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Weak Signed Roman Domination in Digraphs

Lutz Volkmann

Abstract. Let D be a finite and simple digraph with vertex set V(D). A weak signed Roman
dominating function (WSRDF) on a digraph D is a function f : V(D) — {—1,1, 2} satis-
fying the condition that 3 - ,; f(2) = 1 for each v € V/(D), where N~ [v] consists of v
and all vertices of D from which arcs go into v. The weight of a WSRDF fis)_ oy f (v).
The weak signed Roman domination number v,,sg (D) of D is the minimum weight of a
WSRDF on D. In this paper we initiate the study of the weak signed Roman domination
number of digraphs, and we present different bounds on v,,sr(D). In addition, we deter-
mine the weak signed Roman domination number of some classes of digraphs.

1 Terminology and introduction

In this paper we continue the study of Roman dominating functions in graphs and digraphs. Let
G be a simple graph with vertex set V' (G), and let N[v] = Ng[v] be the closed neighborhood of

the vertex v.

A signed Roman dominating function on a graph G is defined in [1] asa function f : V(G) —
{—1,1, 2} satisfying the conditions that (i) f (Na[v]) = > e Ny f(2) = Lforeveryv € V(G),
and (ii) for every vertex u for which f(u) = —1 is adjacent to a vertex v for which f(v) = 2.
The weight of a signed Roman dominating function f onagraph G'is >,y (¢ f(v). The signed
Roman domination number vsr(G) of G is the minimum weight of a signed Roman dominating

function on G.

A weak signed Roman dominating function on a graph G is defined in [14] as a function
f:V(G) — {—1,1,2} such that f(Ng[v]) > 1 for every v € V(G). The weight of a weak
signed Roman dominating function f on a graph G is 3, cy/(¢) f(v). The weak signed Roman
domination number v,,sr(G) of G is the minimum weight of a weak signed Roman dominating

function on G. Clearly, v,,sr(G) < sr(G).
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Let now D be a finite and simple digraph with vertex set V(D) and arc set A(D). The integers
n(D) = |V(D)| and m(D) = |A(D)| are the order and the size of the digraph D, respectively.
We write d,(v) = d*(v) for the out-degree of a vertex v and d,(v) = d~(v) for its in-degree.
The minimum and maximum in-degree are 6~ (D) and A~ (D) and the minimum and maximum
out-degree are 67 (D) and AT (D). The sets Ny (v) = N*(v) = {z|(v,z) € A(D)} and
Np(w) = N™(v) = {z|(xz,v) € A(D)} are called the out-neighborhood and in-neighborhood
of the vertex v. Likewise, N} [v] = N*[v] = NT(v)U{v}and N [v] = N~ [v] = N~ (v)U{v}.
If X C V(D), then D[X] is the subdigraph induced by X. For an arc (z,y) € A(D), the vertex
y is an out-neighbor of x and x is an in-neighbor of y, and we also say that x dominates y or y
is dominated by x. For a real-valued function f : V(D) — R, the weight of f is w(f) =
> vev(p) f(v), and for S € V(D), we define wy(S) = >_,c5 f(v), sow(f) = wy(V(D)).
Consult [5] or [6] for notation and terminology which are not defined here.

We define a set S C V(D) to be a dominating set of D if for all v ¢ S, v is dominated by a
vertex s € S. The minimum cardinality of a dominating set in D is the domination number (D).

In this paper, we continue the study of signed Roman domination in graphs and digraphs
(see, for example, [1, 2, 3,4,7, 8,9, 10, 11, 12, 13, 14]).

A signed Roman dominating function (abbreviated SRDF) on D is defined in [9] as a function
[ V(D) — {-1,1,2} such that f(N~[v]) = > cn—py f(z) = 1foreveryv € V(D) and
every vertex u for which f(u) = —1 has an in-neighbor v for which f(v) = 2. The weight of
an SRDF f on a digraph D is w(f) = }_,cv(p) f(v). The signed Roman domination number
vsr(D) of D is the minimum weight of an SRDF on D. A 4z (D)-function is a signed Roman
dominating function on D of weight vsr (D).

