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On subspace-recurrent operators

Mansooreh Moosapoor

Abstract. In this article, subspace-recurrent operators are presented and it is

showed that the set of subspace-transitive operators is a strict subset of the set

of subspace-recurrent operators. We demonstrate that despite subspace-transitive

operators and subspace-hypercyclic operators, subspace-recurrent operators exist on

finite dimensional spaces. We establish that operators that have a dense set of pe-

riodic points are subspace-recurrent. Especially, if T is an invertible chaotic or an

invertible subspace-chaotic operator, then Tn, T−n and λT are subspace-recurrent

for any positive integer n and any scalar λ with absolute value 1. Also, we state a

subspace-recurrence criterion.
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1 Introduction and Preliminaries

For a given Banach space X and for a given vector x ∈ X, the orbit of x under T is signified
by orb(T, x) = {x, Tx, T 2x, ...}. If there exists an element x ∈ X such that orb(T, x) = X for
a bounded and linear operator T , then T is called hypercyclic. The notion of hypercyclicity is
related to the closed subspace problem and studied by mathematicians for years.

A related topic to hypercyclicity is topological transitivity. Let U and V be two open sets
of X. A bounded and linear operator T is named topologically transitive if T−nU ∩ V 6= φ for
some nonnegative integer n. It is well known that hypercyclicity and topological transitivity
are equivalent on a complete and separable metric space X. One can see [6] and [11] for more
information. Another central notion in the dynamical system is recurrence. A bounded and
linear operator T : X → X is called recurrent if for any U ⊆ X that is nonempty and open, we
have T−nU ∩ U 6= φ for some positive integer n. That means a recurrent operator, send back to
itself, for any open set U .

It is not hard to see that transitive operators are recurrent. Also, a vector x is named a recurrent
vector for T if we can construct an increasing sequence {nk} that make of positive integers such
that Tnkx→ x when k →∞.

Received date: January 8, 2020; Published online: February 26, 2021.
2010 Mathematics Subject Classification. 47A16, 47B37, 37B20.
Corresponding author: Mansooreh Moosapoor.

363

http://dx.doi.org/10.5556/j.tkjm.53.2022.3579


364 M. Moosapoor

It is established that any bounded and linear operator on a compact metric space, have some
recurrent vectors([8]).

The notion of recurrence was introduced many years ago in [10] and [7]. It is also considered
recently by authors like Glasner[9], Costakis and Parissis[4] and Chen[3]. One can find interesting
theorems about the recurrence of composition operators in [17]. Also, Bonilla et al. introduced
the concept of frequent recurrence in [2].

Subspace-hypercyclic operators and subspace-transitive operators were presented in [13] by
Madore and Martinez-Avendano and by this, they extended the notion of hypercyclic operators
and transitive operators. Let M be a closed and nonempty subspace of X. A bounded and linear
operator T on X is named subspace-hypercyclic with respect to M if there is x ∈ X so that
orb(T, x) ∩M = M . Also, we say T is M -transitive if for arbitrary nonempty open subsets U, V
of M , non-negative integer n can be find such that T−nU ∩V contains a nonempty and relatively
open subset of M . It is demonstrated in [13] that subspace-transitive operators are subspace-
hypercyclic. We can construct subspace-hypercyclic operators that can not be hypercyclic but
authors in [1] proved that any hypercyclic operator is subspace-hypercyclic. One can also see [14]
and [15].

Now, we interested in knowing that for a closed subspace M of X, if for an operator T on
X we have T−nU ∩U be nonempty and relatively open for any relatively open and nonempty set
U and some positive integer n, and call it subspace-recurrence, then what other properties does
T has? Clearly, subspace-transitive operators are subspace-recurrent. But is the converse true?
Are that mean these operators necessarily subspace-transitive?

Also, authors in [13] showed that subspace-hypercyclic operators and consequently subspace-
transitive operators do not exist on finite dimensional spaces. Does it true for subspace-recurrent
operators?

Chaotic operators are an important subset of transitive operators. Remind that we know an
operator T on a Banach space X as a chaotic operator, if it is transitive and its periodic points be
a dense set in X. Also, subspace-chaotic operators are an important subset of subspace-transitive
operators. Recall that we say a bounded and linear operator T on X is M -chaotic if it is M -
transitive and the set of its periodic points in M is dense in M ([16]). In this paper, we also want
to know the relations between subspace-chaotic and subspace-recurrent operators.

