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A Common Solution of Equilibrium, Constrained Convex

Minimization and Fixed Point Problems

Maryam Yazdi

Abstract. In this paper, we propose a new iterative scheme with the help of the gradient-
projection algorithm (GPA) for finding a common solution of an equilibrium problem, a
constrained convex minimization problem, and a fixed point problem. Then, we prove some
strong convergence theorems which improve and extend some recent results. Moreover, we
give a numerical result to show the validity of our main theorem.

1 Introduction

Let H be a real Hilbert space and C' be a nonempty closed convex subset of H. A mapping T of
C into itself is called nonexpansive, if || Tz — T'y|| < ||z —y|| forallz,y € C. Also, a contraction
on C is a self-mapping f of C such that || f(z) — f(y)|| < k||l — y|| forall z,y € C, where
k € (0,1) is a constant. Moreover, F'(T') denotes the fixed points set of 7".

Let ¢ : C'x C' — Rbeabifunction of C' x C into R. We recall an equilibrium problem as follows:
The equilibrium problem for ¢ : C' x C' — Ris to find u € C such that

¢(u,v) >0 forallv € C. (L.1)

The set of solutions of (1.1) is denoted by EP(¢). Some authors (such as [10, 11, 12, 18]) pro-
posed some useful methods for solving the equilibrium problem (1.1). The equilibrium problem
(1.1) includes, as special cases, numerous problems in physics, optimization, image reconstruc-
tion, ecology, transportation, network, finance, and economics. In fact, the equilibrium prob-
lem is a generalization of many mathematical models such as variational inequalities, fixed point
problems, and optimization problems. Recently, a lot of iterative algorithms have been studied in

infinite dimensional spaces (see [13, 14, 19] and the references therein).
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Let A : C' — H be a nonlinear mapping. The variational inequality problem is to find a point
u € C such that
(v —wu,Au) >0 forallv € C.

The set of solutions of the variational inequality is denoted by VI(C, A).

Consider the constrained convex minimization problems as follows:

minimize{g(x) : x € C}, (1.2)

where g : C' — R is a real-valued convex function. The set of solutions of the problem (1.2) is
denoted by U. It is well known the gradient-projection algorithm (GPA) plays an important role
in solving constrained convex minimization problems. If g is (fréchet) differentiable, then the
GPA generates a sequence {x,, } using the following recursive formula:

Tnt+1 = Po(zn — AVg(zy,)) foralln >0, (1.3)

or more generally,

where in both (1.3) and (1.4) the initial guess x( is taken from C arbitrarily, and the parameters, A
or \,, are positive real numbers satisfying certain conditions. The convergence of the algorithms
(1.3) and (1.4) depends on the behavior of the gradient Vg. As a matter of fact, it is known if Vg
is a—strongly monotone and L —Lipschitzian with constants c, L > 0, then the operator

W = Po(I — A\Vyg) (1.5)

is a contraction; hence the sequence {z,,} defined by algorithm (1.3) converges in norm to the
unique minimizer of (1.2). However, if the gradient V ¢ fails to be strongly monotone, the operator
W defined by (1.5) would fail to be contractive; consequently, the sequence {x,, } generated by the
algorithm (1.3) may fail to converge strongly (see [20]). If Vg is Lipschitzian, then the algorithms
(1.3) and (1.4) can still converge in the weak topology under certain conditions.

In 2011, Xu [20] proposed an explicit operator-oriented approach to the algorithm (1.4); that
is, an averaged mapping approach. He gave his averaged mapping approach to the GPA (1.4) and
the relaxed gradient-projection algorithm. Moreover, he constructed a counterexample which
shows that the algorithm (1.3) does not converge in norm in an infinite- dimensional space and
also presented two modifications of GPA which are shown to have strong convergence [21, 22].

On the other hand, in 2007, Takahashi and Takahashi [16] introduced a general iterative
method for finding a common element of EP(¢) and F'(T'). They defined {x,, } in the following
way:

1 €C s
d(un,y) + T%(y — Up, U, — Tp) > 0, forally € C, (1.6)

Tnt1 = anf(xn) + (1 —ap)Txy, n>1,
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where {a, } C [0, 1] and proved strong convergence of the method (1.6) to z = Pp(1ynep(g) f(2)
in the framework of a Hilbert space, under some suitable conditions on {«, }, {7, } and bifunction

o.

