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Weak Signed Roman Domination in Digraphs

Lutz Volkmann

Abstract. LetD be a finite and simple digraph with vertex set V (D). A weak signed Roman
dominating function (WSRDF) on a digraphD is a function f : V (D) → {−1, 1, 2} satis-
fying the condition that

∑
x∈N−[v] f(x) ≥ 1 for each v ∈ V (D), whereN−[v] consists of v

and all vertices ofD from which arcs go into v. The weight of a WSRDF f is
∑

v∈V (D) f(v).
The weak signed Roman domination number γwsR(D) of D is the minimum weight of a
WSRDF on D. In this paper we initiate the study of the weak signed Roman domination
number of digraphs, and we present different bounds on γwsR(D). In addition, we deter-
mine the weak signed Roman domination number of some classes of digraphs.

1 Terminology and introduction

In this paper we continue the study of Roman dominating functions in graphs and digraphs. Let
G be a simple graph with vertex set V (G), and letN [v] = NG[v] be the closed neighborhood of
the vertex v.

A signedRomandominating functionon a graphG is defined in [1] as a function f : V (G) −→
{−1, 1, 2} satisfying the conditions that (i) f(NG[v]) =

∑
x∈NG[v] f(x) ≥ 1 for every v ∈ V (G),

and (ii) for every vertex u for which f(u) = −1 is adjacent to a vertex v for which f(v) = 2.
The weight of a signed Roman dominating function f on a graphG is

∑
v∈V (G) f(v). The signed

Roman domination number γsR(G) ofG is the minimum weight of a signed Roman dominating
function onG.

A weak signed Roman dominating function on a graph G is defined in [14] as a function
f : V (G) −→ {−1, 1, 2} such that f(NG[v]) ≥ 1 for every v ∈ V (G). The weight of a weak
signed Roman dominating function f on a graph G is

∑
v∈V (G) f(v). The weak signed Roman

domination number γwsR(G) of G is the minimum weight of a weak signed Roman dominating
function onG. Clearly, γwsR(G) ≤ γsR(G).

Key words and phrases. Digraph, Signed Roman domination number, Weak signed Roman domination
number.
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Let nowD be a finite and simple digraphwith vertex setV (D) and arc setA(D). The integers
n(D) = |V (D)| and m(D) = |A(D)| are the order and the size of the digraph D, respectively.
We write d+D(v) = d+(v) for the out-degree of a vertex v and d−D(v) = d−(v) for its in-degree.
Theminimum andmaximum in-degree are δ−(D) and∆−(D) and theminimum andmaximum
out-degree are δ+(D) and ∆+(D). The sets N+

D (v) = N+(v) = {x | (v, x) ∈ A(D)} and
N−

D (v) = N−(v) = {x | (x, v) ∈ A(D)} are called the out-neighborhood and in-neighborhood
of the vertex v. Likewise,N+

D [v] = N+[v] = N+(v)∪{v} andN−
D [v] = N−[v] = N−(v)∪{v}.

IfX ⊆ V (D), thenD[X] is the subdigraph induced byX . For an arc (x, y) ∈ A(D), the vertex
y is an out-neighbor of x and x is an in-neighbor of y, and we also say that x dominates y or y
is dominated by x. For a real-valued function f : V (D) −→ R, the weight of f is w(f) =∑

v∈V (D) f(v), and for S ⊆ V (D), we define wf (S) =
∑

v∈S f(v), so w(f) = wf (V (D)).
Consult [5] or [6] for notation and terminology which are not defined here.

We define a set S ⊆ V (D) to be a dominating set ofD if for all v ̸∈ S, v is dominated by a
vertex s ∈ S. Theminimum cardinality of a dominating set inD is the domination number γ(D).

In this paper, we continue the study of signed Roman domination in graphs and digraphs
(see, for example, [1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14]).