A weak signed Roman dominating function (abbreviated WSRDF) on D is defined as a func-
tion f : V(D) — {—1,1,2} such that f(N~[v]) > 1 for every v € V(D). The weight of
a WSRDF [ on a digraph D is w(f) = > ,cy(p) f(v). The weak signed Roman domination
number Yy,sg(D) of D is the minimum weight of a WSRDF on D. A ~,,sgr(D)-function is a
weak signed Roman dominating function on D of weight ~y,,sr(D). For a WSRDF f on D, let
Vi=Vi(f) = {veV(D): flv) =i} fori = —1,1,2. A weak signed Roman dominating
function f : V(D) — {—1,1, 2} can be represented by the ordered partition (V_y, V7, V3) of
V(D).

The definitions lead to v, sg(D) < vsr(D). Therefore each lower bound of 7y, r(D) is also
a lower bound of y5(D).

Our purpose in this work is to initiate the study of the weak signed Roman domination num-
ber in digraphs. We present basic properties and sharp bounds for the weak signed Roman dom-
ination number of digraphs. In particular, we show that many lower bounds on vz (D) are also
valid for v,sg (D). In addition, we show that the difference ysr (D) — vsr(D) can be arbitrarily
large, and we determine the weak signed Roman domination number of some classes of digraphs.



Weak Signed Roman Domination in Digraphs 499

The associated digraph D(G) of a graph G is the digraph obtained from G when each edge e
of G is replaced by two oppositely oriented arcs with the same ends as e. Since N, ) [v] = Ng[v]
for each vertex v € V(G) = V(D(G)), the following useful observation is valid.

Observation 1.1. If D(G) is the associated digraph of a graph G, then ysgr(D(G)) = vsr(G) and
fywsR(D(G)) = FYUJSR(G)'

Let K,, and D(K,) be the complete graph and complete digraph of order n, respectively. In

[14], the author determines the weak signed Roman domination number of complete graphs.

Proposition 1.1. ([14]) If n > 1, then v sp(Ky) = 1.

Using Observation 1.1 and Proposition 1.1 , we obtain the weak signed Roman domination

number of complete digraphs.

Corollary 1.2. If n > 1, then v,sr(D(Ky)) = 1.

2 Preliminary results and bounds

In this section we present basic properties and some first bounds on the weak signed Roman

domination number of digraphs. The definitions immediately lead to our first proposition.
Proposition 2.1. If f = (V_1, V7, V5) isa WSRDF on a digraph D of order n, then

(@) |V_1| 4+ Va| + [Va] = n.

b) w(f) = Vil +2[Va| — [V,

(c) Every vertex in V_; is dominated by one vertex of V5 or two vertices of V;.

(d) ViU V3 isadominating set of D.
Proposition 2.2. If D is a digraph of order n, then

Ywsr(D) =2+ A~ (D) —n.

Proof. Letw € V(D) be avertex of maximum in-degree, and let f be a y,,sz(D)-function. Then

the definitions imply
Ywsr(D) = > fl)= Y f@+ > fl=)
zeV (D) €N~ [w] €V (D)\N ~ [w]
> 1+ ), f@=l-(n-(A(D)+1)=2+A7(D)—n,

z€V(D)\N~[w]

and the proof of the desired lower bound is complete. O]



500 L. Volkmann

Proposition 2.3. If D is a digraph of order n with minimum in-degree 6~ > 2, then ,,sz(D) <
n—200"/2].

Proof. Lett = [0~ /2|, and let A = {wvy,v2,..., v} be a set of ¢ vertices of D. Define the
function f : V(D) — {—1,1,2} by f(z) = —1forz € Aand f(z) = 1forz € V(D) \ A.
Then B

JINTw]) > —t+ (0" +1—-t)=0 +1—-2t=96 +1—-2 {ZJ >1

foreachw € V(D). Therefore f is WSRDF on D of weight n—2t and thus v,,sr(D) < n—2t. O

The proof of the next proposition is identically with the proof of Proposition 6 in [9] and is

therefore omitted.