In 2017, Cheawchan et al. [5] studied the following iterative scheme for finding a common
element of the set of solutions of an equilibrium problem, the set of solutions of a variational
inequality problem, and the set of fixed points of a nonspreading mapping in Hilbert spaces:

x1 € C,
d(un,y) + i(y — Up, Uy, — Tp) >0, forally € C,

Tn

Tpgl = QnZn + BnPo(l — AMA)up + T Po(I — M)z, n>1,
where A is an a-inverse strongly monotone mapping, 7" is a nonspreading map,
VI(C, A)(\EP()[ | F(T) # 90,

{an}, {Bn}, {7} € (0,1), {rn} C (0,2a),and X\ € (0,2c). They proved the sequences {z,, }
and {u,, } converge weakly to a point in VI(C, A) (| EP(¢) () F(T) under certain conditions.

In this paper, motivated by the above results, we propose a new composite iterative scheme
for finding a common element of the set of solutions of the equilibrium problem (1.1), the set of
solutions of the constrained convex minimization problem (1.2), and the set of fixed points of a
nonexpansive mapping in Hilbert spaces.

2 Preliminaries

Let H be a real Hilbert space with inner product (.,.) and the norm ||.||. Weak and strong con-
vergence are denoted by notation — and —, respectively. In a real Hilbert space H, we have

laz + By +vz21* = allz|® + Bllyll* + vll=I* — abllz — ylI* = Byll= = ylI* — arlz — z||?

forallz,y,z € Handa, B, A C [0, 1] with «+ 3+ A = 1. Itis known a Hilbert space H satisfies
Opial’s property [9], that is, for any sequence {x, } with x,, — z, the inequality

limin fr—ool|Tn — || < liminfr—oollzn — yl|

holds for every y € H with y # x.

Let C' be a nonempty closed convex subset of H. Then, for any x € H, there exists a unique
nearest point in C, denoted by P (), such that

|z — Po(x)| < ||z —yl forally € C.

Fc is called the metric projection of H onto C'. It is also known P is nonexpansive. Further, for
x € Handz € C,

z2=Po(x) & (x—z,z—y) >0 forally € C.
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Definition 1. A mapping 1" : H — H is called firmly nonexpansive if for any z,y € H,
ITe - Ty|]? < (Tw - Ty,z - y).

Lemma 2.1. [7] Let C' be a closed convex subset of H and T : C — C' be a nonexpansive mapping
with F(T) # 0. If {z,} is a sequence in C such that x,, — x and (I —T)x,, — 0, then (I —-T)x =
0.

Lemma2.2. [2] Let C' be a nonempty closed convex subset of H and ¢ : C'x C' — R be a bifunction
satisfying the following conditions:

(A1) ¢(x,z) =0 forallz € C;

(A2) ¢ is monotone, i.e., p(x,y) + ¢(y,x) < 0 forallz,y € C;

(A3z) foreachz,y,z € C,limyjo p(tz + (1 —t)x,y) < ¢(z,y);

(A4) foreachz € C,y — ¢(x,y) is convex and weakly lower semicontinuous.

Letr > 0and x € H. Then, there exists z € C such that

¢(2ay)+%<y—2,z—x> > 0 forally € C.

Lemma 2.3. [6] Assume ¢ : C' x C' — R satisfies (A1)-(Ag). Forr > 0 and x € H, define a
mapping Q, : H — C as follows:

Qrz ={z€C:¢(z,y)+ %(y—z,z—@ >0 forally € C}
forall x € H. Then, the following hold:
() Q) is single-valued;
(1) Q is firmly nonexpansive;
(1) F(Qr) = EP(¢);
(IV) EP(9) is closed and convex.

Remark 1. A mapping T : H — H is firmly nonexpansive if and only if 7" can be expressed as
T = £(I+S), where S : H — H is nonexpansive. Obviously, projections are firmly nonexpan-
sive.