A signed Roman dominating function (abbreviated SRDF) onD is defined in [9] as a function
f : V (D) −→ {−1, 1, 2} such that f(N−[v]) =

∑
x∈N−[v] f(x) ≥ 1 for every v ∈ V (D) and

every vertex u for which f(u) = −1 has an in-neighbor v for which f(v) = 2. The weight of
an SRDF f on a digraph D is w(f) =

∑
v∈V (D) f(v). The signed Roman domination number

γsR(D) of D is the minimum weight of an SRDF on D. A γsR(D)-function is a signed Roman
dominating function onD of weight γsR(D).

A weak signed Roman dominating function (abbreviated WSRDF) onD is defined as a func-
tion f : V (D) −→ {−1, 1, 2} such that f(N−[v]) ≥ 1 for every v ∈ V (D). The weight of
a WSRDF f on a digraph D is w(f) =

∑
v∈V (D) f(v). The weak signed Roman domination

number γwsR(D) of D is the minimum weight of a WSRDF on D. A γwsR(D)-function is a
weak signed Roman dominating function on D of weight γwsR(D). For a WSRDF f on D, let
Vi = Vi(f) = {v ∈ V (D) : f(v) = i} for i = −1, 1, 2. A weak signed Roman dominating
function f : V (D) −→ {−1, 1, 2} can be represented by the ordered partition (V−1, V1, V2) of
V (D).

The definitions lead to γwsR(D) ≤ γsR(D). Therefore each lower bound of γswR(D) is also
a lower bound of γsR(D).

Our purpose in this work is to initiate the study of the weak signed Roman domination num-
ber in digraphs. We present basic properties and sharp bounds for the weak signed Roman dom-
ination number of digraphs. In particular, we show that many lower bounds on γsR(D) are also
valid for γwsR(D). In addition, we show that the difference γsR(D)−γwsR(D) can be arbitrarily
large, and we determine the weak signed Roman domination number of some classes of digraphs.
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The associated digraphD(G) of a graphG is the digraph obtained fromG when each edge e
ofG is replaced by two oppositely oriented arcs with the same ends as e. SinceN−

D(G)[v] = NG[v]

for each vertex v ∈ V (G) = V (D(G)), the following useful observation is valid.

Observation 1.1. IfD(G) is the associated digraph of a graphG, then γsR(D(G)) = γsR(G) and
γwsR(D(G)) = γwsR(G).

LetKn andD(Kn) be the complete graph and complete digraph of order n, respectively. In
[14], the author determines the weak signed Roman domination number of complete graphs.

Proposition 1.1. ([14]) If n ≥ 1, then γwsR(Kn) = 1.

Using Observation 1.1 and Proposition 1.1 , we obtain the weak signed Roman domination
number of complete digraphs.

Corollary 1.2. If n ≥ 1, then γwsR(D(Kn)) = 1.

2 Preliminary results and bounds

In this section we present basic properties and some first bounds on the weak signed Roman
domination number of digraphs. The definitions immediately lead to our first proposition.

Proposition 2.1. If f = (V−1, V1, V2) is a WSRDF on a digraphD of order n, then

(a) |V−1|+ |V1|+ |V2| = n.

(b) ω(f) = |V1|+ 2|V2| − |V−1|.

(c) Every vertex in V−1 is dominated by one vertex of V2 or two vertices of V1.

(d) V1 ∪ V2 is a dominating set ofD.

Proposition 2.2. IfD is a digraph of order n, then

γwsR(D) ≥ 2 + ∆−(D)− n.

Proof. Letw ∈ V (D) be a vertex of maximum in-degree, and let f be a γwsR(D)-function. Then
the definitions imply

γwsR(D) =
∑

x∈V (D)

f(v) =
∑

x∈N−[w]

f(x) +
∑

x∈V (D)\N−[w]

f(x)

≥ 1 +
∑

x∈V (D)\N−[w]

f(x) ≥ 1− (n− (∆−(D) + 1)) = 2 +∆−(D)− n,

and the proof of the desired lower bound is complete.
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Proposition 2.3. IfD is a digraph of order nwith minimum in-degree δ− ≥ 2, then γwsR(D) ≤
n− 2⌊δ−/2⌋.