Proposition 2.4. Assume that f = (V_;, V], V) is a WSRDF on a digraph D of order n. If
AT(D)=A%"and 67(D) = §*, then

(@) (24T +1)|Va| + AT[V| = (67 +2)|Vy].

(b) 2AT + 61 +3)|Va| + (AT + 6T +2)|Vi| > (61 + 2)n.
©) (AT 46T +2)w(f) > (67 — AT +2)n+ (6 — AH)|Val.
(d) w(f) > (6" —2AT + 1)n/(2AT + 6T + 3) + |Va].

A digraph D is out-regular or r-out-regular if T (D) = AT (D) = r, and D is r-regular if
dt(D) = AT (D) = 6 (D) = A= (D) = r. As an application of Proposition 2.4 (c), we obtain

a lower bound on the weak signed Roman domination number for r-out-regular digraphs.

Corollary 2.1. If D is an r-out-regular digraph of order n, then v,,sg(D) > n/(r + 1).

Therefore vsg(D) > n/(r + 1) for each r-out-regular digraph of order n (see [9]). Using

Corollary 2.1 and Observation 1.1, we obtain the next known result.

Corollary 2.2. ([1, 14]) If G is an r-regular graph of order n, then vsg(G) > Vuwsr(G) > n/(r+
1).

If D is not out-regular, then the next lower bound on the weak signed Roman domination

number is valid.

Corollary 2.3. Let D be a digraph of order n, minimum out-degre ™ and maximum out-degree
AT.If§T < AT, then

—2AT 4267+ 3
ws D Z
Yusk(D) ( 2AT + 61 + 3 )
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Proof. Multiplying both sides of the inequality in Proposition 2.4 (d) by AT — 6T and adding the
resulting inequality to the inequality in Proposition 2.4 (c), we obtain the desired lower bound.
O

Since AT(D(G)) = A(G) and 67 (D(G)) = §(G), Corollary 2.3 and Observation 1.1 lead

to the next known corollary.

Corollary 2.4. ([1, 14]) Let GG be a graph of order 7, minimum degree 6 and maximum degree
A.If§ < A, then

Toi(G) = Tusr(G) = (‘2“2“3)

2A+0+3
Example 1. Let p > 2 be an integer, and let v1,va, ..., v, be the vertex set of the complete graph
K. Nextlet H be the graph consisting of K, such that each vertex v; is adjacent to 2p — 1 leaves for
1 < i < p. Now let D(H) be the associated digraph of H. Define the function f : V(D(H)) —
{-1,1,2} by f(vi) =2 for 1 <i < pand f(x) = —1 otherwise. Then f isa WSRDF on D(H)
of weight N .
—2AT(D(H)) + 26 +3

=2 = (st ovcomy 5 )"0

Therefore Corollary 2.3 shows v,sr(D(H)) = 3p — 2p? and thus Corollary 2.3 is sharp.

Since f is also a signed Roman dominating function on D(H), this example demonstrates
that the inequality

—2A" 4201 43
>
%R(D)—( 2AT + 45T +3 ) ’

which can be found in [9] and which follows from Corollary 2.3, is sharp too.

3 Special families of digraphs

In this section, we determine the weak signed Roman domination number for special classes
of digraphs. A tournament is a digraph in which for every pair u, v of different vertices, either
(u,v) € A(D) or (v,u) € A(D), but not both.

The acyclic tournament AT (n) with n vertices has the vertexset V(AT (n)) = {u1,ug, ..., un}.
An arc goes from u; into u; if and only if 7 < j.

Let n be an odd positive integer such n = 2r + 1 with a positive integer 7. We define the
circulant tournament CT(n) with n vertices as follows. The vertex set of CT(n) is V(CT(n)) =
{up,u1,...,un—1}. For each i, the arcs are going from u; to the vertices w; 41, Ui12, . .., Uity
where the indices are taken modulo 7.

The proof of the next four propositions are similar to the the proofs of Propositions 7, 8, 11

and 12 in [9] and are therefore omitted.
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Proposition 3.1. If AT'(n) is an acyclic tournament for n > 3, then ,,sr(AT'(n)) = 1.

