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An Iterative Method for a Common Solution of a Combination of
the Split Equilibrium Problem, a Finite Family of Nonexpansive

Mapping and a Combination of Variational Inequality Problem

Thssane Hay, Abdellah Bnouhachem and Themistocles M.Rassias

Abstract. The present paper aims to deal with an iterative algorithm for finding common
solution of the combination of the split equilibrium problem and a finite family of non-
expansive mappings and the combination of variational inequality problem in the setting of
real Hilbert spaces. Further, we prove that the sequences generated by the proposed iterative
method converge strongly to a common solution to these problems. A numerical example is
presented to illustrate the proposed method and convergence result. The results and method
presented in this paper generalize, extend and unify some known results in the literatures.

1 Introduction.

The theory of equilibrium problems has grown enormously in various branches of the pure and
applied sciences, it has been widely studied in the literature. It provides a framework for many
problems in finance, economics, networks analysis, optimization and others; see for example [2,
4,5,6,7,8,10,11, 12, 18, 19, 20, 21, 22, 26].

Let H be a real Hilbert space with the inner product < . > and the norm || . || . Let C be
nonempty closed convex subset of Hilbert space . Given a bifunction F' : C x C — H, the

standard equilibrium problem is formulated as follows:

Find z2* e€C
F(z*,z) >0, VxeCl,

(1.1)

which was first considered and investigated by Blum and Oettli [1]. The solution set of the equi-
librium problem is denoted by EP(F).

Inspired by a wide variety of works in this direction, Kazmi and Rivzi [17] have recently investi-
gated and studied a new form of the equilibrium problem called the split equilibrium problem:
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let C and Q be nonempty closed convex subsets of Hilbert spaces 1 and Hz, respectively. Given
two bifunctions F' : C x C — Hj,and G : Q x Q@ — H; and a bounded linear operator
A : H1 — Ho, the split equilibrium problem is defined by:

Find z*e€C
(1.2)
F(z*,z) >0, VYxeCl,
and
Find y* = Az* €
ind vy x Q (1.3)

G(y*,y) >0, VyeQ.

If G = 0and F(2*,z) = (Bx*,x — 2*), where B : C — M, is a nonlinear operator, then the

split equilibrium problem collapses to the classical variational inequality problem:

Find z*eC
(1.4)
<Bw*,x — x*> >0, Vzel.
The set of solutions of (1.4) is denoted (VIP) (. It is easy to observe that
" € (VIP)ge 1" = Po[z* — pBz*], where p > 0. (1.5)

Variational inequalities are being used as a mathematical programming tool in modeling a large
class of problems arising in various branches of pure and applied sciences. In recent years, vari-
ational inequalities have been generalized and extended novel and new techniques in several di-
rections. We now have a variety of techniques to suggest and analyze various iterative algorithms
for solving variational inequalities and related optimization problems; see [1-28].

Both classes of problems; variational inequality and split equilibrium problem, have been studied
and treated in details in several research works due to its important role on the development of

many problems; see for example [3, 9, 13, 14, 15, 16, 17, 28].

In the present paper, motivated by the above works and related literature, we present a new
iterative algorithm for finding a common element of the solution set of common fixed points of
a finite family of nonexpansive mappings and the solution set of a combination of the split equi-
librium problem and the solution set of a combination of variational inequality problem. More
precisely, we use the idea of combination of the split equilibrium problem. According to numeri-
cal results, the iteration algorithm for the combination of the split equilibrium problem converges
faster than the iterative algorithm of the split equilibrium problem. Under appropriate conditions
we derive the strong convergence results for this method. Preliminary numerical experiments are
included to verify the theoretical assertions of the proposed method. Since the combination of the
split equilibrium problem includes the split equilibrium problem and the equilibrium problem as

special cases, results presented in this paper continue to hold for these problems.
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2 Preliminaries.

Let #; and 3 be two real Hilbert spaces with inner product < . >, andnorm || . || . LetC and @
be nonempty closed convex subsets of Hilbert spaces 7{1 and H2, respectively. Fori € {1, ..., N},
let Z]i\f:l a;F; : C x C — Hi, and Z]i\f:l b;G; : Q@ x @ — Ho, be two bifunctions, and
let "N ¢B; : Hi — Hy, with a; €]0,1], b; €)0,1[, ¢ €]0,1[, SN 1 a; = SN b =
Zﬁil ¢i = land A : ‘Hiy — Ha, be a bounded linear operator. The combination of split
equilibrium problem (CSEP) is defined as:

Find a* €C oy
SN aiF(z*,2) >0, Vzed, '

and
Find y* = Az* € Q

YL biGily*y) 20, VyeQ.
The solution set of the (CSEP) is denoted by Q = {p € C;z € N, EP(F;) such that Ap €
N, EP(Gi)}.
If F; = Fand G; = G,Vi = 1,2, ..., N, then the combination of split equilibrium problem
(2.1)-(2.2) reduces to the split equilibrium problem (1.2)-(1.3). The fixed point problem for a

(2.2)

sequence of nonexpansive mappings .S,, : C — C isto find = € C such that
Spr = . (2.3)

The set of all fixed points of S, is denoted by F'(.S,,). The combination of variational inequality
problem (CVIP) is defined as:

Find z*e€C

(2.4)
(SN eBi(z*),x —2*) >0, VzeCl.

The solution set of the (CVIP) is denoted by (VIP)ZJ_\L eiBiC

We introduce the following definitions, which are useful in the following analysis.

Definition 1. Let C be a nonempty closed convex subset of R”, and v € R", then the projection
of v onto C is denoted by Pr(v), that s,

Pe(v) :=argmin{|| v —u || /u € C}. (2.5)
Since C is convex and closed, the projection onto C is unique.

Definition 2. The mapping 7" : C — C is said to be :
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1) strongly positive if (T@,z) > p || @ ||?, for all z € H, where p is a positive constant.