Proof. Let t = ⌊δ−/2⌋, and let A = {v1, v2, . . . , vt} be a set of t vertices of D. Define the
function f : V (D) −→ {−1, 1, 2} by f(x) = −1 for x ∈ A and f(x) = 1 for x ∈ V (D) \ A.
Then

f(N−[w]) ≥ −t+ (δ− + 1− t) = δ− + 1− 2t = δ− + 1− 2

⌊
δ−

2

⌋
≥ 1

for eachw ∈ V (D). Therefore f isWSRDFonD ofweightn−2t and thusγwsR(D) ≤ n−2t.

The proof of the next proposition is identically with the proof of Proposition 6 in [9] and is
therefore omitted.

Proposition 2.4. Assume that f = (V−1, V1, V2) is a WSRDF on a digraph D of order n. If
∆+(D) = ∆+ and δ+(D) = δ+, then

(a) (2∆+ + 1)|V2|+∆+|V1| ≥ (δ+ + 2)|V−1|.

(b) (2∆+ + δ+ + 3)|V2|+ (∆+ + δ+ + 2)|V1| ≥ (δ+ + 2)n.

(c) (∆+ + δ+ + 2)ω(f) ≥ (δ+ −∆+ + 2)n+ (δ+ −∆+)|V2|.

(d) ω(f) ≥ (δ+ − 2∆+ + 1)n/(2∆+ + δ+ + 3) + |V2|.

A digraph D is out-regular or r-out-regular if δ+(D) = ∆+(D) = r, and D is r-regular if
δ+(D) = ∆+(D) = δ−(D) = ∆−(D) = r. As an application of Proposition 2.4 (c), we obtain
a lower bound on the weak signed Roman domination number for r-out-regular digraphs.

Corollary 2.1. IfD is an r-out-regular digraph of order n, then γwsR(D) ≥ n/(r + 1).

Therefore γsR(D) ≥ n/(r + 1) for each r-out-regular digraph of order n (see [9]). Using
Corollary 2.1 and Observation 1.1, we obtain the next known result.

Corollary 2.2. ([1, 14]) IfG is an r-regular graph of order n, then γsR(G) ≥ γwsR(G) ≥ n/(r+

1).

If D is not out-regular, then the next lower bound on the weak signed Roman domination
number is valid.

Corollary 2.3. LetD be a digraph of order n, minimum out-degre δ+ and maximum out-degree
∆+. If δ+ < ∆+, then

γwsR(D) ≥
(
−2∆+ + 2δ+ + 3

2∆+ + δ+ + 3

)
n.
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Proof. Multiplying both sides of the inequality in Proposition 2.4 (d) by∆+− δ+ and adding the
resulting inequality to the inequality in Proposition 2.4 (c), we obtain the desired lower bound.

Since∆+(D(G)) = ∆(G) and δ+(D(G)) = δ(G), Corollary 2.3 and Observation 1.1 lead
to the next known corollary.

Corollary 2.4. ([1, 14]) Let G be a graph of order n, minimum degree δ and maximum degree
∆. If δ < ∆, then

γsR(G) ≥ γwsR(G) ≥
(
−2∆ + 2δ + 3

2∆ + δ + 3

)
n.

Example 1. Let p ≥ 2 be an integer, and let v1, v2, . . . , vp be the vertex set of the complete graph
Kp. Next letH be the graph consisting ofKp such that each vertex vi is adjacent to 2p−1 leaves for
1 ≤ i ≤ p. Now letD(H) be the associated digraph ofH . Define the function f : V (D(H)) −→
{−1, 1, 2} by f(vi) = 2 for 1 ≤ i ≤ p and f(x) = −1 otherwise. Then f is a WSRDF onD(H)

of weight

3p− 2p2 =

(
−2∆+(D(H)) + 2δ+(D(H)) + 3

2∆+(D(H)) + δ+(D(H)) + 3

)
n(D(H)).

