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Existence and stability results for the solution of
neutral fractional integro-differential equation

with nonlocal conditions

Abdellouahab Naimi, Tellab Brahim and Khaled Zennir

Abstract. This paper deals with the existence and uniqueness results for the so-
lution of a Neutral fractional integro-differential problem with nonlocal conditions.
Using the Nonlinear alternative for single valued maps, Krasnoselskii’s and Banach
fixed point theorems to proof our main results. An example is given to illustrate our
main results.
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1 Introduction and fractional calculus

Fractional calculus is a main mathematical branch investigates the properties of derivatives and
integrals of non-integer orders. In particular, this discipline involves the concept and methods
of solving of differential equations that include fractional derivatives of the unknown function.
The history of fractional calculus began almost at the same time when classical calculus was
established. For example in dynamics first derivative is rate or velocity: dx/dt or the second
derivative is acceleration: d?z/dt? but in some cases we see fractional differential equations such
as (d*z/dt*,a € (0,1)). In mathematics there is no problem with this but in physics, it has
meaning.

Fractional derivatives are non-local so the 1/2 derivative can not have a local meaning like tangent
or curvature but would have to take into account the properties of the curve over a large extent
(boundary conditions). The meaning for fractional (in time) derivative may change from one
definition to the next. In the case of Riemann-Louiville and Caputo like fractional derivatives,
the differential equations that involve them arise as models (in the limit) of a variety of stochastic
processes with time delay, but there are also the consequence of some formalism in heat transfer
phenomena that was proposed back in the 1960s.

Fractional differential equations (FDEs) has been applied widely in a variety sciences in control
of dynamical systems, physical and biological sciences, see for details [1, 2, 13, 16, 19].
Nowadays, many researchers have given attention to the existence and uniqueness theory of
nonlinear FDEs of various types for more information, for more information (see[4, 5, 6, 7, 8, 11,
12, 13, 15, 21, 22, 23]). For example In [15], M. S. Abdo et al. studied the Cauchy-type problem
for a integro-differential equation of fractional order with nonlocal conditions in Banach space.

Received date: December 7, 2019; Published online: February 16, 2021.
2010 Mathematics Subject Classification. 34A08, 26A33, 34A12, 34B15.
Corresponding author: Khaled Zennir.

239


http://dx.doi.org/10.5556/j.tkjm.53.2022.3550

240 A. Naimi, B. Tellab and Kh. Zennir

There are concerned with the existence and uniqueness results for fractional integro-differential
equations of the type

CDP L a(t) = h(x(t) + f(t,a(t) + / K(ts,2(s))ds, ¢ € [a,b], (L1)

z(a) = chx(Tj), 7; € [a,b]. (1.2)
j=1

A various classes of Neutral fractional differential equations have been taken into consideration
by some authors, (see [10, 6]). For example in [10], the authors introduced and studied a related
problem. Precisely the authors studied the existence for the following new problem :

CDP{EDY(t) + f(t. (1)} = g(t,x(1)), (1.3)

m 1 n i
z(0) = jz::lﬁjx(aj), bx(1) = a/o x(s)dH(s) + ;ai / x(s)ds, (1.4)

where

O0<o; <& < <1, 0<p,g<1,

Bj, o €R, i=1,2,...,n, j=12,...,m.
¢DP is the Caputo fractional derivative of order p, f,g,, are given continuous functions. The
stability analysis is a central task in the study of FDEs and the stability analysis has been
performed by many authors (see [9, 14, 17, 18, 20] ). In [9], the authors studies the existence and
stability results for a fractional order differential equation with non-conjugate Riemann-Stieltjes

integro-multipoint boundary conditions.
In this paper we consider the following BVP of fractional differential problem

CD”{Cqu(t) + f(t,z(t)} = g(t, z(t)) —l—/o K(t,s,x(s))ds, (1.5)

2(0) = Zﬁjx(aj% x(1) = Zaix@i), (1.6)

where
O<O’j<fi<1, 0<p,qg<l,
,Bj,OtiGR, 7=12 .. m, 1=12,...,n.

¢DP €D are the Caputo fractional derivatives, f, g, K, are given functions with

f,0€C([0,1] xR,R) and K € C(D x R,R),

where
D ={(t,s)| te]0,1],s €[0,1]}.

