

0
u2tdx+

3µ

2

∫ 1

0
u2xdx+ c

∫ 1

0
ϕ2
xdx. (2.22)

Proof. Direct computations give

D′
3 (t) = −ρ

∫ 1

0
u2tdx+ µ

∫ 1

0
u2xdx+ b

∫ 1

0
uxϕdx.
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Estimat (2.22) easily follows by using Young’s and Poincaré inequalities.

D′
3 (t) ≤ −ρ

∫ 1

0
u2tdx+ µ

∫ 1

0
u2xdx+ bε

∫ 1

0
u2xdx+

b

4ε

∫ 1

0
ϕ2dx

≤ −ρ

∫ 1

0
u2tdx+ µ

∫ 1

0
u2xdx+ bε

∫ 1

0
u2xdx+

bc

4ε

∫ 1

0
ϕ2
xdx,

by letting ε =
µ

2b
, we obtain (2.22).

Now, let us introduce the following functional used by

Lemma 2.5. The functional

D4 (t) :=

∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ|µ2(s)|z2 (x, ρ, s, t) dsdρdx,

satisfies,

D′
4 (t) ≤ −η1

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2 (x, ρ, s, t) dsdρdx+ µ1

∫ 1

0
ϕ2
tdx

−η1

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2 (x, 1, s, t) dsdx, (2.23)

where η1 is a positive constant.

Proof. By differentiatingD4, with respect to t and using the last equation in (H3), we have

D′
4 (t) = −2

∫ 1

0

∫ 1

0

∫ τ2

τ1

e−sρ|µ2(s)|zzρ (x, ρ, s, t) dsdρdx

= −
∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ|µ2(s)|z2 (x, ρ, s, t) dsdρdx

−
∫ 1

0

∫ τ2

τ1

|µ2(s)|[e−sz2 (x, 1, s, t)− z2 (x, 0, s, t)]dsdx.

Using the fact that z(x, 0, s, t) = ϕt(x, t), and e−s ≤ e−sρ ≤ 1, for all 0 < ρ < 1, we obtain

D′
4 (t) = −η1

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2 (x, ρ, s, t) dsdρdx

−
∫ 1

0

∫ τ2

τ1

e−s|µ2(s)|z2 (x, 1, s, t) dsdx+

∫ τ2

τ1

|µ2(s)|ds
∫ 1

0
ϕ2
tdx.
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Because−e−s is a increasing function, we have−e−s ≤ −e−τ2 , for all s ∈ [τ1, τ2].
Finally, setting η1 = e−τ2 and recalling (H3), we obtain (2.23). We are now ready to prove the
main result.

Theorem 2.1. Assume (H1), (H2), (H3) and (2.14) hold. Then, for any t0 > 0, there exist positive
constants α and β such that the energy functional given by (2.1) satisfies

E (t) ≤ αe
−β

∫ t
t0

ϑ(s)ds
,∀t ≥ t0. (2.24)

Proof. We define a Lyapunov functional

L (t) := NE (t) +N1D1 (t) +N2D2 (t) +D3 (t) +N4D4 (t) , (2.25)

whereN, N1, N2, andN4 are positive constants to be selected later.
By differentiating (2.25) and using (2.1), (2.9), (2.15), (2.22), (2.23), we have

L′ (t) ≤ −
[
lN1

2
− cN2(1 +

1

ε2
)− c

] ∫ 1

0
ϕ2
xdx− [ρ−N1ε1 −N2cε2]

∫ 1

0
u2tdx

−
[
bN2

2J
− 3µ

2

] ∫ 1

0
u2xdx−

[
η0N − cN1(1 +

1

ε1
)−N2c− µ1N4

] ∫ 1

0
ϕ2
tdx

−N1µ3

∫ 1

0
ϕ2dx− [N4η1 − cN1 − cN2]

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2 (x, 1, s, t) dsdx

+c [N1 +N2] g ◦ ϕx +

[
N

2
− cN2

ε2

]
g′ ◦ ϕx

−N4η1

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2 (x, ρ, s, t) dsdρdx.

By setting
ε1 =

ρ

4N1
, ε2 =

ρ

4cN2
,

we obtain

L′ (t) ≤ −
[
lN1

2
− cN2(1 +N2)− c

] ∫ 1

0
ϕ2
xdx− ρ

2

∫ 1

0
u2tdx

−
[
bN2

2J
− 3µ

2

] ∫ 1

0
u2xdx− [η0N − cN1(1 +N1)− cN2 − µ1N4]

∫ 1

0
ϕ2
tdx

−N1µ3

∫ 1

0
ϕ2dx− [N4η1 − cN1 − cN2]

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2 (x, 1, s, t) dsdx

+c [N1 +N2] g ◦ ϕx +

[
N

2
− cN2

2

]
g′ ◦ ϕx

−N4η1

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2 (x, ρ, s, t) dsdρdx.
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Next, we carefully choose our constants so that the terms inside the brackets are positive.
We chooseN2 large enough such that

α1 =
bN2

2J
− 3µ

2
> 0,

then We chooseN1 large enough such that

α2 =
lN1

4
− cN2 (1 +N2)− c > 0,

then We chooseN4 large enough such that

α3 = N4η1 − cN1 − cN2 > 0,

thus, we arrive at

L′ (t) ≤ −α2

∫ 1

0
ϕ2
xdx− α0

∫ 1

0
ϕ2dx− ρ

2

∫ 1

0
u2tdx− α1

∫ 1

0
u2xdx− [η0N − c]