Therefore Corollary 2.3 shows γwsR(D(H)) = 3p− 2p2 and thus Corollary 2.3 is sharp.

Since f is also a signed Roman dominating function on D(H), this example demonstrates
that the inequality

γsR(D) ≥
(
−2∆+ + 2δ+ + 3

2∆+ + δ+ + 3

)
n,

which can be found in [9] and which follows from Corollary 2.3, is sharp too.

3 Special families of digraphs

In this section, we determine the weak signed Roman domination number for special classes
of digraphs. A tournament is a digraph in which for every pair u, v of different vertices, either
(u, v) ∈ A(D) or (v, u) ∈ A(D), but not both.

The acyclic tournamentAT (n)withn vertices has the vertex setV (AT (n)) = {u1, u2, . . . , un}.
An arc goes from ui into uj if and only if i < j.

Let n be an odd positive integer such n = 2r + 1 with a positive integer r. We define the
circulant tournament CT(n) with n vertices as follows. The vertex set of CT(n) is V (CT(n)) =
{u0, u1, . . . , un−1}. For each i, the arcs are going from ui to the vertices ui+1, ui+2, . . . , ui+r,
where the indices are taken modulo n.

The proof of the next four propositions are similar to the the proofs of Propositions 7, 8, 11
and 12 in [9] and are therefore omitted.
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Proposition 3.1. If AT (n) is an acyclic tournament for n ≥ 3, then γwsR(AT (n)) = 1.

Proposition 3.2. Let n = 2r + 1, where r ≥ 1 is an integer. Then γwsR(CT(n)) = 3.

Let Cn = v1v2 . . . vnv1 be a cycle of order n. If we replace each edge vivi+1 by an arc
(vi, vi+1) for 1 ≤ i ≤ n, where the indices are taken modulo n, then we obtain an oriented cycle
Co
n of order n. Let Pn = v1v2 . . . vn be a path of order n. If we replace each edge vivi+1 by an arc

(vi, vi+1) for 1 ≤ i ≤ n− 1, then we obtain an oriented path P o
n of order n.

Proposition 3.3. Let Co
n be an oriented cycle of order n ≥ 2. Then γwsR(C

o
n) = n/2 when n is

even and γwsR(C
o
n) = (n+ 3)/2 when n is odd.

Proposition 3.4. Let P o
n be an oriented path of order n. Then γwsR(P

o
n) = n/2 when n is even

and γwsR(P
o
n) = (n+ 1)/2 when n is odd.

Let D(Kp,q) be the complete bipartite digraph with partite sets X and Y , where |X| = p

and |Y | = q.

Proposition 3.5. If q ≥ 1 is an integer, then γwsR(D(K1,q)) = 1 unless q = 2, in which case
γwsR(D(K1,2)) = 2.

Proof. LetX = {x} and let Y = {y1, y2, . . . , yq}. According to Proposition 2.2, we have

γwsR(D(K1,q)) ≥ 2 + ∆−(D(K1,q))− (q + 1) = 1.

If q = 2t + 1 is odd for an integer t ≥ 0, then define f(x) = 2, f(yi) = −1 for 1 ≤ i ≤ t + 1

and f(yi) = 1 for t+2 ≤ i ≤ 2t+1. Then f is a WSRDF onD(K1,q) of weight 1 and therefore
γwsR(D(K1,q)) = 1 when q is odd.

If q = 2t is even for an integer t ≥ 1, then it is easy to see that γwsR(D(K1,2)) = 2. In the
case t ≥ 2 define f(x) = 2, f(yi) = −1 for 1 ≤ i ≤ t+ 1 and f(yi) = 1 for t+ 2 ≤ i ≤ 2t− 1

and f(y2t) = 2. Then f is a WSRDF onD(K1,q) of weight 1 and therefore γwsR(D(K1,q)) = 1

when q ≥ 4 is even.