We organize the paper as follows: In section 2, we state some basic concepts of fractional calculus,
fixed point theorems and we also prove an auxiliary lemma which are used throughout this paper.
Section 3, provide the proofs of the existence and uniqueness of solution to the problem (1.5)
with nonlocal conditions (1.6) and the generalized Ulam stability is proved in section 4. Finally,
an illustrative example is introduced in section 5.
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2 Preliminaries and basic concepts

Here, we state some notations, definitions and auxiliary lemmas concerning fractional calculus
and fixed point theorems. Let J = [0,1], X is Banach space equipped with the norm |.|| and
C(J, X), denotes the Banach space of all continuous bounded functions on J.

Some preliminary concepts of fractional calculus are stated here, see [23].

Definition 1. Let ¢ > 0 and ¢ : J — X. The Riemann-Liouville fractional integral of order ¢
of a function ( is defined by

I3, ¢(t) = F(lq)/o (t— )17 ¢(s)ds, te.J

Definition 2. Let n — 1 < ¢ <n, (n € N*) and g € C"(J, X). The Caputo fractional derivative
of order ¢ of a function ( is given by

1

DL — mﬁaﬁa—wwww@@

0+ dtn(( ), teJd

where n = [¢] + 1 and [g] denotes the integer part of the real number q.

Lemma 2.1. [23] For real numbers q,p > 0 and appropriate function ¢, we have for allt € J :
1) f§+I§+C(t) = f§+fg+C(t) = Igij(t)’

2) IL.CDLC(t) = C(t) — C(0), 0<g<1.

3) CDg I3, C(t) = C(2).

Here, we mean by 19 and €D9, the fractional integral Ig+ and fractional derivative CDgJr
respectively.

Lemma 2.2. [3] (Nonlinear alternative for single valued maps)

Let E be a Banach space, C' a closed, convez subset of E, U an open subset of C with boundary OU

and 0 € U. Suppose that F : U — C'is a continuous, compact map (that is, F'(U)is a relatively compact subse
Then either

i) F has a fired point in U,  or

it) There is auw € OU and € € (0,1) with u = eF(u).

Lemma 2.3. (Krasnoselskii’s fized point theorem) Let M be a closed convex and nonempty subset
of a Banach space X. Let A, B be two operators such that:

(i) Az + By € M whenever x,y € M,

(i) A is compact and continuous,

(ii7) B is a contraction mapping. Then, there exists z € M such that z = Az + Bz.

The next auxiliary Lemma is useful.

Lemma 2.4. Let 0 < ¢q,p < 1, assume that g, f and K are three continuous functions. If
x € C(J,X) then x is solution of (1.5), (1.6) if and only if x satisfies the integral equation

_ bt —s)atpt (t — s)atp=t
z(t) = A 71"((]—1—;0) g(s,x(s))ds—l—/o 71_‘((1_'_]) / K(s,,2(7))drds
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t (t _ S)qfl n &i (& _ 8)q+p71
_ /0 Wf(s,x(s))ds —A1(t) {;ai(/o Wg(s,x(s))ds
& (51 q+p 1
+ /0 1—‘((174‘10 KSTx( ))drds
S CE (1))
[ sonas) - [ R g aas
1 1 _
(1 yate 1 (1—s) 1
- /0 F(q—i—p/ K(s,7,x(r))drds +/0 ) f(s,z(s))ds
o — S)q—l (o — S)q+p—1
+ A (t)Zﬁj [/ (jr(q)f(s,x(s)) - WQ(SJ(S))
m/ K(s, 7 a(r ))dT)ds} (2.1)
where ) 0 10
P2 _ 1 _ P4
and
B - L E I o ) (2.3
pl—j:1 F(q+1)’ P2 = = 79 .
and
N 1 . - aifg 1 - )
7= T+ D) ;r(qﬂ)”"‘_l Zlo‘ (2:4)
where
k = paps — p1pa # 0. (2.5)
Proof. We apply the operator I? on (1.5), to obtain
t
CDYz(t) + f(t, z(t)) — co = IPg(t, z(t)) + Ip/ K(t,s,x(s))ds.
0
By applying the operator 19 on both sides of the last equation,we find
t
z(t) —cp + 1Uf(t,x(t) — I9(co) = [T Pg(t, x(t)) + Iq+p/ K(t,s,x(s))ds.
0
That is
a(t) = —If(t,x(t) + 17 Pg(t, (1))
t
+ 17 [ K alo)ds ++ COF(qtj— 5
where ¢, ¢; are two constants. By (1.6) and (2.6), we get
(Y fic; +0125]—1 =1, (2.6)