Definition 2. [17] A mapping 7" : H — H is said to be an averaged mapping if it can be written
as the average of the identity / and a nonexpansive mapping; that is, 7’ = (1 — )] + «.S, where

a € (0,1)and S : H — H is nonexpansive. More precisely, we say that 7" is a.—averaged.
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Clearly, firmly nonexpansive mappings are %—averaged mappings.

Proposition 2.1. [4] The composite of finitely many averaged mappings is averaged. That is, if each
of the mappings {T;}I\_, is averaged, then so is the composite Ty . .. Ty In particular, if Ty is oy -
averaged and Ty is cwp-averaged, where a1, an € (0, 1), then the composite 11T is a-averaged,

where « = a1 + a9 — a1 Q.

Definition 3. A nonlinear operator G whose domain D(G) C H and the range R(G) C H is

said to be v- inverse strongly monotone ( for short, v-ism ) if there exists v > 0 such that

(x —y, Gz — Gy) > v||Gz — Gy||? forall z,y € D(G).

It can be easily seen the projection map P is a 1-ism. The inverse strongly monotone (also
referred to as co-coercive) operators have been widely used to solve practical problems in various

fields, for instance, in traffic assignment problems; see, for example, [3, 8] and reference therein.

Proposition 2.2. [4] Let T : H — H be given. We have

(a) T is nonexpansive if and only if the complement I — T is %—ism.
(b) IfT is v—ism, then fory > 0,~ T is = — ism.

(c) T is averaged if and only if the complement I — T is v—ism for some v > %; Indeed, for
a € (0,1), T is a—averaged if and only if I — T is i—ism.

Lemma 2.4. [1] Assume {a,,} is a sequence of nonnegative real numbers such that
An+41 < (1 - ’Yn)an + YnUn + Un,

where {7, } is a sequence in [0,1], {un} is a sequence of nonnegative real numbers, and {v,}
is a sequence in R such that " | v, = oo,limsup, , vy, < 0and Y 7, 1, < oo. Then

3 Main result

In this paper, we always assume g : C — R is a real-valued convex function and Vg is an
L—Lipschitzian mapping with L > 0. We observe z* € C solves the minimization problem

(1.2) if and only if * € C solves the fixed point equation

x* = Po(I — A\vg)z™,
where A > 0 is any fixed positive number. Since Vg is L-Lipschitzian, Vg is %—ism, which then

implies AV g is ﬁ—ism. So, by Proposition 2.2, I — AVg is %—averaged. Since the projection P
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is 5-averaged, we see from Proposition 2.1 that the composite P:(I — AVg) is (#)—averaged

for0 < A < 2. Hence Pc(I — A\, Vg) is (W)—averaged for each n € N. Therefore, we can

write 2 ML 24 AL
Po(I — M\, Vg) = 4" I+ 4" On = spl + (1 — 8,)On,

2—A\n L
1 -

where O,, is nonexpansive and s,, =

Theorem 3.1. Let C' be a nonempty closed convex subset of a real Hilbert space H, T : C' — C' be
a nonexpansive mapping, ¢ : C' x C' — R be a bifunction satisfying the conditions (A1) — (A4) (of
Lemma 2.2), f be a contractions of C into itself with coefficient k, g : C — R be a real-valued convex
function, Vg be an L—Lipschitzian mapping with L > 0, and F' := U (EP(¢) N F(T) # 0.
Suppose {ap }, {Bn}> {n}> and {r,} are real sequences satisfying the following conditions:

(B1) {an} C [0,1],limy o0y =0, > 00 j oy =00 and Y o7 |omt1 — ap| < 00;
(B2) {Bn} C (0,1),0 < liminf,, o B, <limsup,, . Bn < land > 07 |Bnt1 — Bu| < 00;
(Bs3) {’Yn} C [07 1] and Z’I?LOII |’Yn+1 - '7n| < 005

(Ba) {rn} C (a,00) (a > 0)and > ;2 |rpy1 — ra| < 00.