Proposition 3.6. Let 2 ≤ p ≤ q be integers. Then γwsR(D(K2,q)) = 2, γwsR(D(K3,q)) = 3

and γwsR(D(Kp,q)) = 4 for 4 ≤ p.

Proof. LetX = {x1, x2, . . . , xp}, Y = {y1, y2, . . . , yq}, and let f be a γwsR(D(Kp,q))-function.
Assume first that f(xi) ≥ 1 for 1 ≤ i ≤ p. Then it follows that

γwsR(D(Kp,q)) = f(N−[x1]) + f(X \ {x1}) ≥ 1 + p− 1 = p.
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If f(yi) ≥ 1 for 1 ≤ i ≤ q, then we obtain analogously γwsR(D(Kp,q)) ≥ q ≥ p. Now assume,
without loss of generality, that f(x1) = f(y1) = −1. Then we deduce

γwsR(D(Kp,q)) = f(N−[x1]) + f(N−[y1])− f(x1)− f(y1) ≥ 1 + 1 + 1 + 1 = 4.

Therefore we see that γwsR(D(K2,q)) ≥ 2, γwsR(D(K3,q)) ≥ 3 and γwsR(D(Kp,q)) ≥ 4 for
p ≥ 4.

Conversely, let p = 2 or p = 3 and let q be even. Assign tox ∈ X the weight 1, to q/2 vertices
the weight 1 and to the remaining q/2 vertices of Y the weight -1. This produces a WSRDF on
D(Ki,q) of weight i and therefore γwsR(D(Ki,q)) = i for i = 2, 3 when q is even. Now let p = 2

or p = 3 and let q = 2s+1 be odd. Assign to x ∈ X the weight 1, to s+1 vertices the weight -1,
to one vertex the weight 2 and to the remaining s− 1 vertices of Y the weight 1. This produces a
WSRDF onD(Ki,q) of weight i and therefore γwsR(D(Ki,q)) = i for i = 2, 3 when q is odd.

Finally, let p ≥ 4. Assume that p and q are even. Assign to (p + 2)/2 vertices the weight
1 and to the remaining (p − 2)/2 vertices of X the weight -1. In addition, assign to (q + 2)/2

vertices the weight 1 and to the remaining (q − 2)/2 vertices of Y the weight -1. This produces a
WSRDF onD(Kp,q) of weight 4 and therefore γwsR(D(Kp,q)) = 4 in this case.

Next assume that p = 2t + 1 and q = 2s + 1 are odd. Assign to t vertices the weight -1, to
one vertex the weight 2 and to the remaining t vertices ofX the weight 1. In addition assign to s
vertices the weight -1, to one vertex the weight 2 and to the remaining s vertices of Y the weight
1. This produces a WSRDF on D(Kp,q) of weight 4 and therefore γwsR(D(Kp,q)) = 4 in this
case.

The cases p even and q odd or p odd and q even are analogously, and are therefore omitted.

Let Cn be a cycle of length n ≥ 3. In [1], the authors have shown that γsR(Cn) = ⌈2n/3⌉,
and in [14] it was shown that γwsR(Cn) = ⌈n/3⌉ when n ≡ 0, 1 (mod 3) and γwsR(Cn) =

⌈n/3⌉+ 1 when n ≡ 2 (mod 3). Using Observation 1.1, we deduce that γsR(D(Cn)) = ⌈2n/3⌉
and γwsR(D(Cn)) = ⌈n/3⌉ when n ≡ 0, 1 (mod 3) and γwsR(D(Cn)) = ⌈n/3⌉ + 1 when
n ≡ 2 (mod 3) for the associated digraph D(Cn). Therefore the difference γsR(D) − γwsR(D)

can be arbitrarily large.