I'(g+1)

Jj=1
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and

—~ ;] -
1-N ) = I
qul ZFqul + 1 ( Za) 2

=1
By using (2.3) and (2.4) in (2.6) and (2.7), we find

p1co + pac1 = I,
p3co + pact = Iy,

where
(0; —s)27 ! o; — s)atPl
L= Zﬁj [ (2 sty - B (st
U —5) q+p 1
— (g +p) / K(s,1,x( >ds
and

fou
|

(q+0p) ['(q)

51, q+p1
+ (+ /KSTJC )ds
q+p)

1(17511 1 1(17$)q+p71
+ /0 s,x(s))ds 7/0 Wg(s,x(s))ds

1 q+p 1
/ / K(s,7,z(7))drds.
0 Q+p

Solving the system (2.8) for cg,c; and k = paps — p1ps # 0, we obtain

Zaz [ (S o - S 60

/)2[2*[1p4 o = ,0311*/71[2
k r k '

Co =

Substituting ¢g, ¢ in (2.6), we get

t _ g)atp-1 t q+p 1
x(t) = /0 (tr()g(s,:c(s))dw/O (tr(/ K(s,7,2(7))drds

q+p) a+2)
Gl -
- /0 AR R v oy
[Pt —s)atrt (t—s)rr
= A wg(57x(s))ds+/o F(q-l—p/ K S " ‘T( ))deS
/o %f(s,x(s))ds = A2 + Ao ()1

By the definition of ¢ and I9t? we find the solution (2.1).

(2.10)

Conversely, by Lemma 2.1 and by applying the operator © DI*? on both sides of (2.6), we find

Cpatry(t)y = ©YpItr [ — I9f(t,x(t)) + [9Pg(t, z(t)) + [11P /Ot K(t,s,x(s))ds
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tq
+ at s
' °r@+n]

—CDPf(t,x(t) + g(t, x(t /K s, x(

t?
+ CD‘H‘P + -
(Cl OT(g+1)

= —ODPf(t,x(t) + g(t,z(t) /Ktsa?
This means that x satisfies (1.5), (1.6). Furthermore, by substituting ¢ by 0 then by 1 in (2.1),

we conclude that the boundary conditions in (1.6) hold. Therefore, x is solution of problem
(1.5)-(1.6). O

3 Existence and Uniqueness Result via a different appraochs

We are going to prove the existence and uniqueness result of (1.5), (1.6) in C(J,R) by fixed point
Theorems. For this end, we transform (1.5)-(1.6) into fixed point problem as © = Tz, where the

operator
T:C([0,1],R) — C([0,1],R),

is defined by

Ta(t) = A (t—s)rr z(s))d5+/0 (tsml/ K (s, 7, a(r))drds

I'(q+p) I'(q+p)
tfsql - (& — s)rtp—l
_ /0 ,x(s))ds — A\ (t )[;ai(/o Wg(s,m(s))ds
&i q+p 1
+ /0 q+p / K(s,7,2(7))drds
i (& — (& —s)! (1—s)atr=t
/0 f(s, x(s))ds) _/0 Tt g(s,x(s))ds
q+p 1 1 _g)a-1
/ q+p / K(s,7,2(T ))des+/O %f(s,m(s))ds
05 — S)q_l (O’j — S)q+p_1
+ zw§jm[/ (2 rts.at9) - g a(e)
(o o;— s) q+p 1
71—‘((]4-]9 / K(s,1,2(r ))d7'>d5} (3.1)
We set
. 1 1
- F(q+1) "Tlgrp+D) Tlg+p+2)

_ 1 1
A
{ +1y+r@+p+1y+r@+p+m

§p+q §p+q+1
+ 2 3 + 3
Z' |( q+1 T(g+p+1) F(q+p+2)>}
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) 0, ot GPratt
" )\Q;Wj<F(q+1)+F(Q+p+1)+1“(q+p+2)) (3.2)
and
1 1 1
Al:A_{F(Q+1)+F(q+p+1)+F(q+p+2)}, (3.3)
where
N o= |P | 7 1 |p4|

In the next, we present the main results.

