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On subspace-recurrent operators

Mansooreh Moosapoor

Abstract. In this article, subspace-recurrent operators are presented and it is
showed that the set of subspace-transitive operators is a strict subset of the set
of subspace-recurrent operators. We demonstrate that despite subspace-transitive
operators and subspace-hypercyclic operators, subspace-recurrent operators exist on
finite dimensional spaces. We establish that operators that have a dense set of pe-
riodic points are subspace-recurrent. Especially, if T" is an invertible chaotic or an
invertible subspace-chaotic operator, then 7", T~™ and AT are subspace-recurrent
for any positive integer n and any scalar A with absolute value 1. Also, we state a
subspace-recurrence criterion.
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1 Introduction and Preliminaries

For a given Banach space X and for a given vector x € X, the orbit of x under T is signified
by orb(T,z) = {x, Tz, T?x,...}. If there exists an element x € X such that orb(T,z) = X for
a bounded and linear operator T, then T is called hypercyclic. The notion of hypercyclicity is
related to the closed subspace problem and studied by mathematicians for years.

A related topic to hypercyclicity is topological transitivity. Let U and V be two open sets
of X. A bounded and linear operator T' is named topologically transitive if T-"U NV # ¢ for
some nonnegative integer n. It is well known that hypercyclicity and topological transitivity
are equivalent on a complete and separable metric space X. One can see [6] and [11] for more
information. Another central notion in the dynamical system is recurrence. A bounded and
linear operator 7' : X — X is called recurrent if for any U C X that is nonempty and open, we
have T~"U NU # ¢ for some positive integer n. That means a recurrent operator, send back to
itself, for any open set U.

It is not hard to see that transitive operators are recurrent. Also, a vector z is named a recurrent

vector for T if we can construct an increasing sequence {n;} that make of positive integers such
that T"*x — = when k — oc.
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It is established that any bounded and linear operator on a compact metric space, have some
recurrent vectors([8]).

The notion of recurrence was introduced many years ago in [10] and [7]. It is also considered
recently by authors like Glasner[9], Costakis and Parissis[4] and Chen[3]. One can find interesting
theorems about the recurrence of composition operators in [17]. Also, Bonilla et al. introduced
the concept of frequent recurrence in [2].

Subspace-hypercyclic operators and subspace-transitive operators were presented in [13] by
Madore and Martinez-Avendano and by this, they extended the notion of hypercyclic operators
and transitive operators. Let M be a closed and nonempty subspace of X. A bounded and linear
operator 7' on X is named subspace-hypercyclic with respect to M if there is x € X so that
orb(T,z) N M = M. Also, we say T is M-transitive if for arbitrary nonempty open subsets U, V
of M, non-negative integer n can be find such that T~"U NV contains a nonempty and relatively
open subset of M. It is demonstrated in [13] that subspace-transitive operators are subspace-
hypercyclic. We can construct subspace-hypercyclic operators that can not be hypercyclic but
authors in [1] proved that any hypercyclic operator is subspace-hypercyclic. One can also see [14]
and [15].

Now, we interested in knowing that for a closed subspace M of X, if for an operator T on
X we have T~"U NU be nonempty and relatively open for any relatively open and nonempty set
U and some positive integer n, and call it subspace-recurrence, then what other properties does
T has? Clearly, subspace-transitive operators are subspace-recurrent. But is the converse true?
Are that mean these operators necessarily subspace-transitive?

Also, authors in [13] showed that subspace-hypercyclic operators and consequently subspace-
transitive operators do not exist on finite dimensional spaces. Does it true for subspace-recurrent
operators?

Chaotic operators are an important subset of transitive operators. Remind that we know an
operator 7" on a Banach space X as a chaotic operator, if it is transitive and its periodic points be
a dense set in X . Also, subspace-chaotic operators are an important subset of subspace-transitive
operators. Recall that we say a bounded and linear operator T on X is M-chaotic if it is M-
transitive and the set of its periodic points in M is dense in M ([16]). In this paper, we also want
to know the relations between subspace-chaotic and subspace-recurrent operators.