IfD is 0-regular, then γwsR(D) = n. Corollary 2.1 implies γwsR(D) ≥ ⌈n/(r + 1)⌉ when
D is r-regular, and it follows from Proposition 3.3 that γwsR(C

o
n) = n/2 when n is even, and we

have seen above that γwsR(D(Cn)) = ⌈n/3⌉ when n ≡ 0, 1 (mod 3). Therefore Corollary 2.1 is
tight for r = 0, 1, 2. In addition, Corollary 1.2 implies that Corollary 2.1 is tight for r = n − 1.
Next we will show that Corollary 2.1 is tight for r = n− 2 and r = n− 3.
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Example 2. Let H = Kn1,n2,...,nr be the complete r-partite graph with r ≥ 2 and n1 = n2 =

. . . = nr = 2, and let D(H) be its associated digraph. Corollary 2.1 implies γwsR(D(H)) ≥
⌈n/(n− 1)⌉ = 2.

Now letXi = {xi, yi} be the partite sets ofH for 1 ≤ i ≤ r. Define f(xi) = f(y1) = 1 for
1 ≤ i ≤ r and f(yi) = −1 for 2 ≤ i ≤ r. Then f is a WSRDF on D(H) of weight 2 and thus
γwsR(D(H)) ≤ 2. Therefore γwsR(D(H)) = 2.

Example 3. Let F = Kn1,n2,...,nr be the complete r-partite graph with r ≥ 2 and the partite sets
X1, X2, . . . , Xr such that |X1| = |{a, b, u, v}| = 4 and |Xi| = 3 for 2 ≤ i ≤ r. LetH consisting
of F with the additional edges ab and uv, and let D(H) be its associated digraph. Then D(H) is
(n− 3)-regular, and Corollary 2.1 implies γsR(D(H)) ≥ γwsR(D(H)) ≥ ⌈n/(n− 2)⌉ = 2.

Now let Xi = {xi, yi, zi} be the partite sets of H for 2 ≤ i ≤ r. Define f(xi) = f(a) =

f(u) = 2 for 2 ≤ i ≤ r and f(b) = f(v) = f(yi) = f(zi) = −1 for 2 ≤ i ≤ r. Then f

is a WSRDF (even an SRDF) on D(H) of weight 2 and thus γwsR(D(H)) ≤ γsR(D(H)) ≤ 2.
Therefore γwsR(D(H)) = γsR(D(H)) = 2.

4 Further bounds

The underlying graph of a digraph D is that graph obtained by replacing each arc (x, y) or sym-
metric pairs (x, y), (y, x) of arcs by the edge xy. A digraphD is connected if its underlying graph
is connected.

Letn ≥ 2 be an integer, and letK1,n−1 be a star with center u and the leaves v1, v2, . . . , vn−1.
Now let An be an orientation ofK1,n−1 such that∆+(An) = n− 1. If we add one arc (vi, u) to
the digraph An for an index i ∈ {1, 2, . . . , n− 1}, then we denote the resulting digraph by Fn.

Theorem 4.1. LetD be a connected digraph of order n ≥ 2. Then

γsR(D) ≥ γwsR(D) ≥ 3− n. (4.1)

In addition, we have γsR(D) = 3− n or γwsR(D) = 3− n if and only ifD = An orD = Fn.

Proof. SinceD is connected, we observe that∆−(D) ≥ 1, and therefore it follows from Propo-
sition 2.2 that

γsR(D) ≥ γwsR(D) ≥ 2 + ∆−(D)− n ≥ 3− n.

If D = An or D = Fn, then define the function g : V (D) −→ {−1, 1, 2} by g(u) = 2 and
g(vi) = −1 for 1 ≤ i ≤ n− 1. Then g is a WSRDF and an SRDF onD of weight 3− n and thus
γwsR(D) ≤ γsR(D) ≤ 3 − n. This implies that γsR(D) = γwsR(D) = 3 − n if D = An or
D = Fn.
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Conversely, assume that γwsR(D) = 3−n. If∆−(D) ≥ 2, then Proposition 2.2 implies the
contradiction

γwsR(D) ≥ 2 + ∆−(D)− n ≥ 4− n > 3− n.