3.1 Existence Result by using Leray-Schauder Nonlinear Alternative

Theorem 3.1. Let f,g € C([0,1] x R,R) and K € C([0,1] x [0,1] x R,R) be continuous func-
tions. Assume that

(H1): There exist functions p1, p2 € C([0,1],RT), ps € C([0,1]x[0,1], R"), with p = max{p1, p2, p3 }
and nondecreasing functions

7/’1a7/12»1/13 : R+ — R+7
with ¥ = max{1n, 1,13} such that

|f(t,2(8)] < pL@va(ll2]),
lg(t, (2))] < p2(t)(ll]]),

and

[K(t,s,2(5))] < ps(t, s)vs(lz]),
for allt €]0,1],s € [0,1],z € R.
(H2): There exist a constant M > 0 such that W > 1.
Then the problem (1.5)-(1.6) admits at least one solution on [0, 1].

Proof. For r > 0, let
By ={z € C([0,1],R) : [[z]| < r},

be a bounded set in C([0,1],R). We will show that T" defined by (3.1) maps bounded sets into
bounded sets in C([0, 1], R). Then, by (H1), we have

@O < Inlindlel) s | [
" 52 S q 1 ! (1 _ S)q_1
+ () (;az/ T'(q) /0 F(q)d8>
% (oj — 5)771
- IAz(t)|Z|ﬁj\/0 (Jp(qidsﬂ
t (t— s)q+p—1
+ lpala(lel) sup s
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+

o <2m/
sl s [Mg |Z|ﬂj| / q+p” : / drds
A (2) <Z|az|/ q:q;p 1/0 drds

o U L) S [ e

Then by some calculations, we get

+

+

+

@O < Iln(lal) s |+ (Z oy

1 J
+ w)"'“\z(tﬂzm‘r( +1)}

1a+p od*?
# palia(lel) s |t e IZ il r D)
" |A1<t)|(gair(qf;:1)+r(q+1p“))]
st s [ ol (i
) mo i
< 0| 75+ et T T

_ 1 1 1
A
- 1{r<q+1>+r<q+p+1>+r<q+p+2>

Eip+q gip‘HH’l
+ Z' l|<( " (q+p+1)+F(q+p+2)>}
q O'I-H_q O.I_H‘(I"Fl
g; J J
+ )‘QZWJ( T(qg+1) F(q+p+1)+r(q+p+2)>}

Thus, using (3.2), we get
[Tz]| < [lplle((lz]DA < [Iplle(r)A.

Let t1,t2 € [0,1] with ¢; <ty and z € B,, where B, is a bounded set of C([0,1],R). Then we
have

|Tx(t2) — Tx(ty)] ‘/ — q)(t2 SL |f(s,2(s))|ds
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t -1
2 (t2 — 5)q+p
+ /t1 W\g(s,w(s))lds‘
by (¢ — gyatp—1 _ (¢, — g)atp—1
o | [ S (sl
t -1
* (t2 —s)4
+ /t 0 £ (s 2(5))]ds|
t (¢, — g)atp—1 ty — s)atP=l
+ /0 (t1 —s) F(q+(p§ 5) / |K (s, 7, (T ))\deS‘
_ q+p 1
+ /t (tQF(q’:p/ K (5,7, (7)) |drds (3.6)
1 (1—s)atr=t