Proposition 3.2. Letn = 2r + 1, where r > 1 is an integer. Then 7,,sg(CT(n)) = 3.

Let C,, = vjv2...v,v1 be a cycle of order n. If we replace each edge v;v; 41 by an arc
(vi, vi41) for 1 < i < n, where the indices are taken modulo n, then we obtain an oriented cycle
C? of order n. Let P, = vjv2.. . v, be a path of order n. If we replace each edge v;v;41 by an arc

(vi, vi41) for 1 < i < n — 1, then we obtain an oriented path Py of order n.

Proposition 3.3. Let C? be an oriented cycle of order n > 2. Then 7,5z (C2) = n/2 when n is
even and v,,sr(CY) = (n + 3)/2 when n is odd.

Proposition 3.4. Let P? be an oriented path of order n. Then 7,5z (P?) = n/2 when n is even
and yysr(P2) = (n+ 1)/2 when n is odd.

Let D(K,,) be the complete bipartite digraph with partite sets X and Y, where | X| = p
and |Y| = ¢.

Proposition 3.5. If ¢ > 1 is an integer, then y,,sr(D(K1,4)) = 1 unless ¢ = 2, in which case
Ywsr(D(K12)) = 2.

Proof. Let X = {x}andletY = {y1,92,...,yq}. According to Proposition 2.2, we have
Twsr(D(K1g)) 22+ A7(D(K1g)) = (¢ +1) = L.

If ¢ = 2t 4 1 is odd for an integer t > 0, then define f(z) = 2, f(y;) = —1for1 <i<¢+1
and f(y;) = 1fort+2 <4 < 2t + 1. Then f isa WSRDF on D(K] ;) of weight 1 and therefore
Ywsr(D(K1,4)) = 1 when ¢ is odd.

If ¢ = 2t is even for an integer ¢ > 1, then it is easy to see that v,,szr(D(K12)) = 2. In the
caset > 2 define f(x) =2, f(y;) = —1for1 <i<t+1land f(y;) =1lfort +2<i<2t—1
and f(y2t) = 2. Then f isa WSRDF on D(K ;) of weight 1 and therefore v,,sr(D (K7 ,4)) = 1
when ¢ > 4 is even. O

Proposition 3.6. Let 2 < p < ¢ be integers. Then vy,sr(D(K24)) = 2, Yuwsr(D(K34)) = 3
and yysr(D(Kpq)) = 4ford < p.

Proof. Let X = {x1,29,...,2p}, Y ={y1,92,...,yq}>andlet f beay,sr(D(K, 4))-function.
Assume first that f(x;) > 1for 1 < i < p. Then it follows that

YwskR(D(Kpg)) = f(N"[r1]) + (X \{z1}) 2 1+p—1=p.
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If f(y;) > 1for1l < i < g, then we obtain analogously V,sr(D(Kp4)) > ¢ > p. Now assume,
without loss of generality, that f(xz1) = f(y1) = —1. Then we deduce

Yusr(D(Kpgq)) = f(N"[21]) + fF(N"[sa]) = fla1) — fly) 2 1+1+1+1=4.

Therefore we see that v,sp(D(K24)) > 2, Ywsr(D(K34)) > 3 and vysr(D(Kpq)) > 4 for
p =>4

Conversely, letp = 2 orp = 3andlet g be even. Assignto x € X the weight 1, to ¢/2 vertices
the weight 1 and to the remaining ¢/2 vertices of Y the weight -1. This produces a WSRDF on
D(K; ) of weight i and therefore v,,sr(D(K; 4)) = i for i = 2,3 when ¢ is even. Now let p = 2
orp = 3andlet ¢ = 25+ 1 be odd. Assign to x € X the weight 1, to s 4 1 vertices the weight -1,
to one vertex the weight 2 and to the remaining s — 1 vertices of Y the weight 1. This produces a
WSRDF on D(Kj ;) of weight ¢ and therefore v,,sr(D(K; 4)) = i for i = 2, 3 when ¢ is odd.