In this paper, X denotes an F-space, a complex and complete metrizable topological vector
space. Also, B(X) indicates the set of all bounded linear operators on X and we call its elements,
by operators. In the article, M shows a nonzero and closed subspace of X.

In Section 2, we present some examples of subspace-recurrent operators. We show that
there are subspace-recurrent operators that are not subspace-transitive and by this, we conclude
that the set of subspace-transitive operators is a strict subset of the set of subspace-recurrent
operators. We also define subspace-recurrent vectors and prove that an operator is M-recurrent
if and only if it has a dense set of M-recurrent vectors.

In Section 3, we prove that if an operator has a dense set of periodic points, then it is
subspace-recurrent. Especially, if T" is an invertible and chaotic or an invertible subspace-chaotic
operator, then 7™, T~™ and AT are subspace-recurrent for any positive integer n and any scalar A
with |A] = 1. We show that surprisingly, subspace-recurrent operators exist on finite dimensional
spaces.

In Section 4, we give some conditions that under them, the operator becomes subspace-
recurrent. Especially, we state a subspace-recurrent criterion.
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2 Insight into Subspace-recurrent Operators

At the beginning of this section, we say the main definition.

Definition 1. An operator T is said M-recurrent or subspace-recurrent with respect to M if for
every open and nonempty subset U of M, a positive integer n can be find such that T-*(U)NU
is nonempty and open in M.

It is mentioned in Section 1 that subspace-transitive operators are subspace-recurrent. So,
we can make an example as follows.

Example 1. Assume that B is the backward shift on (2. Let T = 5B, and consider
M = {{an}oly : agn =0 for all n}.
By [[13], Example 3.7], T is M-transitive and accordingly, it is M-recurrent.

The next lemma shows that if 7" is an M-recurrent operator, then for open and nonempty
set U C M, T-™(U) hit U for infinitely many n.

Lemma 2.1. Suppose that T € B(X) is M-recurrent. Then,
{neN:T™™U)NU is nonempty and open in M}
is infinite for any open and nonempty subset U of M.

Proof. Suppose, on the contrary, that the set
{neN:T™U)NU is nonempty and open in M}
is finite for an open set U C M. Without loose of generality, we can take that
{neN:T™™(U)NU is nonempty and open in M} = {1,2,3,...,k}.

So, T™*(U)NU is a nonempty and open subset of M. By definition of an M-recurrent operator,
a natural number m can be find so that

T-™(T*U)nU)N(T*U)N D)

is nonempty and open in M. Hence, T~ (™*tF)(U)NU # ¢ and open in M. But m + k is greater
than k and this is a contradiction. O

Now, we define a subspace-recurrent vector as follows.

Definition 2. If an increasing sequence {n} of positive integers exists such that 7™ (x) € M
and T™ (x) — x, where x € M, we call z is an M-recurrent vector. Equivalently, x is an
M-recurrent vector if for any e > 0 the set {n € Z* : T"(z) € M and d(T"(z),z) < e} is
infinite.

We offer the symbol Recys (T) to show the set of all M-recurrent vectors for the operator T'.

The next theorem presents an equivalent condition for subspace-recurrence.

Theorem 2.1. For an operator T € B(X), T is M-recurrent if and only if Recp (T) = M.
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Proof. Consider that Recpy(T) = M. Allow Uy be an open and nonempty set in M. By
hypothesis, Recys(T') = M. So, Uy includes a recurrent vector like y. But Uy is open. So, there
exists € > 0 such that By = B(y,e) N M C Uyps. By Definition 2, n € N can be find such that
T™(y) € M and ||T™(y) — y|| < e. Therefore, y € T~"(Uyps) and hence, y € T~ (Upr) N Uy

Now, assume that T is M-recurrent. Let U = B(zg,c9) N M for some 2o € M and g¢ < 1.
T is M-recurrent. So, there exists ny € N such that U; = T~ (U) NU is nonempty and open in
M. Therefore, we can find 1 € M and g1 < % such that

Uy = B(x1,61) "M C U, =T ™ (U)NU.