Therefore let now∆−(D) = 1, and let f be a γwsR(D)-function. The condition γwsR(D) = 3−n

shows that there exists a vertex v1 with f(v1) = −1. Since∆−(D) = 1, the vertex v1 has exactly
one in-neighbor uwith f(u) = 2. If V (D) \ {u, v1} = {v2, v3, . . . , vn−1}, then we deduce from
γwsR(D) = 3− n that f(vi) = −1 for 2 ≤ i ≤ n− 1. Thus v2, v3, . . . , vn−1 are out-neighbors
of u. Because of∆−(D) = 1, we observe thatD contains at most one more arc from vi to u for
an index i ∈ {1, 2, . . . , n− 1}. Consequently,D = An orD = Fn.

Finally, let γsR(D) = 3−n. Then (4.1) leads to γwsR(D) = 3−n, and it follows from above
thatD = An orD = Fn.

Theorem 4.2. [9] LetD be a digraph of order n. Then γsR(D) ≤ n, with equality if and only if
D is the disjoint union of isolated vertices and oriented triangles.

Corollary 4.3. LetD be a digraph of order n. Then γwsR(D) ≤ n, with equality if and only ifD
is the disjoint union of isolated vertices and oriented triangles.

Proof. Theorem 4.2 implies γwsR(D) ≤ γsR(D) ≤ n. If D is the disjoint union of isolated
vertices and oriented triangles, then it is easy to see that γwsR(D) = n. Conversely, assume that
γwsR(D) = n. Then it follows that γsR(D) = n, and we deduce fromTheorem 4.2 thatD is the
disjoint union of isolated vertices and oriented triangles.

Given a connected digraphH , let L(H) denote the sets of all digraphs obtained fromH by
adding pv ≥ d−H(v) + 2 vertices x1, x2, . . . , xpv to each v ∈ V (H) such that xi dominates v for
1 ≤ i ≤ pv . LetH = {D |D ∈ L(H) for some connected digraph H}.

Theorem 4.4. Let D be a connected digraph of order n. Then γwsR(D) ≥ 2γ(D) − n, with
equality if and only ifD is an isolated vertex orD ∈ H.

Proof. If n = 1, then the result is immediate. Therefore let n ≥ 2, and let f = (V−1, V1, V2) be a
γwsR(D)-function. Then it follows from Proposition 2.1 that

γwsR(D) = |V1|+ 2|V2| − |V−1| = 2|V1|+ 3|V2| − n ≥ 2|V1 ∪ V2| − n ≥ 2γ(D)− n, (4.2)

and the desired bound is proved.

If D ∈ L(H) for some connected digraph H , then define g : V (D) −→ {−1, 1, 2} by
g(x) = −1 for x ∈ V (H) and g(x) = 1 for x ∈ V (D) \ V (H). Then g(N−[x]) ≥ d−H(x) +

2 − (d−H(x) + 1) = 1 for x ∈ V (H) and g(N−[x]) = 1 for x ∈ V (D) \ V (H). Therefore g is
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a WSRDF onD of weight n(D) − 2n(H). In addition, we observe that γ(D) = n(D) − n(H)

and so
γwsR(D) ≤ ω(g) = n(D)− 2n(H) = 2γ(D)− n(D).

Using (4.2), we obtain γwsR(D) = 2γ(D)− n(D).

Conversely, assume that γwsR(D) = 2γ(D) − n(D). If |V2| ≥ 1, then (4.2) leads to the
contradiction

γwsR(D) = 2|V1|+ 3|V2| − n > 2|V1 ∪ V2| − n ≥ 2γ(G)− n.

