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Conformal Transformation in E3
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Abstract. In this paper, we investigate the geometric invariant properties of a
normal curve on a smooth immersed surface under conformal transformation. We
obtain an invariant-sufficient condition for the conformal image of a normal curve.
We also find the deviations of normal and tangential components of the normal curve
under the same motion.

1 Introduction

The study of smooth maps is an important field of study in differential geometry. There
are multiple ways of classifying motions, albeit we will focus on those which preserves
certain geometric properties. Depending upon the invariant nature of the mean (H) and
the Gaussian curvatures (K), we broadly classify the transformations in the following
three equivalence classes: isometric, conformal and non-conformal or general motion.
Isometry preserves lengths as well as the angles between the curves on the surfaces. In
the language of geometry, isometry keeps the Gaussian curvature invariant and the mean
curvature is altered. For example, we can easily find an isometry between catenoid and a
helicoid implying that they have the same K but different H. Roughly speaking, diffeo-
morphisms and isometries define one class, however, when we have to study the problems
associated with analytic functions of complex variables, we need a generalized class of
transformations, known as conformal motions. In this case, the angle of intersection of
any arbitrary pair of intersection arcs on the surface is invariant, while as the distances
may not be. Conformal maps are very important in cartography. The simplest example
of such a conformal transformation is the stereographic projection of a sphere onto a
plane. This property of conformal maps was first used by Gerardus Mercator to form
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the first angle preserving map, commonly known as Mercator’s world map. Recently in
2018, Bobenko and Gunn published an animated movie with the springer videoMATH
on conformal maps [1]. Finally, in case of general motions, neither angles nor distances
are preserved between any intersecting pairs of curves on a surface. It is to be noted
that the usage of term: motion, transformation or map stands for the same.

Let S and S̃ be two smooth immersed surfaces in E3 and J : S → S̃ be a smooth
map. Throughout this paper, the quantities associated with S̃ will be deonted by ” ∼ ”.
A necessary and sufficient condition for J to be conformal is that the first fundamental
form quantities are proportional. In other words the area elements of S and S̃ are
proportional to a differentiable function (factor) commonly known as dilation function
denoted by ζ(u, v). The conformal transformation is a generalized class of certain motions
in the following way [5]:

• If ζ(u, v) ≡ c, where c is a constant with c ̸= {0, 1}, then J is called as homothetic
transformation.

• If ζ(u, v) ≡ 1, then J becomes isometry.

Let V of a neighborhood of an arbitrary point p ∈ S and

J : V ⊂ S → Ṽ ⊂ S̃ (1.1)

be a diffeomorphism, where Ṽ is an open neighborhood of J (p). Then J is said to be a
local isometry if for all y1, y2 ∈ Tp(S), we have

⟨y1, y2⟩p = ⟨dJp(y1), dJp(y2)⟩J (p).

If for all p ∈ S, in addition to diffeomorphism J is a bijection, then J is a global
isometry. In such a case S and S̃ are said to isometric (globally).

Let E , F , G and Ẽ , F̃ , G̃ are the first fundamental form coefficients of S and S̃, re-
spectively. A necessary sufficient condition for S and S̃ to be isometric is that the first
fundamental form coefficients are invariant, i.e.,

E = Ẽ , F = F̃ , G = G̃.

For the same J in (1.1), if we have

ζ2⟨dJp(x1), dJp(x2)⟩J (p) = ⟨x1, x2⟩p,

then S and S̃ are said to conformal (locally). As in the case of isometry, if in addition
to diffeomorphism J is a bijection, then J is called conformal globally. In other words,
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we can say that conformal motion is a composition of dilation and isometry. In this case
[4]:

ζ2E = Ẽ , ζ2F = F̃ , ζ2G = G̃.

Here we may call E , F , G are conformally invariant.

Definition 1. Let f : S → S̃ be a conformal map between two smooth surfaces, we say
that f is conformally invariant if f̃ = ζ2f for some dilation factor ζ(u, v). Similarly, if the
same f is homothetic, we say that f is homothetic invariant if f̃ = cf, (c ̸= {0, 1}).

For example let Kg be the Gaussian curvature of (S, g) and χ(S) be the Euler
characteristic of the surface S. Then according to well known Gauss Bonnet formula:

2πχ(S) =
∫

S
Kgdsg.