Finally, let p > 4. Assume that p and g are even. Assign to (p + 2)/2 vertices the weight
1 and to the remaining (p — 2)/2 vertices of X the weight -1. In addition, assign to (¢ + 2)/2
vertices the weight 1 and to the remaining (¢ — 2)/2 vertices of Y the weight -1. This produces a
WSRDF on D(K,, ,) of weight 4 and therefore v,,sr(D (K} 4)) = 4 in this case.

Next assume that p = 2t + 1 and ¢ = 2s 4 1 are odd. Assign to ¢ vertices the weight -1, to
one vertex the weight 2 and to the remaining ¢ vertices of X the weight 1. In addition assign to s
vertices the weight -1, to one vertex the weight 2 and to the remaining s vertices of Y the weight
1. This produces a WSRDF on D(kK), ) of weight 4 and therefore ,,sg(D(Kp4)) = 4 in this

case.

The cases p even and ¢ odd or p odd and ¢ even are analogously, and are therefore omitted.
O

Let C, be a cycle of length n > 3. In [1], the authors have shown that y,z(C),) = [2n/3],
and in [14] it was shown that v,,sr(Cy) = [n/3] whenn = 0,1 (mod3) and v,sr(Cr) =
[n/3] + 1 when n = 2 (mod 3). Using Observation 1.1, we deduce that v;zr(D(C),)) = [2n/3]
and vusr(D(Cy)) = [n/3] when n = 0,1 (mod 3) and v,sr(D(Cy)) = [n/3] + 1 when
n = 2 (mod 3) for the associated digraph D(C,,). Therefore the difference ysr(D) — Ywsr(D)
can be arbitrarily large.

If D is 0-regular, then v,,sg(D) = n. Corollary 2.1 implies v,,sg(D) > [n/(r + 1)] when
D is r-regular, and it follows from Proposition 3.3 that y,,sz(C2) = n/2 when n is even, and we
have seen above that v,,sr(D(Cy,)) = [n/3] when n = 0,1 (mod 3). Therefore Corollary 2.1 is
tight for » = 0, 1, 2. In addition, Corollary 1.2 implies that Corollary 2.1 is tight for r = n — 1.
Next we will show that Corollary 2.1 is tight forr =n —2andr =n — 3.
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Example 2. Let H = Ky, p,,. .. n, be the complete r-partite graph with r > 2 and ny = ng =
... = n, = 2, and let D(H) be its associated digraph. Corollary 2.1 implies v,,sr(D(H)) >
nf(n—1)] =2

Now let X; = {x;,y;} be the partite sets of H for 1 < i < r. Define f(xz;) = f(y1) = 1 for
1<i<randf(y)) = —1for2 < i < r. Then f isa WSRDF on D(H) of weight 2 and thus
Ywsr(D(H)) < 2. Therefore yysr(D(H)) = 2.

Example 3. Let F' = K, n,.... n, be the complete r-partite graph with r > 2 and the partite sets
X1, Xo, ..., X, such that | X1| = |{a,b,u,v}| =4 and|X;| = 3 for2 < i < r. Let H consisting
of F' with the additional edges ab and wv, and let D(H) be its associated digraph. Then D(H ) is
(n — 3)-regular, and Corollary 2.1 implies ysp(D(H)) > Yuwsr(D(H)) > [n/(n —2)] = 2.

Now let X; = {x;,v:, zi} be the partite sets of H for 2 < ¢ < r. Define f(z;) = f(a) =
flu) =2for2 <i < rand f(b) = f(v) = f(y;)) = f(zi) = =1 for2 < i < r. Then f
is a WSRDF (even an SRDF) on D(H) of weight 2 and thus v,sr(D(H)) < vsr(D(H)) < 2.
Therefore vysr(D(H)) = vsr(D(H)) = 2.

4  Further bounds

The underlying graph of a digraph D is that graph obtained by replacing each arc (x, y) or sym-
metric pairs (z,y), (y, x) of arcs by the edge zy. A digraph D is connected if its underlying graph
is connected.