In this paper, X denotes an F -space, a complex and complete metrizable topological vector
space. Also, B(X) indicates the set of all bounded linear operators on X and we call its elements,
by operators. In the article, M shows a nonzero and closed subspace of X.

In Section 2, we present some examples of subspace-recurrent operators. We show that
there are subspace-recurrent operators that are not subspace-transitive and by this, we conclude
that the set of subspace-transitive operators is a strict subset of the set of subspace-recurrent
operators. We also define subspace-recurrent vectors and prove that an operator is M -recurrent
if and only if it has a dense set of M -recurrent vectors.

In Section 3, we prove that if an operator has a dense set of periodic points, then it is
subspace-recurrent. Especially, if T is an invertible and chaotic or an invertible subspace-chaotic
operator, then Tn, T−n and λT are subspace-recurrent for any positive integer n and any scalar λ
with |λ| = 1 . We show that surprisingly, subspace-recurrent operators exist on finite dimensional
spaces.

In Section 4, we give some conditions that under them, the operator becomes subspace-
recurrent. Especially, we state a subspace-recurrent criterion.
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2 Insight into Subspace-recurrent Operators

At the beginning of this section, we say the main definition.

Definition 1. An operator T is said M -recurrent or subspace-recurrent with respect to M if for
every open and nonempty subset U of M , a positive integer n can be find such that T−n(U)∩U
is nonempty and open in M .

It is mentioned in Section 1 that subspace-transitive operators are subspace-recurrent. So,
we can make an example as follows.

Example 1. Assume that B is the backward shift on l2. Let T = 5B, and consider

M := {{an}∞n=0 : a2n = 0 for all n}.

By [[13], Example 3.7], T is M -transitive and accordingly, it is M -recurrent.

The next lemma shows that if T is an M -recurrent operator, then for open and nonempty
set U ⊆M , T−n(U) hit U for infinitely many n.

Lemma 2.1. Suppose that T ∈ B(X) is M -recurrent. Then,

{n ∈ N : T−n(U) ∩ U is nonempty and open in M}

is infinite for any open and nonempty subset U of M .

Proof. Suppose, on the contrary, that the set

{n ∈ N : T−n(U) ∩ U is nonempty and open in M}

is finite for an open set U ⊆M . Without loose of generality, we can take that

{n ∈ N : T−n(U) ∩ U is nonempty and open in M} = {1, 2, 3, ..., k}.

So, T−k(U)∩U is a nonempty and open subset of M . By definition of an M -recurrent operator,
a natural number m can be find so that

T−m(T−k(U) ∩ U) ∩ (T−k(U) ∩ U)

is nonempty and open in M . Hence, T−(m+k)(U) ∩ U 6= φ and open in M . But m+ k is greater
than k and this is a contradiction.

Now, we define a subspace-recurrent vector as follows.

Definition 2. If an increasing sequence {nk} of positive integers exists such that Tnk(x) ∈ M
and Tnk(x) → x, where x ∈ M , we call x is an M -recurrent vector. Equivalently, x is an
M -recurrent vector if for any ε > 0 the set {n ∈ Z+ : Tn(x) ∈ M and d(Tn(x), x) < ε} is
infinite.

We offer the symbol RecM (T ) to show the set of all M -recurrent vectors for the operator T .

The next theorem presents an equivalent condition for subspace-recurrence.

Theorem 2.1. For an operator T ∈ B(X), T is M -recurrent if and only if RecM (T ) = M .
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Proof. Consider that RecM (T ) = M . Allow UM be an open and nonempty set in M . By
hypothesis, RecM (T ) = M . So, UM includes a recurrent vector like y. But UM is open. So, there
exists ε > 0 such that BM = B(y, ε) ∩M ⊆ UM . By Definition 2, n ∈ N can be find such that
Tn(y) ∈M and ||Tn(y)− y|| < ε. Therefore, y ∈ T−n(UM ) and hence, y ∈ T−n(UM ) ∩ UM .