The above quantity is a topological and a conformal invariant.

The structure of this paper is as follows. In Section 2, we recall some facts about
the curves lying on a smooth surface and give the motivation of the paper. In Section 3,
we discuss the main results.

2 Preliminaries

Let β : I ⊂ R → E3 be a smooth curve parameterized by arc length s and {⃗t, n⃗, b⃗} its
Serret-Frenet frame. The vectors t⃗, n⃗, and b⃗ are called as the tangent, the normal and
the binormal vectors, respectively. The Serret-Frenet equations are given by

t⃗′ = κn⃗

n⃗′ = −κ⃗t + τ b⃗

b⃗′ = −τ n⃗.

We call the function κ as the curvature of β and τ as the torsion of β satisfying: t⃗ =
β′, n⃗ = t⃗′

κ and b⃗ = t⃗ × n⃗. At any arbitrary point β(s), the plane spanned by {⃗t, n⃗} is
called as an osculating plane and the plane spanned by {⃗t, b⃗} is called as a rectifying
plane. Similarly, a plane spanned by the vectors {n⃗, b⃗} is called as a normal plane. In
other words, the position vector of the curve defines the following curves:

• If the position vector β(s) of the curve β lies in the osculating plane then the curve
is said to be an osculating curve.

• If the position vector β(s) of the curve β lies in the normal plane then the curve is
said to be a normal curve.
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• If the position vector β(s) of the curve β lies in the rectifying plane then the curve
is said to be a rectifying curve.

The classification results of osculating and normal curves are very common which can be
found in any standard book of differential geometry of curves and surfaces. After a very
long period of time, in 2003 Chen [2] listed a question: When does the position vector
of a space curve lie in its rectifying plane? In this paper ([2]), Chen showed that a curve
is a rectifying curve if and only if the ratio of the curvature and the torsion is a linear
function of arc length s. For more study, we refer [3, 6].

The motivation of the present paper starts with a study of Shaikh and Ghosh, where
they studied the geometric invariant properties of rectifying curves on a smooth immersed
surface under an isometry [7]. Further in [8], they investigated the invariant properties
of osculating curves under the same motion. So, a natural question arises, what happens
with respect to a conformal transformation? This can be a very potential question. So,
in this paper, we try to investigate the following:

Question: What are the invariant properties of a normal curve on a smooth immersed
surface with respect to a conformal transformation?

A curve is said to be a normal curve if its position vector field lies in the orthogonal
complement of tangent vector i.e., β · t⃗ = 0, or

β(s) = ν(s)⃗n(s) + η(s)⃗b(s), (2.1)

where ν, η are two smooth functions.
Let Ψ : Ω(u, v) ⊂ R2 → S ⊂ R3 be a coordinate chart map of a regular surface S.

The curve β(s) = β(u(s), v(s)) can be thought of a curve β(s) = S(u(s), v(s)) on the
surface S. Using the chain rule, we can easily find

β′(s) = Ψuu′ + Ψvv′

or
t⃗(s) = β′(s) = Ψuu′ + Ψvv′

t⃗′(s) = u′′Ψu + v′′Ψv + u′2Ψuu + 2u′v′Ψuv + v′2Ψvv.

Now let N be the surface normal, we have

n⃗(s) = 1
k(s)

(u′′Ψu + v′′Ψv + u′2Ψuu + 2u′v′Ψuv + v′2Ψvv) (2.2)

b⃗(s) = t⃗(s) × n⃗(s) = t⃗(s) × t⃗′(s)
k(s)
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= 1
k(s)

[
(Ψuu′ + Ψvv′) × (u′′Ψu + v′′Ψv + u′2Ψuu + 2u′v′Ψuv + v′2Ψvv)

]
,

= 1
k(s)

[
{u′v′′ − u′′v′}N + u′3Ψu × Ψuu + 2u′2v′Ψu × Ψuv + u′v′2Ψu × Ψvv

+u′2v′Ψv × Ψuu + 2u′v′2Ψv × Ψuv + v′3Ψv × Ψvv

]
. (2.3)

Definition 2. Suppose β be a curve with arc length parameterization lying on a surface
S. This implies that t = β′ is orthogonal to the unit surface normal N, so β′, N and
N × β′ are mutually orthogonal vectors. Since β is of unit speed, we have β′ ⊥ β′′, thus
we can write

β′′ = κnN + κgN × β′,

where κn is the normal curvature and κg is the geodesic curvature of β and are given by{
κg = β′′ · N × β′

κn = β′′ · N.