Again, Uy = B(z1,e1) N M is open in M. So, we can find ny with ny > ny so that T-"2(Us) NUs
is nonempty and open in M. Hence, we can find zo € M and &2 < 2% such that

Us = B(.TQ,EQ) NMCU; = B(:L’l,é‘l) N M.

By induction, we can make a sequence {ny} that is increasing and their elements are positive
integers and we can create a sequence {ej} of real numbers such that ¢, < 2% and

B(xg,e) "M C B(xg—1,65—1) N M
and

Tk (B(l‘k, Ek) n M) C T (T_nk (B(S(}kfl,&'k,l) n M) N (B(xkfhfkfl) n M))
C B(wp—1,ex-1) N M.

Now, by Cantor theorem, N, (B(zn,e,) N M) = {y} for some y € M, since M is complete.
So, T™ (y) — y and hence, y is an M-recurrent vector.

O
In the following lemma, we prove that subspace-recurrence of TP for a positive integer p
implies subspace-recurrence of T'.
Lemma 2.2. Suppose that T € B(X) and consider p > 1 is an integer. Then,

(i) If T? is an M-recurrent operator, then T is an M -recurrent operator.

(i) Recpr(T?) C Recp(T).

Proof. Proof of (i) is clear by definition. For proving (ii), let z € Recys(T?). Hence, one can find
an increasing sequence {ny} of positive integers with (7%)"*(z) € M and (T?)™(x) — z. So,
TP (z) — x and pny is increasing. Therefore, € Recp (T).

O

3 Periodic Points and Subspace-recurrent Operators

In this section, we discuss operators that have a dense set of periodic points. We consider relations
between them and subspace-recurrent operators. We begin by saying a lemma. The proof of the
lemma is not hard by using the definition of the subspace-recurrent vector.

Lemma 3.1. Consider that x € M is a periodic point for T. Then x is an M -recurrent vector
forT.
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By Lemma 3.1, we can present the subsequent example.

Example 2. Assume that T = 2B, where B is the backward shift on [?. It is shown in [16] that
T @ I is subspace-chaotic with respect to M := %> @ {0}. So, the set of periodic points for T in
M 1is dense in M. But any periodic point is an M-recurrent vector by Lemma 3.1. So, T" has a
dense set of M-recurrent vectors. Hence, T' is an M-recurrent operator by Theorem 2.1.

Moreover, we can extend our statements as it is shown in the next theorem.

Theorem 3.1. Let T € B(X). Suppose that the set of periodic points of T is dense in X. Then
T is subspace-recurrent with respect to a closed and nontrivial subspace M of X.

Proof. Assume that Per(T) is the set of periodic points for T. According to the hypothesis,
Per(T) = X. So, by [[1], Theorem 2.1], one can find a closed and nontrivial subspace M of X
such that Per(T) N M = M. Hence, the set of periodic points of T in M is dense in M and so,
T has a dense set of M-recurrent vectors in M. Consequently, T" is an M-recurrent operator by
Theorem 2.1.

O

It is established in [13] that subspace-hypercyclic operators and consequently subspace-transitive
operators do not exist on finite dimensional spaces. But in the next example, we make examples
of subspace-recurrent operators on finite dimensional spaces.

Example 3. (a) The tent map T : [0,1] — [0, 1] is determined by,

2z, 0<z
T(x):{ <oz
2

1.
27
2 — 2z, 1.

IAIA

The tent map has a periodic point in any interval [, m+1] [[11], Example 1.24]. Hence,
it’s periodic points make a dense subset of [0, 1].