Now, assume that T is M -recurrent. Let U = B(x0, ε0) ∩M for some x0 ∈ M and ε0 < 1.
T is M -recurrent. So, there exists n1 ∈ N such that U1 = T−n1(U)∩U is nonempty and open in
M . Therefore, we can find x1 ∈M and ε1 <

1
2 such that

U2 = B(x1, ε1) ∩M ⊆ U1 = T−n1(U) ∩ U.

Again, U2 = B(x1, ε1)∩M is open in M . So, we can find n2 with n2 > n1 so that T−n2(U2)∩U2

is nonempty and open in M . Hence, we can find x2 ∈M and ε2 <
1
22 such that

U3 = B(x2, ε2) ∩M ⊆ U2 = B(x1, ε1) ∩M.

By induction, we can make a sequence {nk} that is increasing and their elements are positive
integers and we can create a sequence {εk} of real numbers such that εk <

1
2k

and

B(xk, εk) ∩M ⊆ B(xk−1, εk−1) ∩M

and

Tnk(B(xk, εk) ∩M) ⊆ Tnk(T−nk(B(xk−1, εk−1) ∩M) ∩ (B(xk−1, εk−1) ∩M))

⊆ B(xk−1, εk−1) ∩M.

Now, by Cantor theorem, ∩n(B(xn, εn) ∩M) = {y} for some y ∈ M , since M is complete.
So, Tnk(y)→ y and hence, y is an M -recurrent vector.

In the following lemma, we prove that subspace-recurrence of T p for a positive integer p
implies subspace-recurrence of T .

Lemma 2.2. Suppose that T ∈ B(X) and consider p > 1 is an integer. Then,

(i) If T p is an M -recurrent operator, then T is an M -recurrent operator.

(ii) RecM (T p) ⊆ RecM (T ).

Proof. Proof of (i) is clear by definition. For proving (ii), let x ∈ RecM (T p). Hence, one can find
an increasing sequence {nk} of positive integers with (T p)nk(x) ∈ M and (T p)nk(x) → x. So,
T pnk(x)→ x and pnk is increasing. Therefore, x ∈ RecM (T ).

3 Periodic Points and Subspace-recurrent Operators

In this section, we discuss operators that have a dense set of periodic points. We consider relations
between them and subspace-recurrent operators. We begin by saying a lemma. The proof of the
lemma is not hard by using the definition of the subspace-recurrent vector.

Lemma 3.1. Consider that x ∈ M is a periodic point for T . Then x is an M -recurrent vector
for T .
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By Lemma 3.1, we can present the subsequent example.

Example 2. Assume that T = 2B, where B is the backward shift on l2. It is shown in [16] that
T ⊕ I is subspace-chaotic with respect to M := l2 ⊕ {0}. So, the set of periodic points for T in
M is dense in M . But any periodic point is an M -recurrent vector by Lemma 3.1. So, T has a
dense set of M -recurrent vectors. Hence, T is an M -recurrent operator by Theorem 2.1.

Moreover, we can extend our statements as it is shown in the next theorem.

Theorem 3.1. Let T ∈ B(X). Suppose that the set of periodic points of T is dense in X. Then
T is subspace-recurrent with respect to a closed and nontrivial subspace M of X.

Proof. Assume that Per(T ) is the set of periodic points for T . According to the hypothesis,
Per(T ) = X. So, by [[1], Theorem 2.1], one can find a closed and nontrivial subspace M of X
such that Per(T ) ∩M = M . Hence, the set of periodic points of T in M is dense in M and so,
T has a dense set of M -recurrent vectors in M . Consequently, T is an M -recurrent operator by
Theorem 2.1.

It is established in [13] that subspace-hypercyclic operators and consequently subspace-transitive
operators do not exist on finite dimensional spaces. But in the next example, we make examples
of subspace-recurrent operators on finite dimensional spaces.

Example 3. (a) The tent map T : [0, 1]→ [0, 1] is determined by,

T (x) =

{
2x, 0 ≤ x ≤ 1

2 ;

2− 2x, 1
2 < x ≤ 1.

The tent map has a periodic point in any interval [ m2n ,
m+1
2n ] [[11], Example 1.24]. Hence,

it’s periodic points make a dense subset of [0, 1].

(b) Recall that a rotation T : T→ T is defined by z → eiαz where α ∈ [0, 2π). If T is a rational
rotation, we can detect N ≥ 1 such that TN = I [[11], Example 1.24]. So, every point is a
periodic point for a rational rotation.