Now since we know that β′′ = κ(s)⃗n(s), we can write

κn = κ(s)⃗n(s) · N = (u′′Ψu + v′′Ψv + u′2Ψuu + 2u′v′Ψuv + v′2Ψvv) · N

or
κn = u′2L + 2u′v′M + v′2N , (2.4)

where L, M, N are the second fundamental form coefficients. The curve β on S is called
as asymptotic curve if and only if κn = 0.

3 Conformal image of a normal curve.

Suppose β(s) be a normal curve lying on a smooth immersed surface S in E3, then with
the help of (2.1), (2.2) and (2.3), we can write

β(s) = ν(s)
κ(s)

[
(u′′Ψu + v′′Ψv) + (u′2Ψuu + 2u′v′Ψuv + v′2Ψvv)

]
+η(s)

k(s)

[
{u′v′′ − u′′v′}N + u′3Ψu × Ψuu + 2u′2v′Ψu × Ψuv (3.1)

+u′v′2Ψu × Ψvv + u′2v′Ψv × Ψuu + 2u′v′2Ψv × Ψuv + v′3Ψv × Ψvv

]
.

We shall be considering the expression J∗(β(s)) as a product of a 3 × 3 matrix J∗ and a
3 × 1 matrix β(s).
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Theorem 3.1. Let J : S → S̃ be a conformal map between two smooth immersed surfaces
S and S̃ in E3 and β(s) be a normal curve on S, then β̃(s) is a normal curve on S̃ if

β̃ = ν

κ

[
u′2 (ζJ∗)u Ψu + v′2 (ζJ∗)v Ψv + 2u′v′ (ζJ∗)u Ψv

]
+ η

κ

[
u′3ζJ∗Ψu × (ζJ∗)u Ψu

+2u′2v′ζJ∗Ψu × (ζJ∗)v Ψu + u′v′2ζJ∗Ψu × (ζJ∗)v Ψv + u′2v′ζJ∗Ψv × (ζJ∗)u Ψu

+2u′v′2ζJ∗Ψv × (ζJ∗)u Ψv + v′3ζJ∗Ψv × (ζJ∗)v Ψv

]
+ ζJ∗(β). (3.2)

Proof. Let S̃ be the conformal image of S and Ψ(u, v) and Ψ̃(u, v) = J ◦ Ψ(u, v) be the
surface patches of S and S̃, respectively. Then the differential map dJ = J∗ of J sends
each vector of the tangent space TpS to a dilated tangent vector of the tangent space of
TJ (p)S̃ with the dilation factor ζ.

Ψ̃u(u, v) = ζ(u, v)J∗(Ψ(u, v))Ψu (3.3)
Ψ̃v(u, v) = ζ(u, v)J∗(Ψ(u, v))Ψv. (3.4)

Differentiating (3.3) and (3.4) partially with respect to both u and v respectively, we get

Ψ̃uu = ζuJ∗Ψu + ζ
∂J∗
∂u

Ψu + ζJ∗Ψuu

Ψ̃vv = ζvJ∗Ψv + ζ
∂J∗
∂v

Ψv + ζJ∗Ψvv (3.5)

Ψ̃uv = ζuJ∗Ψv + ζ
∂J∗
∂u

Ψv + ζJ∗Ψuv

= ζvJ∗Ψu + ζ
∂J∗
∂v

Ψu + ζJ∗Ψuv.