Let {x,,} be a sequence generated by

{ G(tn, y) + 7= (Y = Un, Un — xn) > 0, forally € C, 3.1)

Tnt1 = anf(xn) + BnPo(l — A\oVg)un + T Po(I — A\Vg)Tn, n>1,

where x1 € C, ap + B+ = 1, {\} C (0, %),un = Qr,Tn, Po(I — A\yVg) = spl + (1 —
S1)On, and s, = %. Letlimy, 500 S, = 0and Y07 | [Sp41 — Sn| < 00. Then, the sequences

{zn} and {u,} defined by (3.1) converge strongly to q € F, where ¢ = Pp f(q), which solves the
following variational inequality:

((I-f)g,q—x) <0 forallz € F.

Proof. Since Pr f is a contraction of C into itself, there exists a unique element ¢ € C' such that
q = Prf(q). LetV,, = Po(I — A\, Vg). Now, we proceed with the following steps:

Step 1. We claim {z,,} and {u,,} are bounded. Let p € F. Then, from u, = Q,,z, and
Qr,0 =D ||un — p|| < ||zn, — p||. Thus, from V,,p = p and (3.1),

||xn+1 - PH < ||an(f(xn) - p) + /Bn(vnun - p) + ’Vn(Tann —p)H
an(|[f(@n) = @I+ 1 £(p) = pl) + Bullun — pll + yullzn — pll
(1= an(l = K))||lzn — pll + anll f(p) — 1l

max{||z,, — pl|, L2l

VAN VARVAN
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By induction,

l2n — p|| < max{|z1 — pl|, ”f” p”}foralln>1

Hence, {z,,} is bounded, so are {uy,}.

Step 2. We claim limy, o ||Zn+1 — @p|| = 0. Set
1
M = sup{|[f (), Vg (@a)ll. 1V gCun) |, Varnll, I TVazall, ~llun = 2n] : n € N}
By the definition of {xz,,},

[Zn+1 — znll

= lanf(zn) + BuVaun + T Vazn — an—1f(Tn-1) = Bn-1Va-1un—1
~Yn—1TVp—1Zn—1||

= |lan(f(zn) = f(Tn-1)) + (@n — an-1) f(Tn-1) + Bn(Vatn — Vatin-1)
+5.Voun—1 — Bn—1Va—1tn—1 + Y (TVoxy — TVhaxn_1) + T Vaxn—1 (3.2)
V1T Vo-12Zn-1||

< ank||zn — vp || + Moy, — O‘nfl‘ + YallZn = Tn_1ll + Bullun — wn—1]|
+BnlVatin—1 = Vaorun—1]l + [Bn = Bn—1|M + [yn — Yn—1|M
+Y | TViaxpn—1 — TVy—12p—1]|

foralln € N. Letu,, = @,z and up—1 = Qr,, Tpn—1. SO

1
¢(una y) + 7(3/ — Up, Up — fEn) >0 forally € C (3.3)
and
d(up—1,y) + (y —Up—1,Up—1 — Tp—1) >0 forally € C. (3.4)
Tn—1

Sety = up—1 in (3.3) and y = u,, in (3.4). Then by adding these two inequalities and using

condition (As), we have

Up—1 — Tp—1 Up — Tn
<Un — Up-—1, - > >0
Tn—1 Tn

and hence (U, — Up—1,Un—1 — Up + Up—1 — Tp—1 — T’;—*l(un — xp,)) > 0. This implies
n

”Un - un71||2 < <un — Up—1,Tp — Tn—1 + (1 - %)(Un - I'n)>

< lun — up—1|{l|en — 21| + %’Tn—l — Tl tn — x40}

Therefore

||'Um - Unfl” < ||5Un - l’nle + |7‘n - rn71|M- (35)
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Also, we have

Vatn-1 = Vacrznall = [|[Pe(I = AnVg)tn-1 — Po(I = A1V g)Tn—1]|
< =2V -1 — (I — A\pe1Vg) 1]
= A= Al Vg(@n-1)]| < M[Ay — Apal.