) = niw)l| [ et (s)ds

1 -1
(1—s)1

+ /0 Wﬁ(s,x(s)ﬂds
il K( drd

+ A —

/0 F(q+p /| (s,m,2(1))|drds

b Sl [ eatolas
=1
G i K( drd

+ /0 NCE)) /| (s,7,2(7))|drds
&i (& ,s)qﬂ? 1

e d
o [ s ateias) |
. q+p—1

+  [Aa(t2) = Aa(t1) |Z|5g {/ UJF(W/ |K (s, 7, 2(7))|dTds
F ._sq+p1 % (g, —g)11

- %m@,x(smm | s ntelas

tIP TP L oty — 1) TP [tD — 9] + 2(ty — 11)7
< Iploqep [ =g R o A= A3 =)
T(g+p+1) T(g+1)
LT T 2t — 0) TR 20 (t — 0)
I(g+p+2) T(g+p+1)

n P4 t2 ‘ZW ( gfjﬂ . gfj+q+1 )
kI'(g+ 1) ’ q+1 P(q+p+1) I'(¢g+p+2)
p2(td — 1) { 1 1 1

i kl“(q+1)‘ Tg+1) 'Tlq+p+1) Tla+p+2)

n 13 §p+q £p+q+1
’ ;'a"'@( +1 F(q+p+1>+F(q+p+2>>H'

If (t2 — t1) — 0, then the RHS of the above inequality tends to zero independently of x € B,.

That is implies

IT(t2)

—T.l?(tl)H —)O, if (tg—h) —>0,

then T" maps bounded sets into equi-continuous sets of C.
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By Arzela-Ascoli theorem, we have T : C([0,1],R) — C([0, 1], R) is completely continuous.
We will apply the Leray-schauder nonlinear alternative once we establish the boundedness of the

set of all solutions to equation
x=¢€Tx for €€ (0,1).

Let x be a solution of (1.5)-(1.6), then, we will prove the the boundedness of the operator T'. We
have
1 1
+ +
(¢+1) Tlg+p+1) Tl+p+2)

|z(t)]

IN

Ioolel) |

_ 1 1 1
+ A + +
1{r<q+1> Tg+p+1)  T(g+p+2)

- 3 gra grratt
* Za”(l“(ﬁl) - Llg+p+1) * F(q+p+2))}

i=1

- ol oPTa gPhtatl
+ A 4 R J + J )}

2;%'(1“@“) Plg+p+1)  Tlg+p+2)
< Ipllw(llz[)A, (3.7)

which implies
R
Il (lzhA —

Then by (H2), there exist M > 0 such that M # ||z||. Let us define a set
YV ={zeC([0,1,R)/ |z|| < M},
and then B
T:Y — C([0,1],R),

is completely continuous. From the choice of Y, there is no z € dY such that
x=¢€Tz for €€ (0,1).

Then by the nonlinear Leray-Schauder type, we conclude that the operator T" has a fixed point
2 € Y which is solution of the BVP (1.5)-(1.6). O

3.2 Existence result by Krasnoselskii’s Fixed Point

Theorem 3.2. Let f, g, K be continuous functions satisfying
(H3) The inequqlities

lg(t, (t)) — g(t, y(t))| < La|z —yl,
and
|K(t,s,2(s)) — K(,5,y(s))| < La|z —yl,
with L = max{Ly, Ly, L3} and L < A%, where Ay is given by (3.3).
(H4) The inequqlities
[f ()] < palt),

lg(t, x(8))] < pa(t),
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|K(ta S,I(S))| S ‘[1,3(75,5),
Y(t,s,x) €[0,1] x [0,1] xR, py,pu2 € C([0,1],RY), uz € C([0,1],R™),

and
= max{j1, pi2, piz }-

Then the BVP (1.5)-(1.6) has at a least one solution on [0, 1].
Proof. We fix 7 > Al|p|| and consider the closed ball
Br ={z e C,|jz| <T}.

Next, let us define the operators 17,75 on B; as follows

Y A G I Ut LY
Ta() = [ gt - [ f(sa(o)

+ /Ot (tI‘(q j_;p 1/ K(s,1,2z(T))drds,

and

) [Za( / : mm 2(5))ds

i=1

sz(t)

i /”f‘+ | #sratraras - /5 (&;(Wﬂs,x(s))ds)

I'(g+p) q)
1 (1 . )q+p 1 1 (1 q+p 1
_ /0 71’((]-&-]9) g(s,w(s))ds—/o 7F(q—|—p / K(s,r,2(1))drds