N

(b) Recall that a rotation T': T — T is defined by z — €'“z where o € [0, 27). If T is a rational
rotation, we can detect N > 1 such that 7%V = I [[11], Example 1.24]. So, every point is a
periodic point for a rational rotation.

By Theorem 3.1, these operators are subspace-recurrent.

By Example 3, and this fact that subspace-hypercyclic operators and subspace-transitive
operators don’t exist on finite dimensional spaces, we can say the following corollaries.

Corollary 3.2. There are finite dimensional spaces that support subspace-recurrent operators.

Corollary 3.3. There exist subspace-recurrent operators, where they are not subspace-hypercyclic
nor subspace-transitive.

In fact, we can deduce that the set of subspace-transitive operators is a proper subset of subspace-
recurrent operators.

The next theorem shows that if the set of periodic points of T is dense in M, then T, AT
with [A\| =1 and T, when T is invertible, are all M-recurrent.

Theorem 3.4. Consider that T € B(X). If the set of periodic points of T is dense in M, then:
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(i) T™ is an M -recurrent operator, for every n € N.
(ii) AT is M-recurrent, where A € C and |\ = 1.
(ii) T~ is M-recurrent for every n € N, when T is invertible.
Proof. For proving (i), let n be a positive integer greater than 1. It is sufficient to show that 7"

has a dense set of periodic points in M. Let x € M be a periodic point for T'. So, we can detect
p € N so that T?(z) = z. In fact,

(TP (z) =T () =T"---T"(x) = .

P
This completes the proof.
For proving (ii), note this point that if « is any periodic point for T, then for A with |\| = 1,
% is a periodic point for A7'. For this, suppose that T%(z) = z. Note that,
25y = a5y = N () =
(AT) (/\)—)\ T ()\)_/\ )\pT () = .

Also, we know that:

{§ c2 € Per(T)} = %{x c2 € Per(T)} = {z: 2 € Per(T)} = M.

So, AT has a dense set of periodic points in M and hence, it is an M-recurrent operator.

For proving (iii), let z € M be a periodic point for T. Consequently, we can discover p € N
such that TP(z) = x. So, T"P(T?(x)) = T~P(z). But T is invertible. Therefore, T~P(T?(x)) = x
and hence, T~ P(x) = z. So, x is a periodic point for T7!. Then Per(T—') N M is dense in M.
Similar to (i), we have T~" is M-recurrent.

O

Costakis, Manoussos and Parissis proved in [5] that if 7" be an invertible operator, then the
recurrence of T and T~ ! are equivalent. By Theorem 3.4, we can conclude that if T is invertible
and its periodic points in M are dense in M, then T is M-recurrent if and only if 7! is M-
recurrent. Now, the following question arises:

Question: Assume that T is an invertible operator. Can we infer that M-recurrence of T'
and T~! are equivalent?

Also, we have the following corollaries from Theorem 3.4.

Corollary 3.5. Consider that T € B(X) is an invertible operator. If T is an M -chaotic operator,
then:

(i) T™ is an M -recurrent operator, for any n € N.
(ii) AT is an M-recurrent operator, for any X\ € C with |A\| = 1.
(iii) If T is invertible, then T~™ is an M-recurrent operator for any n € N.

Proof. If T is an M-chaotic operator, by definition of a subspace-chaotic operator, T" has a dense
set of periodic points in M. So, Theorem 3.4 completes the proof.

O
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Corollary 3.6. Consider that T € B(X) is an invertible operator. If T is a chaotic operator,
then :

(i) T™ is subspace-recurrent, for any n € N.
(i) AT is subspace-recurrent operator, for any A € C with |A\| = 1.
(ii) If T is invertible, then T™™ is subspace-recurrent for any n € N.
Proof. According to the hypothesis, T" is chaotic. So, by definition of a chaotic operator, T" has
a dense set of periodic points in X. Like to proof of Theorem 3.4, T™, has a dense set of periodic

points in X . By Theorem 3.1, there is a closed and nontrivial subspace M,, of X such that T
is M,-recurrent. Similarly, AT, for any A € C with |A] = 1 and T~ are subspace-recurrent.