Similarly, we can prove
||Vnun—1 - Vn—lun—lH S M‘)\n - An—l"
Substituting (3.5), (3.6) and (3.7) in (3.2), we have

[Zn+1 — n|

< apkllzn — 2p1ll + Moy — 1] + Yallzn — 2n-1ll + Bull|lzn — 2o
_Hrn - rn—l’M) + (/Bn + ’Yn)M’)‘n - )‘n—1| + ‘ﬂn - Bn—l’M
+vn — Yn—1|M

< (1= QA =kon)llzn = znall + (lon — an1] + [Bn = Bnal + [0 — -1l
—H)\n — An_ll + |7”n — T’n_1|)M

for all n € N. Therefore, by Lemma 2.4, lim;,_yo0 ||Zn41 — 25| = 0.

Step 3. We claim lim,,_, ||z, — up|| = 0. Let p € F. By Lemma 2.3,

Hun _pH2 = Hanwn - anpH2 < <xn — D, Un _p>
= S(lzn = I + llun — plI*> = lun — zn|/?).

This implies
[un = plI* < llzn =Pl = llun — 2.
So
|Zn+1 —pH2 < Nlen(f(zn) = p) + Ba(Vaun — p) + 4 (TVaay, —p)||2
< an([lf(@n) = FOI + 11/ ®) = 21)? + Bullun — plI?
+ynllzn — pl?
< (1= an(l = k) zn = pl* + anllf(p) — plI?
+2ank||lzn — pll|f(p) — pll — Bllun — anQ

Therefore

Bullun = znl® < Nlen = plI? = |Zag1 — plI* + anll f(p) — pII?

+2ankl|n — pllIf(p) — pll
20 = Zniall(J2n — pll + 201 = pll) + anll f(p) = plI?
+2ak|lzn — pllIf () — pl|-

IN

Hence, by (B1), (B2), and Step 2, lim, oo ||Zr, — up|| = 0.

(3.6)

(3.7)
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Step 4. We claim lim,, o ||y, — Po(I — %Vg)unH = 0 and lim,,, o |2, — TVpz,|| = 0.
We know

[Vatn — znll = (1 = sp)un + $00ntn — 20| < (1 = sp)|lun — @al| + 80l|Ontin — 0.
So, from Step 3, lim;,—, ¢ ||V, — 2y || = 0. This implies lim,, o0 ||ty — Viuy|| = 0. Therefore

ltn — Pe(I = 29g)un]l < | Po(l — 29g)un — PolT — AuVg)un]
HPo(I = AnVg)un — |
< (2= M)IVglun)| + [ Vaun — ual|.

Hence limy, o0 ||, — Po(I — 2Vg)u,|| = 0. From definition of {z,,},

||xn+l - Tann” = Hanf(xn) + BnVaun + ('Yn - 1)Tvnxn||
< anllf(@n) = TVazn || + BullVaun — TVaz, ||
< anllf(zn) — TVazn|l + Bu(l[Vaun — xnl| + |20 — TVaas|)).

So
|z = TViaan| < [|Zn1 — 2ol + [|[2nr1 — TVazy||
< lznsr — 2ol + anllf(zn) — TannH + Brn([|Vaun — n||
+||xn — TVhzy|).
Therefore

(1= B)llzn — TVazall < |Tnr1 — ol + anll f(2n) = TVazall + Bl Viun — 24|

Hence

lim ||z, — TV,z,| = 0. (3.8)
n—0o0

Step 5. We claim limsup,, ., ((I — f)q,q — z,,) < 0, where ¢ = Prf(q). To show this,

choose a subsequence {u,, } of {u,} such that

n—00 =00
Since {uy, } is bounded in C, without loss of generality, we may assume u,, — z € C. Now, we
show z € F'. Since Vg is %—ism, Po(I — %Vg) is nonexpansive self-mapping on C. Therefore,
from Step 4 and Lemma 2.1, we obtain z = Po(I — %V g)z. This implies z € U. Next, we show
z € EP(¢). By up, = Qy, Tn, one can write
1
d(tn,y) + —(y — Up,up — xy) >0 forally € C.