+

/ol“m‘flfw Jis| + 2t Zﬂa [ (2 st

(0j —s)tP1 (0j —s q“’ !
— Wg(s,x(s))—w/ K(s,7,2(1 ))dT)dS

For z,y € Br and t € [0,1], and by the assumption (H4) we find
Tz +Toyl| = sup |Tiz + Tay]
tel0,1]
1 1 1
vl {F(qﬂ) TTarpr))  Tatpt?)
+ Al{ L, ! + .
F(qH) Mg+p+1)  Tlg+p+2)

glp+q glp+q+1
’ Z' a0 a0 e T))

"
_om o4 oPte p+q+1
+ A - L + = ﬂ
s * Tt * T T

Jj=1

IN

Then, we obtain,
[Tz + Tay| < [lulA < 7
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This implies that (Tyx 4+ Toy) € Br.
We establish now that T» is a contraction for z,y € C([0,1],R) and ¢ € [0, 1], we have

|Tox —Toy| = sup [Thx — Toyl
t€0,1]

- 1 1 1
< Lz - A + +
< L= y”{ 1{F( +1) " T(g+p+1) T(g+p+2)

Serq ferqul
N §:|A( q+1) @+p+1Y+F@+p+%>}

o oPta pHq+1
+ A J J + J ):|
22%( @D " TarprD T TarprrY)

= LAz —y.

Then since LA; < 1,75 is a contraction mapping. By the continuity of g, f, k we imply that T
is continuous. Also, T} is uniformly bounded on B; as

|(Tix)(®)| = tzl[épl]|T1$(t)|
T E T o ) s
M T,S,T Tds
+ (t?:;%sD/o oy ) s e(ora

<||||[1+ L, 1]
= TG+ "Ta+p+1)  Tlg+p+2)]

Finally, by (H3), the compactness of the operator T} is proved, we define

= sup lf(t,x)|,g = sup lg(t,z)|, K = sup |K(t,s, )|
(t,2)€[0,1]x By (t,2)€[0,1]x B ((+,8),2)€D x Br
Then, for 0 < 7 <75 < 1, we obtain

|7IHP — 20T L 9(7y — ) 1P
I(g+p+1)
qg+p+1 _

I7{ — 75|+ 2(11 — 7)? N
I'(g+1)
‘T(H-;D-i-l q+p+1‘+2(

|(Thz)(r1) — (Tha) ()] <

T| — To)
T(g+p+2)

+

as 11 — 7o — 0, independent of z, thus 77 is relatively compact on Bj.
Hence, by the Arzela-Ascoli theorem, T} is compact on Br. Thus the hypothesis of Lemma 2.3
hold, that is the problem (1.5)-(1.6) has at least one solution on [0, 1]. O

3.3 Existence and Uniqueness Result via Banach fixed point

Theorem 3.3. Assume that f, g, K are continuous functions satisfy the assumption (H3). Then
the BVP (1.5)-(1.6) has a unique solutions on [0,1] if LA < 1.

Proof. Define M = max{My, My, M3}, where My, My, M3 are positive numbers such that

sup |f(t,0)] = My,
te[0,1]
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sup [g(t,0)] = Mo,
t€[0,1]

sup |K(t,s,0)] = Ms.
(t,s)eD

Fixing r > 1= L A, we consider

B, ={x e C;|z| <r}.
Then, by (H3), we get

|f(tvx(t))| = |f(t,$(t))7f(t,0)+f(t,0)|

< [ft () = f(0)] +1£(¢0)]
< Lilzl| + M,
and
lg(t,z(t)] = gt z(t)) — g(¢,0) + g(¢,0)|
< \g(t,x(t))—g(t,O)\+|g(t,0)|
< Lofjz| + Ma,
and

[K(t, 5, 2(s))| [K(t,s,2(s)) = K(t,5,2(0))| + [K(t, 5,2(0))|

<
< Ls|z[ + Ms.