By Theorem 3.1, these operators are subspace-recurrent.

By Example 3, and this fact that subspace-hypercyclic operators and subspace-transitive
operators don’t exist on finite dimensional spaces, we can say the following corollaries.

Corollary 3.2. There are finite dimensional spaces that support subspace-recurrent operators.

Corollary 3.3. There exist subspace-recurrent operators, where they are not subspace-hypercyclic
nor subspace-transitive.

In fact, we can deduce that the set of subspace-transitive operators is a proper subset of subspace-
recurrent operators.

The next theorem shows that if the set of periodic points of T is dense in M , then Tn, λT
with |λ| = 1 and T−n, when T is invertible, are all M -recurrent.

Theorem 3.4. Consider that T ∈ B(X). If the set of periodic points of T is dense in M , then:
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(i) Tn is an M -recurrent operator, for every n ∈ N.

(ii) λT is M -recurrent, where λ ∈ C and |λ| = 1.

(iii) T−n is M -recurrent for every n ∈ N, when T is invertible.

Proof. For proving (i), let n be a positive integer greater than 1. It is sufficient to show that Tn

has a dense set of periodic points in M . Let x ∈M be a periodic point for T . So, we can detect
p ∈ N so that T p(x) = x. In fact,

(Tn)p(x) = Tnp(x) = Tn · · ·Tn︸ ︷︷ ︸
p

(x) = x.

This completes the proof.

For proving (ii), note this point that if x is any periodic point for T , then for λ with |λ| = 1,
x
λ is a periodic point for λT . For this, suppose that T p(x) = x. Note that,

(λT )p(
x

λ
) = λpT p(

x

λ
) = λp

1

λp
T p(x) = x.

Also, we know that:

{x
λ

: x ∈ Per(T )} =
1

λ
{x : x ∈ Per(T )} = {x : x ∈ Per(T )} = M.

So, λT has a dense set of periodic points in M and hence, it is an M -recurrent operator.

For proving (iii), let x ∈M be a periodic point for T . Consequently, we can discover p ∈ N
such that T p(x) = x. So, T−p(T p(x)) = T−p(x). But T is invertible. Therefore, T−p(T p(x)) = x
and hence, T−p(x) = x. So, x is a periodic point for T−1. Then Per(T−1) ∩M is dense in M .
Similar to (i), we have T−n is M -recurrent.

Costakis, Manoussos and Parissis proved in [5] that if T be an invertible operator, then the
recurrence of T and T−1 are equivalent. By Theorem 3.4, we can conclude that if T is invertible
and its periodic points in M are dense in M , then T is M -recurrent if and only if T−1 is M -
recurrent. Now, the following question arises:

Question: Assume that T is an invertible operator. Can we infer that M -recurrence of T
and T−1 are equivalent?

Also, we have the following corollaries from Theorem 3.4.

Corollary 3.5. Consider that T ∈ B(X) is an invertible operator. If T is an M -chaotic operator,
then:

(i) Tn is an M -recurrent operator, for any n ∈ N.

(ii) λT is an M -recurrent operator, for any λ ∈ C with |λ| = 1.

(iii) If T is invertible, then T−n is an M -recurrent operator for any n ∈ N.

Proof. If T is an M -chaotic operator, by definition of a subspace-chaotic operator, T has a dense
set of periodic points in M . So, Theorem 3.4 completes the proof.
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Corollary 3.6. Consider that T ∈ B(X) is an invertible operator. If T is a chaotic operator,
then :

(i) Tn is subspace-recurrent, for any n ∈ N.

(ii) λT is subspace-recurrent operator, for any λ ∈ C with |λ| = 1.

(iii) If T is invertible, then T−n is subspace-recurrent for any n ∈ N.

Proof. According to the hypothesis, T is chaotic. So, by definition of a chaotic operator, T has
a dense set of periodic points in X. Like to proof of Theorem 3.4, Tn, has a dense set of periodic
points in X . By Theorem 3.1, there is a closed and nontrivial subspace Mn of X such that Tn

is Mn-recurrent. Similarly, λT , for any λ ∈ C with |λ| = 1 and T−n are subspace-recurrent.