Tn
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From (As), %(y — Up, Uy — Tp) > Gy, uy), forall y € C. Replacing n by n;, we have

1
T—(y — Upyy Up; — Tn,) > Gy, uy,) forally € C.

K3

Since u,, — =z, it follows from Step 2, (A4), and (Bs) that ¢(y,2) < Oforally € C. Set
yr =ty+ (1 —t)zforallt € (0,1] andy € C. Theny; € C and hence ¢(y;, z) < 0. From (A;)
and (As),

0 =0, ye) < td(ye, y) + (1 = )d(ye, 2) < td(ye, ).

Therefore ¢(y:,y) > 0. Lettingt — 0, we get ¢(z,y) > Oforally € C. Thisimplies z € EP(¢).
Now, we prove z € F(T'). To show this, we suppose z # T'z. Since z,,, — z, by using Opials
property and (3.8),

liminfi o0 ||2n, — 2| < liminfi oo (|20, — TV, Zn, || + | T Vi, @n, — T2||)
= liminfio || TV, xn, — T2||

< liminfi_yo0 |20, — 2.
This is a contradiction. Therefore z € F(T'). Since ¢ = Pr f(q),

limsup,_, . (I = f)¢:q¢ — zn) = limioo(( — f)g: ¢ — Tn,)
= limi—>oo<(I - f)q7 q— um)
= lim;oo((I — f)g,q — 2) < 0.

Step 6. We claim {z,, } and {u,,} converge strongly to ¢. From (3.1),

|Znt1 — Q||2 = |lan(f(zn) — @) + Ba(Vaun — q) + (TVozn — Q)HQ

< Nlan(f(zn) = f(@) + Bn(Vaun — @) + v (TVoz, — Q)H2
+20(f(q) = ¢ Tn+1 — Q)
< O‘nkQHIL‘n_QHQ‘*'BnHUn_QHQ""YnH:Un_‘.7”2

+20,(f(q) = ¢ Tnt1 — q)
< (1= (1 =k)an)zn — ql* + 200 (f(q) = ¢ Tn11 — q)-

By Step 5 and Lemma 2.4, {x,,} converges strongly to g. Consequently, {u,,} converges strongly
to g. This completes the proof. O]

If A: C — H is a-ism, then it is é— Lipschitzian. So, by the same argument in the proof of

Theorem 3.1, we can proof the following Theorem.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H, T': C' — C be
a nonexpansive mapping, ¢ : C' x C' — R be a bifunction satisfying the conditions (A1) — (Aa4) (of
Lemma 2.2), f be a contractions of C' into itself with coefficient k, A : C' — H be an a-ism, and
F:=EP(p)VI(C,A)NF(T) # 0. Suppose {cn }, {Bn}, {n}> and {ry,} are real sequences
satisfying the following conditions:
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(B1) {an} C [0,1], limp o0 0y =0, Y07 vy = 00, and Y o0 |1 — o] < 005
(B2) {Bn} - (07 1): 0 < liminf,, 00 Bn < lim Sup,, 00 Bn < 1,and 2211 ’Bn—i—l - Bn’ < 003
(Bs) {'Yn} C [07 1] and ZZO:I |’Yn+1 - 'Yn‘ < 0903

(Ba) {rn} C (a,00) (@ > 0)and Y .7 |rp41 — | < 00.

Let {x,, } be a sequence generated by

{ O(un,y) + 1 (y =ty — 20) 20, forally € C, 59)

Tnt1 = anf(xn) + BnPo(l — MA)un + T Po(I — A\yA)zy,, n>1,

where x1 € C, o + Bn + 7 = L {\n} C (0,2a),up, = Qy, xpn, Po(I — \yA) = sp I + (1 —

$n)On, and s, = %. Letlimy, o0 Sp, = 0and Y07 | [Spt1 — Sn| < 00. Then, the sequences

{zn} and {u,} defined by (3.9) converge strongly to q € F, where ¢ = Pp f(q), which solves the
following variational inequality:

((I—-1f)g,q—x) <0 forallz € F.

Remark 2. If T is a nonexpansive mapping in [5, Theorem 3.1], then Theorem 3.2 is a general-
ization of [5, Theorem 3.1] .