We can write

ζJ∗Ψu ×
(

ζuJ∗Ψu + ζ
∂J∗
∂u

Ψu

)
= ζJ∗Ψu ×

(
ζuJ∗Ψu + ζ

∂J∗
∂u

Ψu + ζJ∗Ψuu

)
−ζJ∗(Ψu × Ψuu)

= Ψ̃u × Ψ̃uu − ζJ∗(Ψu × Ψuu). (3.6)

Similarly

ζJ∗Ψu ×
(
ζvJ∗Ψu + ζ ∂J∗

∂v Ψu

)
= Ψ̃u × Ψ̃uv − ζJ∗(Ψu × Ψuv)

ζJ∗Ψu ×
(
ζvJ∗Ψv + ζ ∂J∗

∂v Ψv

)
= Ψ̃u × Ψ̃vv − ζJ∗(Ψu × Ψvv)

ζJ∗Ψv ×
(
ζuJ∗Ψu + ζ ∂J∗

∂u Ψu

)
= Ψ̃v × Ψ̃uu − ζJ∗(Ψv × Ψuu)

ζJ∗Ψv ×
(
ζuJ∗Ψv + ζ ∂J∗

∂u Ψv

)
= Ψ̃v × Ψ̃uv − ζJ∗(Ψv × Ψuv)

ζJ∗Ψv ×
(
ζvJ∗Ψv + ζ ∂J∗

∂v Ψv

)
= Ψ̃v × Ψ̃vv − ζJ∗(Ψv × Ψvv).

(3.7)
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Therefore in view of (3.2), (3.6) and (3.7), we have

β̃ = ν

κ

[
u′′ζJ∗Ψu + v′′ζJ∗Ψv + u′2

(
ζuJ∗Ψu + ζ

∂J∗
∂u

Ψu

)
+ 2u′v′

(
ζuJ∗Ψv + ζ

∂J∗
∂u

Ψv

)
+v′2

(
ζvJ∗Ψv + ζ

∂J∗
∂v

Ψv

) ]
+ η

κ

[
{u′v′′ − u′′v′}J∗N + u′3ζJ∗(Ψu × Ψuu)

+2u′2v′ζJ∗(Ψu × Ψuv) + u′v′2ζJ∗(Ψu × Ψvv) + u′2v′ζJ∗(Ψv × Ψuu)

+2u′v′2ζJ∗(Ψv × Ψuv) + v′3ζJ∗(Ψv × Ψvv)
]

+ η

κ

[
u′3ζJ∗Ψu ×

(
ζuJ∗Ψu + ζ

∂J∗
∂u

Ψu

)
+2u′2v′ζJ∗Ψu ×

(
ζvJ∗Ψu + ζ

∂J∗
∂v

Ψu

)
+ u′v′2ζJ∗Ψu ×

(
ζvJ∗Ψv + ζ

∂J∗
∂v

Ψv

)
+u′2v′ζJ∗Ψv ×

(
ζuJ∗Ψu + ζ

∂J∗
∂u

Ψu

)
+ 2u′v′2ζJ∗Ψv ×

(
ζuJ∗Ψv + ζ

∂J∗
∂u

Ψv

)
+v′3ζJ∗Ψv ×

(
ζvJ∗Ψv + ζ

∂J∗
∂v

Ψv

) ]
which can be written as

β(s) = ν̃(s)
κ̃(s)

[
(u′′Ψ̃u + v′′Ψ̃v) + (u′2Ψ̃uu + 2u′v′Ψ̃uv + v′2Ψ̃vv)

]
+ η̃(s)

κ̃(s)

[
{u′v′′ − u′′v′}Ñ + u′3Ψu × Ψ̃uu + 2u′2v′Ψ̃u × Ψ̃uv

+u′v′2Ψ̃u × Ψ̃vv + u′2v′Ψ̃v × Ψ̃uu + 2u′v′2Ψ̃v × Ψ̃uv + v′3Ψ̃v × Ψ̃vv

]
or

β̃(s) = ν̃(s)
κ̃(s)

˜⃗n(s) + η̃(s)
κ̃(s)

˜⃗
b(s)

for some C∞ functions ν̃(s) and η̃(s). Here and now onward, we assume that ν̃
κ̃ = ν

κ and
η̃
κ̃ = η

κ . Thus β̃(s) is a normal curve.

Corollary 3.2. Let J : S → S̃ be a homothetic conformal map, where S and S̃ are smooth
surfaces and β(s) be a normal curve on S. Then β̃(s) is a normal curve on S̃ if

β̃ = ν

κ

[
u′2c (J∗)u Ψu + v′2c (J∗)v Ψv + 2u′v′c (J∗)u Ψv

]
+ η

κ

[
u′3cJ∗Ψu × c (J∗)u Ψu

+2u′2v′cJ∗Ψu × c (J∗)v Ψu + u′v′2cJ∗Ψu × c (J∗)v Ψv + u′2v′cJ∗Ψv × c (J∗)u Ψu

+2u′v′2cJ∗Ψv × c (J∗)u Ψv + v′3cJ∗Ψv × c (J∗)v Ψv

]
+ cJ∗(β).