We will show that T'B,- C B,.. For any x € B,., we have

ITz|| = sup |Tx|
te[0,1]
1 1 1 - 1
< (Lr+M + + F A
= ){F((ﬁl) Llg+p+1) T(g+p+2) 1{F(qH)
§P+q

+ ! - ! +> < S
.
Lg+p+1) Tlg+p+2) < "\T(g+1) T(+p+1)

ferq+1 om U;; U;_H—q U;_H—q—&-l
F(q+p+2)>} Q;WJ(F(QJFD I(g+p+1) F(q+p+2))]

= (Lr+MA < 1

This implies that T'B, C B,.
Now, for z,y € C([0,1],R) and for all ¢ € [0,1], we have

(t — s)atp=t
|Tz(t) — Ty(t)]] = sup [/ T+ 1) / |K (s, 7,2(1)) — K(s,7,y(7))|dTds

+

/ T e a(s)) = gls,y(s))ds
o T(g+p) 7% gy

L) T e (s lds
/0 T(q) |f(s,2(s)) — f(s,y(s))ld

AL (0) |{§n:a/0( (& — 5)Tr" 1/ K (s, 7, 2(7)) — K (s, 7, y(7))|dr

im1 ['(q+p)

_|_

_|_
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(& —s)r !

B a6 - sl
I al) — st )i
b [ o)~ flosatslas
b [ U (o)~ ool
* /0 F(qw:)pl/ (K, 2(r) = Koyl )ldeS}
+ |)\2(t)|jilﬂj/ < q::, 1/ [K (s, 72(7)) = K(s,7,y(7))ldr
T () (s 2(6)
(O a6 — st ) ]
< LAyl (38)

For LA < 1, it follows by (3.8) and Banach fixed point Theorem that the operator T is a
contraction, then there exists one solution of (1.5)-(1.6). O

4 Generalized Ulam Stabilities

We will discuss the Ulam stability for (1.5), (1.6) by using the integration.

y(t) = /Ot U_S)Wg(s,x(s))ds—&—/o (t_sqﬂ)l/ K(s,7,2(7))drds

T(q +p) Tg+p)
B /0 (t—r(sq);—l F(s.2(5))ds - Mt)[ilai( /0 wg(s,x(s))ds
. /;W / K(s.ra(r))drds = [ & ;(Ziq_lf(s,x@))ds)
_ /01 wg(s,x(s))ds_/o “F‘(;j;pl/ K(s,7,2(r))drds
Ry T S .
B wg(s’x(s)) _ m/ K(s,7,2(r ))dT)ds} (4.1)

Here y € C([0,1],R) possesses a fractional derivative of order p + ¢, where 0 < p,q < 1 and
fr9:00,1]] xR — R,

and
K :[0,1] x [0,1] x R — R,
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are continuous functions. Then, we define the nonlinear continuous operator
G: C([Oa 1]7R) — C([Oa 1]aR)7

as follows
Gy(t) =C D"y (t) +° DPf(t, x(t)) — g(t, z(t)) — /0 K(t,s,z(s))ds.

Definition 3. For each ¢ > 0 and for each solution y of (1.5), (1.6) such that
1Gyll < e, (4.2)

the problems (1.5), (1.6) is said to be Ulam-Hyers stable if we can find a positive real number v
and a solution z € C([0,1], R) of (1.5), (1.6) satisfying the inequality:

[z —yll < ve', (4.3)
where €* is a positive real number depending on e.

Definition 4. Let m € C(RT,RT) such that for each solution y of (1.5), (1.6), we can find a
solution = € C([0, 1], R) of (1.5), (1.6) such that

|z(t) —y(t)| < m(e),t € [0,1]. (4.4)
Then the problems (1.5), (1.6) is said to be generalized Ulam-Hyers stable

Definition 5. For each ¢ > 0 and for each solution y of (1.5), (1.6), the problems (1.5), (1.6) is
called Ulam-Hyers-Rassias stable with respect to n € C([0,1],R") if

IGy(@)| < en(t),t € [0,1], (4.5)
and there exist a real number v > 0 and a solution z € C([0,1],R) of (1.5), (1.6) such that
|2(t) — y(t)] < veun(t),t € [0,1], (4.6)
where €, is a positive real number depending on e.

Theorem 4.1. Under assumption (H3) in Theorem 3.2, with LA < 1. The problems (1.5), (1.6)
is both Ulam-Hyers and generalized Ulam-Hyers stable.