2) [-inverse strongly monotone over C, if there exists a positive real number 3 > 0 such that
(T(u) —T(),u—v) > B T(u)—T() 112 Yu,v € C,
3) nonexpansive if
| Te—Ty|<l|z-yl;  Vx,yeCl.
4) lower semicontinuous at 2y € C if, for any sequence {x,,} in C with z,, — =z,

T(xo) < lim T'(zy).

n—aoo

We list some fundamental lemmas that are useful in the consequent analysis. The firstlemma

provides some basic properties of projection onto C.
Lemma2.1. (i). If T is nonexpansive, then I — T is 1- inverse strongly monotone;

(ii). IfT : C — C, is B-inverse strongly monotone, then for all A\ €]0,20[, I — XT' is nonexpan-

sive.

Lemma 2.2. Let C C R”, be a closed convex set, then we have

) VoeR, Yuwel

(v—Pe(v),w—Pe(v)) < 0. (2.6)

2) VoeR" VweR"
| Pe(v) = Fe(w) || < lo-wl]. (27)

3) VveR" VuelC
[ Pe(v) —ull < [v—ul. (2.8)

Lemma 2.3. It is well known that in case of a real Hilbert space H., the following assertions:
. 1 2 2 2
@) (wy) = (Il + 0yl =le=yl?),
(@i lox+(1-a)y|? =alz|?+1-a) |yl -al-a)llz-y]?

hold for all o € [0,1] and x,y € H, such that x # y.
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It is well known that every nonexpansive operator 7' : H — H satisfies, for all (z,y) €

H x H, the inequality

1
(@ =To) = (y=T9). Ty ~Tx) < 5 || (T —2) — (Ty — ) | 29)
and therefore, we get, for all (z,y) € H x F(T),
1 2
<:c—Tm,y—Tx>§§ | Tz —x|*. (2.10)

We assume that both /' : C x C — H;and G : Q x Q — H are bifunctions satisfying the

following assumptions:

Assumption 2.1
1) F(z,z)=0 VzeC(;
2) Fismonotonei.e., F(x,y)+ F(y,z) <0 Vz,yeC;
3) F is hemicontinuous i.e.
Ve,y,z € C %%F(tz+ (1—-t)x,y) < F(x,y);
4) foreachz € C,y — F(x,y) is convex and lower semicontinuous mapping.

Lemma 2.4. [I] Let C be a nonempty closed convex subset of H and let F' be a function which

satisfies above assumptions, then for each x € H, for r > 0, there exists z € C such that
F(z,y)—l—%<y—z,z—x>20 VyecC
Moreover, define a mapping 7)Y : C — H as follows:
Tf(m):{zEC:F(z,y)+%<y—z,z—x>ZO VyEC}.
Then for all z € H, we have the following :
(i) TF is single-valued;
(ii) T:F" is firmly nonexpansive, i.e., for all x, y € H
IT @) =T W) P < (T (@) ~ T (y), 2 — y);
(iii) F(T,7) = EP(F);

(iv) EP(F)is closed and convex.
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Lemma 2.5. [25] Let C be a nonempty closed convex subset of a real Hilbert space H. For every i €
{1,..., N}, let F; : CxC — H be a bifunction satisfying assumptions 2.1, with N\ EP(F;) # ().
Then for a; € (0,1) and ZZ]\LI a; = 1, we conclude that Zf\il a; F;, also satisfies the same above

assumptions, and
N

F(T.) = EP() _a;F;) = N, EP(F;).
i=1
Lemma 2.6. [24] (Demiclosedness principle.) Let C be a nonempty closed convex subset of a real
Hilbert space H. If T : C — C is a nonexpansive mapping with Fix(T')# 0, then the mapping I — T
is demiclosed at 0, i.e., if {x,, } is a sequence in C weakly converges to x and if { (I —T)xy, } converges
strongly to 0, then (I —T)x = 0.

Lemma 2.7. [27] Let {a,} be a sequence of positive real numbers such that
An+41 < (1 - Vn)an + 5n7
where {vy, } is a sequence in |0, 1[ and {6,,} is a sequence such that
1) Zzozl Vp = 005
2) lim supé—n <0,0rd> 07 |0,] < 0.
n—00 vy T~ n=11"nl =
Hence lim a, = 0.
n—oo

Lemma 2.8. [25] Let C be a nonempty closed convex subset of a real Hilbert space H. For all i €
{1, ..., N}, let B; be a strongly positive linear bounded operator on a Hilbert space H with coefficient
pi > 0and p = ming Ny pi. ie, forallz € H (Biz,z) > p; || @ ||* . Moreover for each
ie{l,..,N}, ¢ CJ0,1], with Zf\[:l ¢i = 1. Then the following properties :

(i) Forall0 < X <| B; || 7Y, wehave | =AY ¢;B;i ||< 1= Mg, and | - AN ¢;B; |

is nonexpansive mapping.

.o _ N

3 The proposed method and some properties

In this section, we suggest and analyze our method for finding common solutions of the combi-
nation of the split equilibrium problem (2.1)-(2.2) and a finite family of nonexpansive mappings

(2.3) and the combination of variational inequality problem (2.4).

Let H; and H2 be two real Hilbert spaces. Let C (respectively Q) be a nonempty closed convex
subset of H; (respectively Ha). Let F; : C x C — Hjand G; : Q x Q — Ho be two finite
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family bifunctions satisfying Assumptions 2.1 such that G; is upper semicontinuous mapping.
Let A : 11 —> H2 be a bounded linear operator, and let B; be strongly positive linear bounded
operator on a Hilbert space H; with coefficient p; > Oand p = min;cgy, . Ny pi-Let S, : C — C
be a sequence of nonexpansive mappings such thatI" = (ﬂ;’f’:l F (Sn)> naenN (ﬁﬁil (VIP) Bi,c)
andlet S : C — C be a mapping such that nliﬁ\rglo Spx = Sx.