Proof. In case of a homothetic map the dilation function ζ(u, v) = c ̸= {0, 1}. Substi-
tuting in (3.2), we get the above expression.

Corollary 3.3. Let J : S → S̃ be an isometry, where S and S̃ are smooth surfaces and
β(s) be a normal curve on S. Then β̃(s) is a normal curve on S̃ if

β̃ = ν

κ

[
u′2 ∂J∗

∂u
Ψu + v′2 ∂J∗

∂v
Ψv + 2u′v′ ∂J∗

∂u
Ψv

]
+ η

κ

[
u′3J∗Ψu × ∂J∗

∂u
Ψu
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+2u′2v′J∗Ψu × ∂J∗
∂v

Ψu + u′v′2J∗Ψu × ∂J∗
∂v

Ψv + u′2v′J∗Ψv × ∂J∗
∂u

Ψu

+2u′v′2J∗Ψv × ∂J∗
∂u

Ψv + v′3J∗Ψv × ∂J∗
∂v

Ψv

]
+ J∗(β).

Proof. A conformal transformation is the composition of a dilation function and an
isometry. Substituting ζ = 1 in (3.2), we get the above expression.

Theorem 3.4. Let S and S̃ be two conformal smooth surfaces and β(s) be a normal curve
on S. Then for the normal component along the surface normal, we have

β̃ · Ñ − ζ4β · N = ν

κ
(κ̃n − ζ4κn) + η

κ
h(E , G, F , ζ), (3.8)

where

h(E , G, F , ζ) =
[
u′3θ2

11 − v′3θ1
22 + 2u′2v′θ2

12 + u′v′2θ2
22 − u′2v′θ1

11 + 2u′v′2θ1
12

]
W 2. (3.9)

Proof. Let S̃ be the conformal image of S and Ψ(u, v) and Ψ̃(u, v) = J ◦ Ψ(u, v) be the
surface patches of S and S̃, respectively. We can easily find

β · N = ν

κ

[
u′2Ψuu · (Ψu × Ψv) + v′2Ψvv · (Ψu × Ψv) + 2u′v′Ψuv · (Ψu × Ψv)

]
+η

κ

[
(u′v′′ − v′u′′)(EG − F2) + u′3(Ψu × Ψuu) · (Ψu × Ψv)

+2u′2v′(Ψu × Ψuv) · (Ψu × Ψv) + v′2u′(Ψu × Ψvv) · (Ψu × Ψv)

+u′2v′(Ψv × Ψuu) · (Ψu × Ψv) + 2u′v′2(Ψv × Ψuv) · (Ψu × Ψv)

+v′3(Ψv × Ψvv) · (Ψu × Ψv)
]

or

β · N = ν

κ

[
u′2L + v′2N + 2u′v′M

]
+ η

κ

[
(u′v′′ − v′u′′)(EG − F2) + u′3{E(Ψuu · Ψv)

−F(Ψuu · Ψu)} + 2u′2v′{E(Ψuv · Ψv) − F(Ψuv · Ψu)} + u′v′2{E(Ψvv · Ψv)

−F(Ψvv · Ψu)} + u′2v′{F(Ψuu · Ψv) − G(Ψuu · Ψu)} + 2u′v′2{F(Ψuv · Ψv)

−G(Ψuv · Ψu)} + v′3{F(Ψvv · Ψv) − G(Ψvv · Ψu)}
]
.