Letn > 2bean integer, and let Ky ,,_1 be a star with center «w and the leaves vy, vo, . . ., Up—1.
Now let A,, be an orientation of K1 ,,_1 such that A*(A,,) = n — 1. If we add one arc (v;, u) to
the digraph A,, for an index i € {1,2,...,n — 1}, then we denote the resulting digraph by F,.

Theorem 4.1. Let D be a connected digraph of order n > 2. Then

Ysr(D) > Ywsr(D) > 3 —n. (4.1)
In addition, we have vsg(D) = 3 — nor yusr(D) =3 —nifandonlyif D = A,, or D = F,,.

Proof. Since D is connected, we observe that A~ (D) > 1, and therefore it follows from Propo-
sition 2.2 that
f)/SR(D) > ’szR(D) > 2+ Ai(D) -n>3-n.

If D = A, or D = F,, then define the function g : V(D) — {—1,1,2} by g(u) = 2 and
g(v;) = —1for1 < i < n— 1. Then g isa WSRDF and an SRDF on D of weight 3 — n and thus
Ywsr(D) < vsr(D) < 3 — n. This implies that vsg(D) = yysr(D) = 3 —nif D = A, or
D =F,.
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Conversely, assume that vy,,sg(D) = 3 —n. If A7 (D) > 2, then Proposition 2.2 implies the
contradiction
Ywsr(D) > 2+ A" (D)—n>4—n>3—n.

Thereforeletnow A~ (D) = 1, and let f bea~,,sz(D)-function. The condition v,sz(D) = 3—n
shows that there exists a vertex v; with f(v1) = —1. Since A~ (D) = 1, the vertex v; has exactly
one in-neighbor u with f(u) = 2. f V(D) \ {u,v1} = {ve,vs,...,v,_1}, then we deduce from
Ywsr(D) = 3 —nthat f(v;) = —1for2 <i <n — 1. Thus ve, vs, ..., v,_1 are out-neighbors
of u. Because of A~ (D) = 1, we observe that D contains at most one more arc from v; to u for
anindexi € {1,2,...,n — 1}. Consequently, D = A,, or D = F,.

Finally, let ysr(D) = 3 —n. Then (4.1) leads to v, sg (D) = 3 —n, and it follows from above
that D = A,,or D = F,,. O

Theorem 4.2. [9] Let D be a digraph of order n. Then sz (D) < n, with equality if and only if

D is the disjoint union of isolated vertices and oriented triangles.

Corollary 4.3. Let D be a digraph of order n. Then v,,sr(D) < n, with equality if and only if D

is the disjoint union of isolated vertices and oriented triangles.

Proof. Theorem 4.2 implies vysr(D) < vsgr(D) < n. If D is the disjoint union of isolated
vertices and oriented triangles, then it is easy to see that v,,sg(D) = n. Conversely, assume that
Ywsr (D) = n. Then it follows that ysz(D) = n, and we deduce from Theorem 4.2 that D is the

disjoint union of isolated vertices and oriented triangles. O

Given a connected digraph H, let L(H) denote the sets of all digraphs obtained from H by
adding p, > dj;(v) + 2 vertices x1, z2, ..., xp, to each v € V(H) such that z; dominates v for
1<i<p, LetH={D|D € L(H) for some connected digraph H}.

Theorem 4.4. Let D be a connected digraph of order n. Then v,sgr(D) > 2v(D) — n, with
equality if and only if D is an isolated vertex or D € H.

Proof. If n = 1, then the result is immediate. Therefore let n > 2, and let f = (V_1, Vi, V2) bea
Ywsr(D)-function. Then it follows from Proposition 2.1 that

Yusi(D) = |Vi| +2|Va| — [Vo1| = 2|Va| + 3|Va| — n > 2|Vi UVa| —n > 24(D) — n, (42)

and the desired bound is proved.