Algorithm 3.1 Foragivenz; € C; = C, arbitrarily, let the iterative sequences {un }, {zn}, {yn}
and {z,,} be generated by

p

Uy = T;n:?’:l aibi (I — v A* (I — TSZTL:ZI'V:1 biGi)A)xn

zn = Pelun — M Ef\il ¢i Bity)

Yn = nSpTy + (1 — an)zn (3.1)
Crvr={p€Cn:llyn —p <l zn—p |}

Tn4+1 = 7npcn+1x1 + (1 - P)/n)yny n > 1.

1
Lety € }0, 7 [ such that L is the spectral radius of the operator A* A, where A* is the adjoint
of A. Let {s,,} and {r,} be two positive real sequences, and let {\, }, {c,} and {~,,} be three

sequences in |0, 1], satisfying the following conditions:
Cl) O<a<anym<b<l.
C2) sz\il a; = Zfil bi = sz\il ci=1.
C3) nl;ngo An=0and ) 07 [App1 — Ap| < 00.
C4) nh_)rrolo ap=0and ) 7 |1 — ap| < co.
C5) nh_}rrgo Yo =0, 0" 1 =o00cand Y 7 [Ynt1 — Y| < 00.
C6) lim infr, > Oand lim sups, > 0.
n—oo n—oo

Iffort =1,2,...,.N,F; = F,G; = G,B; = B,H = Hy = H,S, = Sand s, = ry,
then Algorithm 3.1 reduces to Algorithm 3.2 for finding the common solutions of split equilib-
rium problem (1.2)-(1.3), variational inequality problem (1.3) and a finite family of nonexpansive

mappings (2.3).

Algorithm 3.2 For a given z; € C = C, arbitrarily, let the iterative sequences {uy, }, {21}, {yn}
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and {z,, } be generated by

(w, = TF (I —yA* (I — TC) A)z,,

zn, = Pelun — A\ Buy)

Yn = STy + (1 — ap)zn (3.2)
Cori={p€Cn:llyn—pI<lzn—p |}

LTn4+1 = VnPCn+1$1 + (1 = Y)Y, n=>1

1
Lety € }O, — [ where L is the spectral radius of the operator A*A, and A* is the adjoint of A.
Let {r,} be a positive real sequence, and let {\, }, {«,,} and {~,,} be three sequences in |0, 1],

satistying the following conditions:
Cl) 0<a<apvym<b<l.
C2) nh_}rrolo An=0,and > 07 A1 — An| < 00.
C3) nl;n;o an =0,and ) 27 |1 — ap| < co.
C4) nh_}rr;o Yo =0;and Y o7 v, = o00;and > 07 [Ynt1 — Tn| < 00.
C5) lim infr, > 0.
n-300
Lemma 3.1. Let {x,} be the sequence generated by the Algorithm 3.1. Then we have
(i) {xn} is well defined for every n € N* and bounded.
(i) I' C Cpy1-

Proof. We show that the sequence {xzy, } is well defined for every n € N*. To prove that, we will
show that C,, is a closed convex subset for all n > 1. Indeed, C; = C is closed convex. Assume

that Cy, is closed convex; we have to prove that so is Cj1.

Let py, € Ci11 C Cy, such that p,;, — p then p € Cy; (because Cy, is closed) thus
H Y — Pm HSH T — Pm H .
This implies that

lue—pll < lye—pmll + 1 pm—21]
S ||xk_pmH+Hpm_p||7

by taking lim on both sides of the above estimate, hence we get
m—0o0

lim [|yx—pl=llve—pl < lim (|2k—pm |+ pm—pl)
m—00 m—o0
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< flzr—pll-

Then p € Ci.1, it follows that Cy, 1 is closed.

Now we set p = Az + (1 — \)y, for every z,y € Ci41 then p € C, (because Cy, is convex).

From lemma 2.3, we get

lyk—pI* = llye—Az— (1= Ny |?
= [ Am—2)+ Q=N —y) |
= Muw—2P+0=Nllye—y P =-A1=N)[ly—= |
< Map—zP+0 =Nz —y [P -2AQ =) |y — 2 + 2% — 2 |
= [ AMae —2)+ (1= Az —y) [I°

(el

thus p € Ciyq then Ciyq is convex. Therefore C, is closed convex for all n > 1. Since for

every 1 € C, Fe, ., is well-defined, and y,, € C,+1, then z,, is well defined. Obviously,

n+1
I' C C;. Assume that I' C C,,, and we show that I' C C,,;. Without loss of generality, we
assume that for all n. > 0, and for everyi € {1,...,N},0 < A\, <|| B; ||~* . Applying Lemma
2.8, we get that I — )\, Zfi 1 ¢iB; is a nonexpansive mapping. Then from (1.5) for all p € T,

p=Felp— I Zf\i 1 ¢iBip| then according to (2.7), we obtain

N
Iz =2 I? = | Pelun —An Zc,Bun PC[P_)\nZCiBip] I
=1
N
<l un = A ZCiBiUn —p+ A ZCiBip I
=1 ]
N
= H (I_)\nzci z I )\ ZCZ p”
=1
< Jun—pl. (3.3)

N B N ¢y
Forallp € T', we have p = T%:i:l a’Flp and (I — yA*(I — Ts%:i:l blGl)A)p = p, then

N Y.
| A* (L — TE 5G9 A — A% (1 — T2 YO

Ay |?