Proof. Let x € C(]0,1],R) be a solution of (1.5), (1.6) satisfying (3.6) in the sens of Theorem
3.3. Let y be any solution satisfying (4.2). Furthermore, the equivalence in Lemma 2.4 implies
the equivalence between the operators G and T' — Id (where Id is the identity operator) for
every solution y € C([0,1],R) of (1.5) and (1.6) satisfying LA < 1. Therefore, we deduce by the
fixed-point property of the operator T that:

ly(t) —z(t)] = ly(t) = Ty(t) + Ty(t) — z(t)|
= ly(t) = Ty(t) + Ty(t) — Tx(t)]
< [Ty(t) — Ta(t)| + [Ty(t) —y(t)|
< LAjlz =yl + e,

(4.7)

because LA < 1 and € > 0, we find

o —yll < =
T — .
YIS T2IA
Fixing €, = =73 and v = 1, we obtain the Ulam-Hyers stability condition. In addition, the

generalized Ulam-Hyers stability follows by taking m(e) = —5%- O
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Theorem 4.2. Assume that (H3) holds with L < \™1, and there exists a functionn € C([0,1],RT)
satisfying the condition (4.5). Then the problems (1.5), (1.6) is Ulam-Hyers-Rassias stable with
respect to 1.

Proof. We have from the proof of Theorem 4.1,

2(t) — y(t)| < en(t),t € [0,1],

where €, = =55, this completes the proof. O
5 Example
Let us consider
t
CDIEDSa(t) + f(t,3(1)} = g(t, x(1)) + / K(t,s,2(s))ds, (5.1)
0
j=2 i=2
2(0) =Y Bix(oy), x(1) =D (&), (5.2)
j=1 i=1
where
2 1 1 2 7
P=4¢=3 O1=35 02=3; 51:3; 51:5,

ap =2, oap=-5 [1=3; [o=4

The functions f (¢, z(t)), g(t,z(t)) and K(t,s,z(t)) will be fixed later.
We then find that A = 29,0059 and A; = 26.6923.
We are going now to illustrate Theorem 3.1, for this end, we take

cost et
) = (55 + g ) (5.3
sint |z]
g(t,z(t)) = 35 1 ol (1 il + cosx),
s—t—1
K(t,s,z(t) = ¢ ol (:z:—|—2e|“").
Clearly
| cos t| et 1 et
t.x(t))| < < (-0 -
0] < (1550 + gz ol < (5 + magge ol
| sin¢| Ilz|| 1
t,x(t))] < < — 1
ot o)) < 2 (s eosal) < o (14 )
es—t—l e es—t—l
(s o)) < S (el +27 ) < S (1al +2).
with .
1 e~ 1
Pi(t) = 91 + 21 4ot P = Yk
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Py(t) = [ P2l =

35+ 35+ et
s—t—1

6
Pits) = & |y =
onllel) = Ll el — ol + 2 w3<||x||> — 24 el
P = max i,i,i :i;
47 36" 64 36
w:max{nxn, L+ el 2+||x|}=2+||x|.

By (H2), we find M > || P||¢(M)A = 8.2935.

Since all the conditions of Theorem 3.1 are satisfied, there exists at least one solution on [0, 1]
for the problem (5.1)-(5.2) with the functions are given by (5.3).

We illustrate Theorem 3.2, for this end, we take

sinx

_ —t
flt,z(t)) = D) ,+e " cost,
esft
K(t,s,xz(t)) = 15 Cos T
|z|
t,x(t)) = + 6t.
9(t, (1)) 64(1 + |z])
1 1 1
Note that L1 = —, Lo = —, L3 = —.
et B = e 2T R T
Moreover,
e = B2 eteost) < L+ et cost] = (1)
: T =1 = K1),
es
K(t t —
I ( ,87.%'( ))l 48 /1'3(5)7
1
t,x(t — )
lg(t,z(t))| < et + 6t = pa(t)
. 43 385
Obviously, [lu1]| = 75 ||u2||=67; Hﬂsll=@
and 1
L= Ly, Lo, L3} = —
max{Ly, Lo, L3} oh
385
|1l = max{|| ], Neall; [[sll} = —;
64
we get,
LA =0.7069, LA, =0.6355,  ||u||A = 174.4886

Assumptions of Theorem 3.2 are satisfied. Hence, there exists at least one solution for the problem
(5.1)-(5.2) on [0, 1].
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