If D € L(H) for some connected digraph H, then define g : V(D) — {—1,1,2} by
g(z) = —1forz € V(H)and g(x) = 1forz € V(D) \ V(H). Then g(N~[z]) > dj(x) +
2—(dy(z)+1)=1forxz € V(H)and g(N~[z]) = 1 forxz € V(D) \ V(H). Therefore g is
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a WSRDF on D of weight n(D) — 2n(H). In addition, we observe that y(D) = n(D) — n(H)
and so
Twsr(D) <w(g) = n(D) = 2n(H) = 27(D) — n(D).
Using (4.2), we obtain v,,sr(D) = 2v(D) — n(D).
Conversely, assume that v,,sg(D) = 27(D) — n(D). If |Va| > 1, then (4.2) leads to the

contradiction
’szR(D) = Q‘Vl‘ + 3|V2’ —-n > 2“/1 U Vg‘ —_n> 2’)/(G) —n.

Therefore V2| = 0. If |V_1| = 0, then v,sg (D) = |V1| = n. Since D is connected and n > 2, it

follows from Corollary 4.3 that D is an oriented triangle Cg, and we obtain the contradiction
Ywsr(C9) =3 >1=2v(CY) — 3.

Thus |V_1| > 1. Now, if the induced subdigraph D|[V;] contains an arc (w, z), then, since each
vertex of V_ has at least two in-neighbors in V7, we observe that V; \ {z} is a dominating set D.

Combining this observation with (4.2), we obtain the contradiction
Tusr(D) = 2Vi] = > 2Vi \ {z}] — n > 24(G) — .

Hence D[V;] consists of isolated vertices. The hypothesis that D is connected therefore shows
that D[V_1| is connected. In addition, since f(/N~[v]) > 1 for each v € V_, we see that each
such vertex v must have at least dB[V_l] (v) + 2 in-neighbors in V7. Altogether, we deduce that
D € L(H), where D[V_;] is the connected digraph H. O

Corollary 4.5. Let D be a digraph of order n. Then ~y,,sz(D) > 2v(D) — n, with equality if and

only if the components of D are isolated vertices or elements of .

Aset S C V(D) is called a 2-packing of the digraph D, if N~ [u] N N~ [v] = () for any two
distinct vertices u, v € S. The maximum cardinality of a 2-packing in D is the 2-packing number
of D, denoted by p = p(D).

Theorem 4.6. If D is a digraph of order 7, minimum in-degree d ~ and 2-packing number p, then
'szR(D) > p((s_ + 2) - n.

Proof. Let {vi,v2,...,v,} be a 2-packing of D, and let f be a v,,sr(D)-function. If we define
the set A = J7_; N~[v;], then since {vq,v2, ..., v,} is a 2-packing of D, we note that

P
Al = (d(vi) +1) = p(6~ +1).

=1
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This leads to

Yosr(D) = D @)=Y fINT)+ Y fla)

zeV (D) i=1 z€V(D)\A
> p+ Y. f@Zp—n+|AZp—n+p@6 +1)=p(0 +2)—n,
2V (D)\A
and the proof is complete. O

The next example will demonstrate that the bound in Theorem 4.6 is sharp.

Example 4. Let F' be an arbitray digraph of order t > 1, and for each vertex v € V(F) add a
vertex-disjoint copy of a complete digraph D(K) (s > 2) and identify the vertex v with one vertex
of the added complete digraph. Let (Q denote the resulting digraph. Furthermore, let H, Ho, ..., H;
be the added copies of D(K). Fori = 1,2,...,t let v; be the vertex of H; that is identified with
a vertex of F'. We now construct a WSRDF on Q) as follows. For each ¢ = 1,2,...,t, let f; :
V(H;) — {—1,1,2} be a WSRDF on the complete digraph of weight 1 (see Corollary 1.2) such
that f;i(v;) > 1. Nowlet f : V(Q) — {—1,1,2} be the function defined by f(v) = fi(v) for
eachv € V(H;). Then f is a WSRDEF of Q of weight t and hence v,,sr(Q) < t. Since n(Q) = ts,
07 (Q) = s—1and p(Q) = t, Theorem 4.6 implies that v,,sr(Q) > p(Q) (0~ (Q)+2)—n(Q) =t
and thits Jus(Q) = p(Q)(5(Q) +2) — n(Q) = &
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