= || AT T (A - Ay) |2

—(AT(I — T Y Az — Ay), A*(1 — T2 %G (4x — Ay))
—((I - TE= G4 Az — Ay), AA*(I — TE= ") Az — Ay))

Y b;Gy
<L || (I - TE "% Az — Ay) |2 .
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Then
N ba, 1 N o
| (1 =T (Ae = Ay) P2 | A0 =T ") (A —Ay) P G4)

N b
Since TZZ N nonexpansive, it follows from Lemma 2.1, that I — Tgizl %% s 1- inverse

strongly monotone, then

| (1 =755 Az — Ay) |2 < (I —TE"%) Az — Ay), (Az — Ay))
= (A - Tz ") Az — Ay),x —y))
(3.5)

and hence using (3.4) and (3.5), we obtain

(AT = TS 9 (A — Ay) oz —y)) >+ || A7(I - T ) (A — Ay) |

h

N b.G; 1
this implies that A*(I — TS%:El biCs JAis Z—inverse strongly monotone, by using Lemma 2.1 we

N b 1
get [ —yA*(I — Tglzl biGs )A is nonexpansive for each v €]0, 7 [. Therefore, we obtain

a; F; * i1 biGy
lun—p = | TE== % (1 — 44 (f T Gy

A)xy,
ST T A (- T A |
<[ zn—pl. (3.6)
Let p € T, then the following results can be immediately obtained from Lemma 2.3 (ii), nonex-
pansiveness of .S;, (3.3) and (3.6).
| yn —p ||2 = || anSnn + (1 — an)zn —p ||2
= || QU SnTy + (1 - an)zn - ansnp - (1 - an)snp ||2

= ap || Sprn — Sup ”2 +(1—an) || z2n—p ||2 —an(l—ay) || Snzn — 2n H2 (3.7)
———

>0

IN

an |l zn = p 7 +(1 = an) [ un —p |

IN

an |l zn = p |7 +(1 = an) | 20 —p |7

= |z —pIP

which yields that p € Cy,41, therefore I' C Cy,41.
Next, we show that the sequence {z,, } isbounded. Note that || Pz, 1 —z1 [|><| 2*—21 ||

for all z* € C,,41. In particular, we have

n+1

| Pe,.,x1 — 21 |*<|| Pray — a1 ||

n+1
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Then, we get
lzn =21 2 = [ 9(Peper — o) + (1= 30) (g0 — 1) |1
< Tl Poppy®1 — 11 H2 +(1 =) [ yn — 21 H2
< Ml Pror— 2y [P 4H1 =) | zn — 21 |2 —see (3.9) —
< max{|| Pra1 —z1 |, || @0 — 21 [}
< max{| Prz; —z1 ||?,0}

= H prl — T H2 .

Therefore it follows from the above inequalities that || 2,11 — z1 ||< oo, hence {z,, } is bounded,
and from inequalities (3.6), (3.3), and (3.9) we conclude the boundless of {u,, }, {2z}, and {y, }.
O O

Lemma 3.2. Let {x,,} be the sequence generated by Algorithm 3.1. Then, we have
(a) nlgrolo | Tpp1 — 20 |=0
(b)) lim [y, —z,[=0
n—oo

(c) h_)m | (I — Tszn:’ ! )Axn l|=0;
(d) lim | Spx, —2,|=0
n—o0
(e) lim |z, —2, =0
n—oo
Proof. From (2.7), we have

|l 2n—2zn—1 ||
= || Pefttn — An chBun Pelun—1 = An- 1ZCzBun 1] |
=1
<| (I—Anzq (I = Ane 1Zcz Jun—1 |
l;l
:|(I—)\nZCi i (I -\, Zcz Yup—1+ (I — Ay Zcz JUn—1

I An— 1201 un 1”
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N
< H (I_)\nzcz I )\ Zcz un 1 H+” n— 1_ ZCzBun 1 H
i=1

According to Lemma 2.8, we obtain

|| Zn — Zn—1 ” < ” Up — Un—1 H +‘)\n - )\n71| H ZCiBiunfl ” . (3-10)

Next, we apply the definition of y,,, and the inequality (3.10), we get

| Yn—yn—1 ||
=|| anSnzn + (1 — an)zn — apn—1Sn—1n—1 — (1 — ap—1)zn—1 ||
=|| an(Spxn — Sntn—1) + (an — n—1)SnTn—1 + an—1(SpTp—1 — Sp—1Tn—-1)
+ (1 —an)(zn — 2n-1) + (n—1 — an)zn—1 ||
<ap || 2n — Tn-1 || +Hom — an—a (| Snan-1 || + [l 2n-1 1)
+ap—1 || Sntn-1— Sn—1Tn-1 || +(1 — ) || 2n — 2n—1 ||

<a, || Tp — Tp—1 || +|an - O‘nfl‘(H Snxnfl || + H Zn—1 ||) + ap—1 H Snxnfl - Snflxnfl ||

N
+ (1= an) (11t = ttnes [ +An = Al 1D eiBitn—s | ).
=1

Using the above inequalities, we obtain the following result, for all n > 1,

| Tnt1 — 2n ||
=[| w(Pe, 71 — Pe,x1) + (Y — Yn-1)Fe, 21 + m(Un-1 — Yn) + (Yn-1 — Yn)Yn—1
+ Yn — Yn—1 ||
<| Fe
<| Fe

w121 = e |+ = ol Pe, 2o | + T o1 [) + (1 =) | gn = yn—1 ||
w121 = Feawn ||+l = aal(l Pe, 2o |+ 1 yna 1))

+ (1 =) (an | 2n — 2p—1 || +lan — an—1|(| Snzn—1 || + [ 201 [+

N
et || Snn1 = Suorzn1 | +(1 =) (| tn = 1 |+ = Mol | Y eiBittn | ))
i=1
< (=) |2 = @t |+ | Pear = Py ||+ = ot (] Peyr | 4 ) g )
+ lan — an—1|([| Spzn—1 || + | 21 1) + an—1(l| Snzp—1 | + || Sn—12n-1 )
N

(1= an) (o |+ s |+ = Aucal 1Y i )
=1
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S (1 _771) || Tpn — Tp—1 H +M(1 + |/Yn _’Yn—l‘ + ’an - an—1| +an—1 — Op + 1