By Corollary 3.6, we can make examples as follows.

Example 4. Recall that the Birkhoff’s operator on H(C), space of entire functions, is defined
by

Taf(z) = f(z + a), a 6= 0.

Birkhoff’s operators are chaotic[[11], Example 2.35]. Therefore, for any n ∈ N and any scalar λ
with |λ| = 1, Ta

n, T−a
n and λTa are subspace-recurrent.

4 Some Sufficient Conditions for Subspace-recurrence

In this section, we give conditions for an operator to be subspace-recurrent. We state a subspace-
recurrence criterion and we construct an example by this criterion.

Lemma 4.1. Assume that T ∈ B(X) and assume that Z is a dense subset of M . If we can build
an increasing sequence {nk} of positive integers so that:

(i) Tnkx→ x for any x ∈ Z,

(ii) Tnk(M) ⊆M ,

then T is M -recurrent.

Proof. Consider U ⊆M is a relatively open and nonempty set. By hypothesis, Z is dense in M .
So, there is x ∈ U ∩Z. By condition (i), we can detect a positive integer nk such that Tnkx ∈ U .
Consequently, x ∈ T−nk(U) ∩ U . But Tnk(M) ⊆ M and hence, Tnk |M : M → M is continuous.
Therefore T−nk(U) is open in M . Hence, T−nk(U) ∩ U is nonempty and open in M .

Theorem 4.1. (Subspace-recurrence Criterion) Assume that T ∈ B(X) and assume that M is a
closed and nonzero subspace of X. Suppose that a dense set Z of M and an increasing sequence
{nk} of positive integers are existed so that:

(i) Tnkx→ 0 for any x ∈ Z,

(ii) For every x ∈ Z, a sequence {xk} can be determined such that xk ∈ M and xk → 0 and
Tnkxk → x,
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(iii) Tnk(M) ⊆M .

Then T is M -recurrent.

Proof. Let U ⊆M be a relatively open set. By hypothesis, Z is dense in M . So, x ∈ U ∩ Z and
ε > 0 can be find such that B(x, ε) ∩M ⊆ U .

By (i), Tnkx → 0 and by (ii), there exists a sequence {xk} in M such that xk → 0 and
Tnkxk → x. Hence, we can find a positive integer k such that:

||Tnk(x)|| < ε

2
, ||xk|| < ε and ||Tnk(xk)− x|| < ε

2
.

Now,

||(x+ xk)− x|| = ||xk|| < ε.

Therefore, x+ xk ∈ U . Also, we have:

||Tnk(x+ xk)− x|| = ||Tnk(x) + Tnk(xk)− x||
≤ ||Tnk(x)||+ ||Tnk(xk)− x||

<
ε

2
+
ε

2
= ε.

Hence, Tnk(x + xk) ∈ U and then x + xk ∈ T−nk(U) ∩ U . But T−nk(U) is open in M , by
the continuity of since Tnk |M . Therefore, T−nk(U) ∩ U is nonempty and open in M .

Example 5. Let T = λB, where λ is a scalar with |λ| > 1. Let

M := {{an} ∈ l2 : a3k = 0 for all k}.

Consider Z be the set consists of every finite sequence in l2. So, Z is dense in l2. Let x ∈ Z.
Then, we can detect a natural number m such that for any k > m, we have xk = 0. Hence,
Tnkx→ 0. But x is an arbitrary element of Z. Hence, condition (i) of Theorem 4.1 holds.

Now, let S be the forward shift on l2 and let xk = 1
λ3kS

3kx, where x is an arbitrary and fix
element of Z. It is not hard to see that xk ∈M . Also, since |λ| > 1, we have

||xk|| =
1

|λ3k|
||x|| → 0.

On the other hand:

T 3k(xk) = T 3k(
1

λ3k
S3kx) = (λB)3k(

1

λ3k
S3kx) = x.

So, condition (ii) of Theorem 4.1 holds.

Also, for any x ∈M ,

T 3k(x0, x1, x2, x3, ..., x6, ..., x3n, ...) = (x3k, x3k+1, x3k+2, x3k+3, ...).

and x3n = 0 for any n. Consequently T 3k(M) ⊆M . Hence, condition (iii) of Theorem 4.1 holds
and therefore T is an M -recurrent operator.
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