∫ 1

0
ϕ2
tdx

+

[
N

2
− c

]
g′ ◦ ϕx + cg ◦ ϕx − α3

∫ 1

0

∫ τ2

τ1

|µ2(s)|z2 (x, 1, s, t) dsdx

−α4

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2 (x, ρ, s, t) dsdρdx, (2.26)

where α0 = µ3N1 =

(
ξ − b2

µ

)
N1. On the other hand, if we let

L (t) = N1D1 (t) +N2D2 (t) +D3 (t) +N4D4 (t) ,

then

|L (t)| ≤ JN1

∫ 1

0
|ϕϕt| dx+N2

∫ 1

0

∣∣∣∣ϕxut + uxϕt −
ρ

µJ
ut

∫ t

0
g (t− s)ϕx (s) ds

∣∣∣∣ dx
bρN1

µ

∫ 1

0

∣∣∣∣ϕ ∫ x

0
ut (y) dy

∣∣∣∣ dx+ ρ

∫ 1

0
|utu| dx

+N4

∫ 1

0

∫ 1

0

∫ τ2

τ1

se−sρ|µ2(s)|z2 (x, ρ, s, t) dsdρdx.

Exploiting Young’s, Cauchy-Schwartz, and Poincaré inequalities, we obtain

|L (t)| ≤ c

∫ 1

0

(
u2t + ϕ2

t + ϕ2
x + u2x + ϕ2

)
dx+ cg ◦ ϕx

+ c

∫ 1

0

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2 (x, ρ, s, t) dsdρ

≤ cE (t) .
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Consequently, we obtain

|L (t)| = |L (t)−NE (t)| ≤ cE (t) ,

that is
(N − c)E (t) ≤ L (t) ≤ (N + c)E (t) . (2.27)

Now, by choosingN large enough such that

N

2
− c > 0, N − c > 0, Nη0 − c > 0,

and exploiting (2.1), estimates (2.26) and (2.27), respectively, give

L′ (t) ≤ −k1E (t) + k2g ◦ ϕx, ∀t ≥ t0, (2.28)

and
c2E (t) ≤ L (t) ≤ c3E (t) , ∀t ≥ 0, (2.29)

for some k1, k2, c2, c3 > 0.

By multiplying (2.28) by ϑ (t) , we obtain

ϑ (t)L′ (t) ≤ −k1ϑ (t)E (t) + k2ϑ (t) g ◦ ϕx, ∀t ≥ t0. (2.30)

The final term in (2.30) is estimated as following, using (1.10), we have

ϑ (t) g ◦ ϕx = ϑ (t)

∫ 1

0

∫ t

0
g (t− s) (ϕx (t)− ϕx (s))

2 dsdx

≤
∫ 1

0

∫ t

0
ϑ (t− s) g (t− s) (ϕx (t)− ϕx (s))

2 dsdx

≤ −
∫ 1

0

∫ t

0
g′ (t− s) (ϕx (t)− ϕx (s))

2 dsdx = −g′ ◦ ϕx

≤ −2E′ (t) .

Thus, (2.30) becomes

ϑ (t)L′ (t) ≤ −k1ϑ (t)E (t)− 2k2E
′ (t) ,∀t ≥ t0,

which can be rewritten as

(ϑ (t)L (t) + 2k2E (t))′ − ϑ′ (t)L (t) ≤ −k1ϑ (t)E (t) , ∀t ≥ t0,

using the fact that ϑ′ (t) ≤ 0,∀t ≥ 0, we have

(ϑ (t)L (t) + 2k2E (t))′ ≤ −k1ϑ (t)E (t) ,∀t ≥ t0.
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By exploiting (2.29), we notice that

R (t) = ϑ (t)L (t) + 2k2E (t) ∼ E (t) . (2.31)

Consequently, for some positive constant λ, we obtain

R′ (t) ≤ −λR (t)ϑ (t) , ∀t ≥ t0. (2.32)

A simple integration of (2.32) over (t0, t) leads to

R (t) ≤ R (t0) e
−λ

∫ t
t0

ϑ(s)ds
,∀t ≥ t0. (2.33)

Consequently, (2.24) is established by virtue of (2.29) and (2.33).

Remark 1. We give some examples to illustrate the energy decay rates obtained byTheorem 2.1.
We consider the three different examples

If g(t) = β1e
−β2t, then g′(t) = −ϑ(t)g(t), where ϑ(t) = β2,

then
E(t) ≤ c0e

−β2c1t, ∀t ≥ 0,

If g(t) =
β1

(1 + t)β2+1
, then g′(t) = −ϑ(t)g(t), where ϑ(t) =

β2 + 1

1 + t
,

then
E(t) ≤ c0

(1 + t)(β2+1)c1
,∀t ≥ 0,

If g(t) =
β1

(et(
π
2
−arctgt)

√
1 + t2)β2

, then g′(t) = −ϑ(t)g(t),where ϑ(t) = β2(
π

2
− arctgt),

then
E(t) ≤ c0

c1(e
t(π

2
−arctgt)

√
1 + t2)β2

, ∀t ≥ 0.
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