+ e = Anc)-

where

M ZmaX{ sup(| Pe,azr || + [ Fe, 2 1), sup(ll Fe,or |+ 1 wna [,

n>1
sup(|| Snzn—1 || = || 2n—1 H)asuP(H SnTn-1 || + || Sn—12n-1 [|),
n>1 n>1

N
sup(([| un ||+ | wn-1 ), sup(l 3 eiBiaenr ).
n>1 n>1 i=1

Setting 8, = M(Q + |7

— Yn—1] + 2|lan — an—1| + [An — /\n_1]> and by using conditions

C3), C4) and C5), it follows that ) >° | d,, < coand ) .~ | v, = oo. Hence from Lemma 2.7 we
conclude directly that li_>m | n+1 — @y ||= 0 which proves the result (a).
n—oo

Now, we show the assertion (b). We have

| yn — n ||

1 VAN VAN | |

IN

| Y0 = Tng1 || + || o1 — 20 |

| Yn — WmPe, 21— (1 =)y | + || Tng1 — 20 ||
| Y (yn — P 1) | + || o1 — 20 ||

Yo | Yn — Pepir @1 | + || Tnt1 — 2 |

Y | 2n — Peppr @1 || + | 21 — 24 ||

Yol 2n — Pray || + || 2ng1 — 2n ||

Wl @ |+ (I Pray D4 | 2n1 — a0 ||

This implies with C5) condition and (a), lim || y, — x,, ||= 0, thus (b) is proved.
n—oo

Now we prove the assertion (c). For p € I", we have p = TZ

get

[ —p |2

|| TES ST (1 - A (1 - TEE

111L

p. Using Lemma 2.4 we

b; G4 N a;F;
=109 Ay, — T |2

<\l @ — p— AT (I - TE= %G A, |2

|z —p |2 42 || A1 - TE"

i=1 biGi Az, ||2 —27<a;n —p, A* (I — TgilbiGi)A:cn>

2 — p |2 4 2(A (I — T Ay, AF(1 - T Ag,)
— 29(A(zy — p), (I — TSX,L:’ 1 biGs NAzy)
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N o bGy
<[l 2 —p > 2L || (I = TE=") A, |2
N 3. . N o N .
— 29( Ay — p) + (I = To= ") Ay — (I = T2 =) A, (1 — T2 ") Ax, )

A biGi)

N ob,Gy
=l an—p > +97L || (I - TZ Awn | =27 || (T = TZ=") A, |?

N 1. N ..
— 27<Tszn:i:1 b’G’Axn — Ap, (I — Tszn:i:1 bzG’)A$n>.
It follows from (2.10) that

N b6y N obGy
lun—p 1> < llan—p > +2L I (I = T ") Axy |2 =2y | (T = T ) Az |2

1 N biGi
+ 295 | =T Axy |
N . .
— J@w—p|> (YL = 1) | (I = TE=") A, |2 (3.11)
Since

Ly —p I
=|| anSpzn + (1 — an)zn —p H2
=l an(Snan — Sup) + (1 — an)(z0 — p) |I?
= an || Spn = Sup |17 +(1 = an) || 20 = p |* —an(l — an) || Spzn — 20 |17
<ap | 2n—p | +(1 = an) | un —p |
< an o0 —p I+ = an)(| 20— p 2 +9(rL = 1) | (T = TE=156) Az, |2)

N b;Gy
—| 20— p I +(1 = a)y(YL = 1) | (T = T2 ") Az, |2 .

N ob,Gy
(1—an)y(1 = L) | (I =T "D Az, [P < Jan—p|® = [ ga—p |
= lozn—yull lzn =D+l yn—pI)-

Using (b), condition C1) and letting n — oo, we obtain the desired result.

In the following, we show the assertion (d); let p € T, from (3.7), (3.3) and (3.6), we get

lyn—pII° < anllzn—p P +(1 =) | 2o —p |* —an(l = an) || Suzn — 2a |17
< [lan—p H2 —an(1 —an) || Sprn — 2 H2 .
Consequently
an(l —an) || Snzn — 21 H2 < [fan—p H2 ~lyn—p ||2

= zn—pl+lyn—pI)l2n—ynll-
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From the condition C1), it holds that

a(1=b) | Snzn =20 I < (Jzn—pl+lga—2D I 2n—wall.  (312)

By using (b), it can be easily seen that lim || Spzy, — 2z, ||= 0.
n—0o0

Next, we show the assertion (e), we have
lyn—2n |l = an| Snxn— 20| . (3.13)
Furthermore

[ 2n—2n |l < |l 20— 2o | + || 1 — 20 ||

H Zn — ’YnPCn-Hml - (1 - Vn)yn ” + H Tn+1 — Tn H
B T Pcn+1$]- |+ =) | 20 —n | + | Tns1 — 2 ||
< Ml Peppzi [+ 1120 )+ @ =%) [ 9n =20 | + | Zng1r — 2 || -

Combining the above inequality with (3.13), we obtain

[ 2n—zn |l < ] PCn+1331 |+ 1l 2o l]) + (1 =v)an || Snzn — 20 || + || Tog1 — 20 || -

We apply (d), (a) and the conditions C4) and C5) of Algorithm 3.1, so we get immediately that

lim || z, —x, [|=0. O O
n—oo

Theorem 3.1. The sequence {x,, } generated by Algorithm 3.1 converges strongly to g € I, where
r— (mg"zl F(Sn)> nan ( Ny, (VIP)Bi7C>, and

Q= {p €C:pen EP(F,)and Ap € NN EP(G;), foralli € {1, ...,N}}.

Proof. Firstly, we show that ¢ € N72, F'(S,,). We know that x,, is bounded, then there exist a
subsequence z,; such that z,,, — gq.
Since || Sp;Zn; — Tn; (|<|| Snn; — 2n; | + || 2n; — @n; || - From (d) and (e) of Lemma 3.2,
we get li)rgo | Sn;®n; — xn; ||= 0. Using Lemma 2.6, we get S,q — ¢ = 0, then g € F'(S,,) for
everyrj € N*. Hence g € N2, F'(Sy).