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H, T : C' — C be
a nonexpansive mapping, f be a contraction of C' into itself with coefficient k, g : C' — R be a real-
valued convex function, V g be an L—Lipschitzian mapping with L > 0 and, F := U (F(T') # 0.
Suppose {aw, }, {Bn}, and {y,} are real sequences satisfying the following conditions:

(B1) {an} C [0,1],limy o0ty = 0, 07 oy = 00, and Y7 |1 — Q| < 00;
(B2) {Bn} C[0,1),0 <limsup,_,. Bn <L and > 7 |Bnt1 — Bn| < o0;
(Bs) {mn} C [0, 1] and 3202 1 [yn41 = Yn| < 005
Let {x,,} be a sequence generated by
Tnt1 = anf(zn) + BuPo(l — MV g)Tn + TPl — A Vg)Tn, n > 1,

where x1 € C, ap + Bn + v = 1, {\n} C (O,%),PC(I —A\Vg) = spl + (1 — 5,)0y,
and s, = #. Let limy, 500 85, = 0 and Y07 | [spq1 — Sn| < oo. Then, the sequence {xy}

converges strongly to q € F', where ¢ = Pr f(q), which solves the following variational inequality:

(I—-1f)g,q—x) <0 forallx € F.
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Proof. Let ¢ = 0 in Theorem 3.1. Then w,, = Pcx,. Since x,, € C foralln > 1, we have
Tn = Poxp. So u, = x, and the desired result is directly obtained by Theorem 3.1. O

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H, f be a con-
traction of C' into itself with coefficient k, g : C' — R be a real-valued convex function and V g be
an L—Lipschitzian mapping with L > 0, U # 0, and 1 € C. Suppose {cv, } and {\,} are real

sequences satisfying the following conditions:
(B1) {an} C [0,1],limy o0 =0, D07 oy = 00, and Y o7y |1 — Q| < 00;
(Bs) limy, 00 Ap = 2 and 300 | [ Apt1 — An| < 00.
Then
Tyl = Anf(xn) + (1 — an)Po(l — AVg)Tn, n>1,

converges strongly to q € U, where ¢ = Py f(q), which solves the following variational inequality:
(I = flg,q—x) <0 forallz € U.

Remark 3. Corollary 3.4 remains true if we replace the condition lim,_,oc A\, = % with the
condition 0 < liminf,, oo Ay, < limsup,,_, A, < % So, Corollary 3.4 is a generalization of
(20, Theorem 5.2] and therefore [20, Corollary 5.3].

Proof. We can assume \,,; — A € (0, 2. According to the Step 4 and the Step 5 in the proof of
Theorem 3.1, it is suffices to show lim; o |7, — V|| = 0, where V' := Po(I — Avg). In
fact

HVfUnj - anH < ||anxnj - xn]H + ||anxnj - VxnjH
< Wiy — 2oyl + |20, — Znj4al
+||Pc(I — )‘nj VQ)xnj — Po(I - )\VQ)ivnj |
< a”j”f(xnj) - anmn]’H + Hxnj - xnj-I—lH
I = An;Vg)an, — (I — AVg)zy,||
< Oénj”f(fcnj) - anxnjH + Hxn] - wnj—i-lH + M‘)‘nj = Al

Hence lim;_; Ha?n] — Vxnj” =0 -

4 Numerical Test

In this section, we give an example to illustrate the scheme (3.1) given in Theorem 3.1.
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Example 1. Let C = [-10,10] C H = R and define ¢(x,y) = —6x2 + xy + 5y>. First, we
verify that ¢ satisfies the conditions (A1) — (A4) as follows:
(A1) ¢(x,x) = —62% + 22 + 522 = 0 for all 7 € [—10, 10];
(A2) ¢(z,y) + d(y,z) = —(y — x)> < Oforall z,y € [-10, 10];
(A3) Forall z,y, z € [—10, 10],
lim sup ¢(tz + (1 — t)x,y) = limsup(—6(tz + (1 — t)2)* + (tz + (1 — t)x)y + 592) = ¢(z, 7).
t—0t t—0t
(Ay) Forall z € [-10,10], ®(y) = é(z,y) = —622 + zy + 5y? is a lower semicontinuous and
convex function.
From Lemma 2.3, ), is single-valued for all » > 0. Now, we deduce a formula for Q,(x).