O

By Corollary 3.6, we can make examples as follows.
Example 4. Recall that the Birkhoff’s operator on H(C), space of entire functions, is defined
by
Tof() = f(z+a), a#0.

Birkhoff’s operators are chaotic[[11], Example 2.35]. Therefore, for any n € N and any scalar A
with |\ =1, T,", T_," and AT, are subspace-recurrent.

4 Some Sufficient Conditions for Subspace-recurrence

In this section, we give conditions for an operator to be subspace-recurrent. We state a subspace-
recurrence criterion and we construct an example by this criterion.

Lemma 4.1. Assume that T € B(X) and assume that Z is a dense subset of M. If we can build
an increasing sequence {ny} of positive integers so that:

(i) Tz — x for any x € Z,
(i) T™ (M) € M,

then T is M -recurrent.

Proof. Consider U C M is a relatively open and nonempty set. By hypothesis, Z is dense in M.
So, there is x € UN Z. By condition (i), we can detect a positive integer n such that 7™z € U.
Consequently, x € T~ (U)NU. But T™ (M) C M and hence, T"*|p; : M — M is continuous.
Therefore T-"*(U) is open in M. Hence, T~ (U) N U is nonempty and open in M.

O

Theorem 4.1. (Subspace-recurrence Criterion) Assume that T € B(X) and assume that M is a
closed and nonzero subspace of X. Suppose that a dense set Z of M and an increasing sequence
{nr} of positive integers are existed so that:

(i) T™x — 0 for any x € Z,

(ii) For every x € Z, a sequence {xy} can be determined such that xr, € M and x — 0 and
T'exy, — o,
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(iii) T™ (M) C M.

Then T is M -recurrent.

Proof. Let U C M be a relatively open set. By hypothesis, Z is dense in M. So, z € U N Z and
€ > 0 can be find such that B(z,e) "M C U.

By (i), T™x — 0 and by (ii), there exists a sequence {x} in M such that x; — 0 and
T™ xp — x. Hence, we can find a positive integer k such that:
3

mn € mn
T @] < S lfanl] < & and [T (x) =l < 5

Now,
(@ +2x) — 2| = |lzx]| <e.

Therefore, x + x; € U. Also, we have:

1T (& + a1) - al] = |7 (&) + T™ (a1 - o
< |77 (@)]] + [T () — 2l
<f4ioc

2 2 ’

Hence, T (x + x) € U and then  +x; € T~ (U)NU. But T-"*(U) is open in M, by
the continuity of since T™* ;. Therefore, T-™(U) N U is nonempty and open in M.

O
Example 5. Let T'= A\B, where A is a scalar with |[A\| > 1. Let
M = {{a,} € 1? : az, = 0 for all k}.

Consider Z be the set consists of every finite sequence in [2. So, Z is dense in [2. Let z € Z.
Then, we can detect a natural number m such that for any k& > m, we have z; = 0. Hence,
Tz — 0. But x is an arbitrary element of Z. Hence, condition (i) of Theorem 4.1 holds.

Now, let S be the forward shift on {2 and let xj, = )\—%,,65’3’“96, where z is an arbitrary and fix
element of Z. It is not hard to see that x; € M. Also, since |A| > 1, we have

l|ox|| = WHJTH —0
On the other hand:
1 1
T3k(1'k) = T3k(ws3kx) = ()\B)gk(wsgkl') =2x.

So, condition (ii) of Theorem 4.1 holds.
Also, for any z € M,

3k
T ($0,$17I2,$3, o5 L6,y -~-’~Tsn,--~) = (I3k,$3k+1vx3k+2,$3k+3, )

and z3,, = 0 for any n. Consequently 73*(M) C M. Hence, condition (iii) of Theorem 4.1 holds
and therefore T is an M-recurrent operator.
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