Next, we show that ¢ € Q = {p €C:pen¥ EP(F;)and Ap € ﬂf\ilEP(Gi)}.

Let us first prove that lim || u, — x, ||= 0. Fora given p € I, we easily obtain
n—oo

” Up—pP H2
ity aiF; % SN b:G N o
= || TZ=1 4 (g — AR (T — TE=1 2 Ag,y) — =1 5T |2

< (T (o =y AN = T ) Aay)
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N o, N ¢y
_ T%i:1 azep, Tp— P — ’)/A*(I i Ts%:z':l blGl)AiL‘n>
% N bG;
= <un — P, Tp — P — ’YA (I - Tsé:l_l )A$n>
From Lemma 2.3, it follows that
| un—p |?
1 2 * SN biGy 2
< S (1w =p 1P + | 20— p = 7A"( = =) Aay |
~ = o AT = T ) Ay |2 )
2 2 * Sy
< 5 (Wun=p 7+ 1 20— p |2 ~29(A*(T T2 "%) Az, 2 p)
* N b,G;
2 || A = T A |2 = || — 2 |
" N bGy " N bGy
= 29( A1 = T ) A, — ) = AP || AT = T ") Ay |2
Then
% N biGi
tn = p 12<] @0 —p |12 = || tn — 2 |* —29(A*(I = TZ="%) Az 0y — ). (3.14)
Substituting (3.8) into (3.14), we obtain
| yn=p P< on | 2o —p |I> +(1 - an)< |2 —=p 1> = | un — 20 [I”
N oo
- 2’7<A*(I - TS%:iZI ble)A:Um Up — p>>
* N biGy
=l —p | —(1 = an) [ un — 2 [ =29(1 — @) (A (I = T&=Y) Az un — p).
Therefore
(1 —an) || up — H2
< am=pI2 = [ yn—p |2 =2v(1 — an ) A*(I — TGy 4
<l xzn—pl | yn —p 7( an)< ( Sn Ty Un — p>
< zn =2l +1yn=20)l Yo —2n |
N bG;
+29(1 — an) || (I = T =) Ay, ||| Al —p) | -
Letting n — oo and using (b), (c) and both conditions C1) and C2) of Algorithm 3.1, we get

lim || up — 2, ||=0. (3.15)

n—o0

Now, we are ready to prove that for every i € {1,..., N}, we have p € NI¥ EP(F;).
Indeed; for all i € {1, ..., N}, we have from the definition of w,,

N . .
U = T 5 (L A (1 = TES ) A > 1,



An Iterative Method for a Common Solution of a Combination of ... 429

Then

1 N pa.
Zal (Un,y <y—un,un—xn+7A*(I—TS§Z:1bZGZ)A:cn> >0 Yy € C,
Tn
which implies

= Za, H(un,y) < Tl (<y — Up, Uy, — :cn> + ’y<y — U, A*(I — Tgﬁilbigi)A:cn».

By monotonicity of F; and from Lemma 2.5, we can write the above inequality as follows

1 * N biGy
Zaz yaun =7 (<y_umun_$n> +’7<y_unyA (I_Tgl_l )Axn>)
n

Therefore

1 b; G
Zaz Wy1imy) < —— (1 y=tim, 1 tm,—m, |47 1| Alg—ran,) ] (T=T2%) A, ).

Tn;

From Lemma 3.2, (3.15) and the condition C6) of Algorithm 3.1, we can conclude that for every
i€A{l,..,N}, hm ZZ 1@ Fi(y,un;) < 0, and since Zf\il a; F; is lower semicontinuous in

the last argument (see Lemma 2.5), hence we get for each i € {1,..., N}, and for every y € C

N
> aiFi(y,q) <0
i=1

Setting vy = ty + (1 — t)q forsome 0 < ¢ < 1, then y; € C. Using the assertions 1 and 4 of

Assumption 2.1, we get

0 = Zaz (78

= Zaz yt,ty+(1_t) )

< tzaz (Y, y) + (1 —¢ Zaz (Y1,9

<0

N

< t Z a;iFi(ys, )

=1

Then foralli € {1,..., N}, =N a;Fi(ty+(1—t)q,y) > 0,lettingt — 0, by the hemicontinu-
ity of EZ 1 @i F; (see Lemma 2.5), we obtain that ZZ 16iFi(q,y) > 0, foreachi € {1,...,N}.
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Then q € EP(Z:?L1 a; F;) for every i € {1,..., N}. According to Lemma 2.5, we easily deduce
that g € NN, EP(F;).

Next, we show that for alli € {1,..., N}, Ag € N EP(G;).

Foralli € {1,..., N}, we have A is bounded and since x,,; — ¢ then Ax,,;, — Ag, from Lemma
TZf-V:l bG

3.2 (c), we get e iA:an — Ag, thus

L e? 1 N G N o b.G.
Gi(Ter= " A, 2) + 7<Z—Ts§;zl "G Ay, T Ay, —Ag;nj> >0 VzeCl.
Sn; ’
Taking the limit sup of each side of the above inequality, and using the fact that G; is upper
semicontinuous in the first argument and using the condition C5), we conclude that for every
ie{l,..N},
Gi(Ag,2) >0, vVzeC

which implies that Aq € EP(G;), then Aq € NY_, EP(G;) and hence q € .