For any y € [—10,10] and r > 0, we have

1

o(z,y) +~(y—z,2—2) >0 5ry® + ((r + 1)z — 2)y + 22 — (6r + 1)2% > 0.

T
Set G(y) = 5ry?> + ((r + 1)z — 2)y + 2z — (6r + 1)22. Then G(y) is a quadratic function
of y with coefficients a = 5r,b = (r + 1)z — x and ¢ = xz — (6r + 1)22. So its discriminate
A = b? — dacis

A= [(r+1)z—z]?—20r(xz — (6r +1)z?)

= (r+1)%222 - 2(r + 1)xz + 2% — 20rzz + (12072 + 20r) 2>

= [(11r + 1)z — 2]
Since G(y) > 0 forall y € C, this is true if and only if A < 0. That is, [(117 + 1)z — 2]? < 0.
Therefore, z = 1777, which yields Q,(z) = 17,75 So, from Lemma 2.3, we get EP(¢) = {0}

Let oo, = %, By = 7?573, Y = 81"5713, An = %, rp, = lforalln € N, Te = Sm
f(z) = iz, and g(z) = 22. Hence U EP(¢)(F(T) = {0}, Vg is 4—Lipschitzian, and
Sp = 2_2\1"L = ﬁ. Also,

2x(2n — 1 T T
Po(I = AVg)z = Py 10)(z — (471)) = P[710,10](%) =5 forall z € [-10, 10].

b & L b o v &2 o o
b & L b o N &2 0 o

=)
)

5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

(b)x,‘=-10 (a)x‘=7

Figure 1: The convergence of {x,,} and {u,, } with different initial values z;
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Table 1: The values of the sequences {x,, } and {u,,}

Numerical results for 1 = 7and z1 = —10
n Tn Up, n Tn Up,
1 7 0.58333 1 -10 -0.83333
2 1.4972 0.12477 2 -2.1389 -0.17824
3 0.16969 0.01414 3 -0.24241 -0.020201

20 5.2131e739 5.2131e39 20 —8.9368¢ 29 —7.4473¢30
21 6.208e732  6.208¢7%2 21 —1.0642¢730 —8.8685¢32
22 7.0424e73% 7.0424e73%* 22 —1.2073e %2 —1.0061e733

38 3.4511e %6 2.8759¢767 38 —4.9301e % —4.1084¢67
39 2.1685¢7 %8  1.8071e %9 39 —3.0978¢ %% —2.5815¢ 69
40 1.3277¢~ 70 1.1064e~ "1 40 —1.8967¢~ 0 —1.5806e "

Then, from Lemma 2.4, the sequences {x,, } and {u,, }, generated iteratively by

{ Up = anfzn = Tlgxna (4 1)

_ /1 | Tn-2 , 8n-3 _ 431n—46
Tnt1 = (57 1 36002 T 15002 )%n = TI800n2 Tns

converge strongly to 0 € U (| EP(¢) () F(T'), where 0 = Py pps) 0 rer) (f)(0).

The Table 1 indicates the values of sequences {z,, } and {u,, } for algorithm (4.1) where z; =
7,21 = —10,and n = 40. The Figure 1 presents the behavior of {z,,} and {u,, } that corresponds
to the Table 1 and shows both of the sequences converge to 0 € F'.

5 Concluding Remarks

The gradient-projection algorithm (GPA) plays an important role in solving constrained convex
minimization problems. In this paper, with the help of the GPA and averaged mappings, we in-
troduce a new iterative algorithm for finding a common element of the set of solutions of the
equilibrium problem (1.1), the set of solutions of the constrained convex minimization problem
(1.2), and the set of fixed points of a nonexpansive mapping. Then, we prove the sequences gener-
ated by the algorithm converge strongly to a common element of solution sets of these problems.
Also, we derive some consequences from our main result. The results obtained in this paper, im-
prove and extend the corresponding results of [5, 20]. Finally, we give a numerical example to

justify the main result.
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