Therefore |V2| = 0. If |V−1| = 0, then γwsR(D) = |V1| = n. SinceD is connected and n ≥ 2, it
follows from Corollary 4.3 thatD is an oriented triangle Co

3 , and we obtain the contradiction

γwsR(C
o
3) = 3 > 1 = 2γ(Co

3)− 3.

Thus |V−1| ≥ 1. Now, if the induced subdigraph D[V1] contains an arc (w, z), then, since each
vertex of V−1 has at least two in-neighbors in V1, we observe that V1 \ {z} is a dominating setD.
Combining this observation with (4.2), we obtain the contradiction

γwsR(D) = 2|V1| − n > 2|V1 \ {z}| − n ≥ 2γ(G)− n.

Hence D[V1] consists of isolated vertices. The hypothesis that D is connected therefore shows
that D[V−1| is connected. In addition, since f(N−[v]) ≥ 1 for each v ∈ V−1, we see that each
such vertex v must have at least d−D[V−1]

(v) + 2 in-neighbors in V1. Altogether, we deduce that
D ∈ L(H), whereD[V−1] is the connected digraphH .

Corollary 4.5. LetD be a digraph of order n. Then γwsR(D) ≥ 2γ(D)− n, with equality if and
only if the components ofD are isolated vertices or elements ofH.

A set S ⊆ V (D) is called a 2-packing of the digraphD, if N−[u] ∩N−[v] = ∅ for any two
distinct vertices u, v ∈ S. The maximum cardinality of a 2-packing inD is the 2-packing number
ofD, denoted by ρ = ρ(D).

Theorem 4.6. IfD is a digraph of order n, minimum in-degree δ− and 2-packing number ρ, then
γwsR(D) ≥ ρ(δ− + 2)− n.

Proof. Let {v1, v2, . . . , vρ} be a 2-packing of D, and let f be a γwsR(D)-function. If we define
the set A =

∪ρ
i=1N

−[vi], then since {v1, v2, . . . , vρ} is a 2-packing ofD, we note that

|A| =
ρ∑

i=1

(d−(vi) + 1) ≥ ρ(δ− + 1).
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This leads to

γwsR(D) =
∑

x∈V (D)

f(x) =

ρ∑
i=1

f(N−[vi]) +
∑

x∈V (D)\A

f(x)

≥ ρ+
∑

x∈V (D)\A

f(x) ≥ ρ− n+ |A| ≥ ρ− n+ ρ(δ− + 1) = ρ(δ− + 2)− n,

and the proof is complete.

The next example will demonstrate that the bound inTheorem 4.6 is sharp.

Example 4. Let F be an arbitray digraph of order t ≥ 1, and for each vertex v ∈ V (F ) add a
vertex-disjoint copy of a complete digraphD(Ks) (s ≥ 2) and identify the vertex v with one vertex
of the added complete digraph. LetQ denote the resulting digraph. Furthermore, letH1,H2, . . . , Ht

be the added copies of D(Ks). For i = 1, 2, . . . , t let vi be the vertex of Hi that is identified with
a vertex of F . We now construct a WSRDF on Q as follows. For each i = 1, 2, . . . , t, let fi :

V (Hi) −→ {−1, 1, 2} be a WSRDF on the complete digraph of weight 1 (see Corollary 1.2) such
that fi(vi) ≥ 1. Now let f : V (Q) −→ {−1, 1, 2} be the function defined by f(v) = fi(v) for
each v ∈ V (Hi). Then f is a WSRDF ofQ of weight t and hence γwsR(Q) ≤ t. Since n(Q) = ts,
δ−(Q) = s−1 and ρ(Q) = t,Theorem 4.6 implies that γwsR(Q) ≥ ρ(Q)(δ−(Q)+2)−n(Q) = t

and thus γwsR(Q) = ρ(Q)(δ−(Q) + 2)− n(Q) = t.
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