Furthermore, we show that ¢ € N, (VIP) B, c- Let

Zi]\il ¢iB;v + Nev, Yv € C,

Tv = (3.16)

0 otherwise

where Nov :={w € H : (w,v—u) >0, Vu € C}isthenormal conetoCatv € C. ThenT
is maximal monotone and 0 € T'v ifand only if v € (VIP)ZN B, c (see [23]).
i=1 Gt Dy

Let G(T') denote the graph of T', and let (v, u) € G(T'); since u— Zfil ¢iBi € Nev,and z, € C,

we have
N
<v — Zp, U — Z cZ-Biv> > 0. (3.17)
i=1
It follows from z, = Polu, — Ay ZZ]\L 1 ¢iBiuy] and v € C that

N
<v — Zny 2n — (Up — Ay, ZciBiun» > 0.
i=1
Then in particular, it follows that

N
(v — 2y, Z”’“/\_A + ) ¢iBiup,) > 0. (3.18)
Tk i=1
Using the fact that Zl]\; 1 ¢ B; is strongly positive, (3.17), and (3.18), we obtain

N

<v — znk,u> > <U — Znys Z ciBiv>

=1
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N N
> (v — zp,, Z ¢iBv) — (v — zp,, M + Z ¢iBiunp,, )
i=1 Tk j

=1

N
o s Y~ )~ 2 2
=1

Ang
>0
N N
+ (0= 2n, Y ciBizn, — Y ¢iBitn,)
i=1 i=1
5 w N N
ne ~ Yng
2 7</U — Rngs >\7> + <U — Zny» E CiB’ian - E C’LBZUTL)C>
=1 =1

Note that
|2 —un [[<]] 20 — 20 | + | 20— un |,
it follows from Lemma 3.2 (e) and (3.15) that lim || z, — u, ||= 0, since lim z,, = g, thus
n—o0 k—00

lim z,, = ¢gand lim w,, = ¢. Hence letting k — oo, we have <v —q, u> > 0.
k—o0 k—o0
Since 7' is maximal monotone, we have ¢ € 710, and hence ¢ € (VIP)(ZJ_\L aBiC) =
NN, (VIP) g, c)- We finally deduce that

geT = (M2, F(S)) nen (0, (VIP)p,c).

Next, we show that {x,,} converges strongly to g € T".
Indeed, as g € T', we have

| 2Zns1—al* = | wmPezr—a)+ 10— )y —aq) ||
< ol Pepzr —aq P+ —7) [ yn —a 1P
< | Pepzi—q P +0 =) 2 —q |

= (I=w)llzn—gq H2 +0n;

where 6, =|| Fe,.,, 1 — ¢ ||* . Since

Zzo:1 Tn = OC;
Z?LOZI 5” = Z;.Lozl H Pcn+1'r1 —4q ||2< Q.

Thus all the conditions of Lemma 2.7 are satisfied. Hence we deduce that li_>m xn = q € I'. This
n o

completes the proof. O O
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4 Numerical example

To verify the theoretical assertions, we consider the following example. All codes were written in
Matlab. Let H; = Ho = R, and let C = [0,30] and Q =] — 00, 0] two closed convex subsets of
R. Foralli € {1,..., N}, we define A and S; as follows:

A H1—>7’[1

r — 3x
and
S; Cc—C
T —
10¢°
and

Bi : C—>H1
1T

r —r —.

2

It is obvious that A is linear bounded and \S; is nonexpansive. Since S;(0) = 0 then F'(S;) = {0}.
We define the bifunctions F; and G; by:

Fi : CxC —)7‘[1
(u,v) — Fi(u,v) =i(u+1)(v — u)

and

Gi : QXQ—>H2
(z,y) — Gi(z,y) = i(zr — 10)(y — z)

We define a;, b; and ¢;, as follows :

31
U= TN
8 1
== gt vy
n n 1 1 1 1
Letr, = ——,8, = ——, \p = —— = y=——,andy = —.Iti t
etry n+175n on+3 n n+1aan na’}/n n—}—l’an Y 11 1§ easy to

see that F;, G, 1y, Sn, A, O, Yn, and -y are satisfying all conditions of Algorithm 3.1. In order

to simplify the notation we use o = Zfil ib; = Zfil ic;and p = Zf\il ia;.
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N . .
First, we compute v,, = Ts%:":l blGlAa?n, for every z,, € C, v, € Q such that
N 1
> iGilvnsy) + —(y = vy v = Azy) > 0. (4.1)
i=1 n
Clearly
1
4.1) <= o(v,—10)(y —v,) + ;<y — Up, Up — A$n> >0,
n
— spo(vy, — 10)(y — vp) + (y — vp)(vn, — 3zy) >0,
<~ (y—vn)(o8n(vy —10) + (v, — 325,)) >0,
— (y—wvn)(vp(osy, +1) — (100sy, + 3z,)) > 0,
N 3 o~ 10 3
since ngzl biGis is a single-valued, then v,, = M, which holds
s, +1
Tglf.\’:l biGiAmn _ 100s,, + 3z,
oSy +1

N . .
Now, we determine w € C, such that w = z,, — yA*(I — Tgizl blGl)Amn, then

100s, + 3x,
=z, — vy —3——mm—).
w = 1y, — y(97y o5, + 1 )
SiLiaiF; . . .
In order to compute u,, = 17" w, we will find u,, € C which satisfies

N

1
ZaiFi(un,z) + —<z — Up, Uy, — w> >0 Vzel,
i=1

Tn
which is equivalent to
= prp(un +1)(z —up) + (2 — up) (up —w) >0,

< (2 —up)(pra(un +1) + (up —w)) = 0,
—= (2 —up)(un(prn +1) — (w—pry)) > 0.

Thus, we get u,, = w, which holds
prn +1

1—09v 3v(100sy, + 3xy,) P
= x - .
prn +17" 7 (osy+ D(pr, +1)  prp+1

n

Then
U
zn = Peluy, — )\naf]
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a
Yn = m—zlxn + (1 —ap)zp.
and thus

Tpi1 = YnFe, 1+ (1 = 7)Yns

since for x1 € C = Cy,weget 0 < y; < z1 < 30, then

Y1 +x1
Co={peC:lyr—pl <o —pl} = [0. T,
. Y1+ 1 Sy Yn,1 T 21
it can be clearly seen that < x1, which implies 9 = Pp,x1 = “=————. Therefore by
the same process we easily get C, 11 = [O, Un ; :rn} , consequently Fe, . 71 = Un ; ™" Thus
Zp+1 can be rewrited as follows
+x
Tnt1 = 'Ynyn 9 =+ (1 = 9n)Yn.
Hence, the new form of the algorithm is given by:
1—9y 3v(100 sy, + 3x,,) PTn
= €T — s
" 17" (o8, D) (prp+ 1) pra+1
= Pelup — Ao —],
2 = Felin = Ao 7] (4.2)
an
Yn = Ewn + (1 an)zny
Yn + T
Tnpt =g + (L= )y, =1,
Algorithm 3.1 Algorithm 3.2
n Up, Zn Yn Tn Un, Zn Yn Tn
1 4998900 3.593000 1.000000 10.000000 | 5.727300  4.295500 1.000000 10.000000
2 1.258800 1.022800 0.592630  3.250000 1.559100 1.299200 0.730870  3.250000
3 0.274130 0.235580 0.168560  1.035500 | 0.484100  0.423580 0.295180 1.150700
4 -0.030834 0.000000 0.001731 0.276930 0.134250 0.120830 0.093135 0.402120
5 -0.125720 0.000000 0.000117 0.029251 0.010956 0.0100430 0.008531 0.124030
6 -0.137460 0.000000 0.000007  0.002545 | -0.034467 0.000000 0.000050 0.018156
7 -0.139900 0.000000 0.000000 0.000188 | -0.041879 0.000000 0.000003 0.001344
8 -0.141200 0.000000 0.000000 0.000012 | -0.042746  0.000000 0.000000 0.000086
9 -0.142190 0.000000 0.000000 0.000000 | -0.043060 0.000000 0.000000 0.000005
10 -0.142980 0.000000 0.000000  0.000000 | -0.043290 0.000000 0.000000 0.000000

Table 1: the values of {u,}, {zn}, {yn} and {x,,} with initial value 21 = 10.

Figures 1 and 2 clearly show the behavior of the sequence {z,, } generated by the Algorithm
3.1, which converges to the same solutionie.,0 € I' = (ﬂioil F(SZ)> nanN (ﬁﬁil OJIP)&,C) .



Figure 1: Convergence of {uy }, {z,}, {yn} and {z,, } with initial value z; = 10, for Algorithm
3.1 and Algorithm 3.2.

And the algorithm 3.2, which converges to 0. i.e.,0 € I' = ( nX, F(S)) NN VIP)pe.

Figures 3 and 4 show again that the sequence x,, generated by the Algorithm 3.1. converges

to 0, where0 € ' = (ﬁg’il F(SZ)) nan <ﬂ£\;1 (VIP)Bi’C) . Similary Algorithm 3.2 converges
to 0, where 0 € T’ = (mggl F(S,-)) NQNVIP) .

In the following we compare the proposed method with those in [20] and [13].

Remark 1. Table 3 and Figure 5, show that the sequence {x,, } converges faster than those in [20]
and [13].

5 Conclusions

In this paper, we suggested and analyzed an iterative method for finding the approximate element

of the common set of solutions of the combination of the split equilibrium problem (2.1)-(2.2), a

finite family of nonexpansive mapping (2.3) and the combination of variational inequality prob-
lem (2.4) in real Hilbert spaces. We proved that the sequences generated by the proposed iterative
method converge strongly to a common solution to these problems. We also discussed a numer-
ical example to demonstrate the applicability of the iterative algorithm. The method and results

presented in this paper can be viewed as a refinement and improvement of some existing methods

for solving a variational inequality problem and a split equilibrium problem.
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Figure 2: Convergence of {uy, }, {2z}, {yn} and {x,, } with initial value x; = 10, for Algorithm
3.1 and Algorithm 3.2.
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Figure 3: Convergence of {uy,, }, {z}, {yn} and {z, } with initial value x; = 20, for Algorithm
3.1 and Algorithm 3.2.
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Algorithm 3.1 Algorithm 3.2
n Un Zn Yn In Un Zn Yn In
1 10.097000 7.257400 2.000000 20.000000 | 11.485000 8.613600 2.000000 20.000000
2 2.636900  2.142500 1.233800 6.500000 | 3.154500 2.628800 1.476900  6.500000
3 0.692060 0.594740 0.419950 2.111500 1.012900 0.886280 0.616570  2.314100
4 0.099939 0.088696 0.070468 0.631390 0.319560 0.287600 0.220880  0.828760
5 -0.091017 0.000000 0.000506  0.126560 | 0.077398 0.070948 0.057885 0.281670
6 -0.134510  0.000000 0.000003 0.011011 | -0.010381 0.000000 0.000213 0.076534
7 -0.139680 0.000000 0.000002  0.000815 | -0.040124 0.000000 0.000011 0.005664
8 -0.141190 0.000000 0.000000 0.000052 | -0.042634 0.000000 0.000000 0.000365
9 -0.142190 0.000000 0.000000  0.000003 | -0.043054 0.000000 0.000000  0.000020
10 -0.142980 0.000000 0.000000  0.000000 | -0.043290 0.000000 0.000000 0.000001

Table 2: The values of {u, }, {2z}, {yn} and {z,, } with initial value z; = 20.
Algorithm 3.1 | Algorithm [20] | Algorithm [13]

n Tn In Tn

1 5.000000 5.000000 5.000000

2 1.625000 2.500000 5.000000

3 0.497560 1.250000 3.792000

4 0.099701 0.625000 2.571000

5 0.010531 0.312500 1.639600

6 0.000916 0.156250 1.005600

7 0.000068 0.078125 0.599980

8 0.000004 0.039063 0.350430

9 0.000000 0.019531 0.200930

10 0.000000 0.009766 0.113100

Table 3: the values {xy, } with initial value z; = 5. with three different methods.
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