We know that Eu = (Ψu · Ψu)u = 1
2Ψuu · Ψu, or

Ψuu · Ψu = Eu

2
. (3.10)

On the similar lines, we can find{
Ψuu · Ψv = Fu − Ev

2 , Ψvv · Ψv = Gv
2 , Ψvv · Ψu = Fv − Gu

2 ,

Ψuv · Ψv = Gu
2 , Ψuv · Ψu = Ev

2 .
(3.11)
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Therefore in view of (3.10) and (3.11), β · N turns out to be

β · N = ν

κ

[
u′2L + v′2N + 2u′v′M

]
+η

κ

[
(u′v′′ − v′u′′)(EG − F2) + u′3

{
E
(

Fu − Ev

2

)
− FEu

2

}
+2u′2v′

{EGu

2
− FEv

2

}
+ u′v′2

{EGv

2
− F

(
Fv − Gu

2

)}
+u′2v′

{
F
(

Fu − Ev

2

)
− GEu

2

}
+ 2u′v′2

{FGu

2
− GEv

2

}
+v′3

{FGv

2
− G

(
Fv − Gu

2

)} ]
or

β · N = ν

κ
κn + η

κ
(EG − F2)

[
(u′v′′ − v′u′′) + u′3Γ2

11 − v′3Γ1
22 + 2u′2v′Γ2

12

+u′v′2Γ2
22 − u′2v′Γ1

11 + 2u′v′2Γ1
12

]
, (3.12)

where Γk
ij , (i, j, k = 1, 2) are Christoffel symbols of second kind given by:
Γ1

11 = 1
2W 2 {GEu + F [Ev − 2Fu]} , Γ2

22 = 1
2W 2 {EGv + F [Gv − 2Fv]}

Γ2
11 = 1

2W 2 {E [2Fu − Ev] − FEv} , Γ1
22 = 1

2W 2 {G[2Fv − Gu] − FGv}
Γ2

12 = 1
2W 2 {EGu − FEv} = Γ2

21, Γ1
21 = 1

2W 2 {GEv − FGu} = Γ1
12

(3.13)

and W =
√

EG − F2.
Under conformal motion, we have

ζ2E = Ẽ , ζ2F = F̃ , ζ2G = G̃. (3.14)

This implies that 
Ẽu = 2ζζuE + ζ2Eu, Ẽv = 2ζζvE + ζ2Ev,

F̃u = 2ζζuF + ζ2Fu, F̃v = 2ζζvF + ζ2Fv,

G̃u = 2ζζuG + ζ2Gu, G̃v = 2ζζvG + ζ2Gv.

(3.15)

After the conformal motion, the Christoffel symbols turn out to be

Γ̃1
11 = Γ1

11 + θ1
11, Γ̃2

11 = Γ2
11 + θ2

11, Γ̃1
12 = Γ1

12 + θ1
12,

Γ̃2
12 = Γ2

12 + θ2
12, Γ̃1

22 = Γ1
22 + θ1

22, Γ̃2
22 = Γ2

22 + θ2
22,

(3.16)

where 
θ1

11 = EGζu−2F2ζu+FEζv

ζW 2 , θ2
11 = EFζu−E2ζv

ζW 2 ,

θ1
12 = EGζv−FGζu

ζW 2 , θ2
12 = EGζu−FEζv

ζW 2 ,

θ1
22 = GFζv−G2ζu

ζW 2 , θ2
22 = EGζv−2F2ζv+FGζu

ζW 2 .

(3.17)
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Now if β is a normal curve on S̃, in view of (3.12), (3.16) and (3.17), we get

β̃ · Ñ − ζ4β · N = ν

κ
(κ̃n − ζ4κn) + η

κ

[
u′3θ2

11 − v′3θ1
22 + 2u′2v′θ2

12

+u′v′2θ2
22 − u′2v′θ1

11 + 2u′v′2θ1
12

]
W 2. (3.18)

This proves the claim.

Corollary 3.5. Let S and S̃ be two homothetic conformal smooth surfaces and β(s) be a
normal curve on S. Then for the normal component along the surface normal, we have

β̃ · Ñ − c4 (β · N) = ν

κ
(κ̃n − c4κn). (3.19)

Moreover, this normal component is conformally invariant if the position vector of β is
in the binormal direction or the normal curvature is conformally invariant.

Proof. Letting ζ(u, v) = c, from (3.8), (3.9) and (3.17), the claim in (3.19) is straightfor-
ward.

Again from (3.19), we see that β is conformally invariant if and only if ν = 0, i.e.,
β(s) = η(s)b(s) or κ̃n = c4κn.

Corollary 3.6. Let S and S̃ be two isometric smooth surfaces and β(s) be a normal curve
on S. Then for the normal component of β(s) along the surface normal, we have

β̃ · Ñ − (β · N) = ν

κ
(κ̃n − κn).

Moreover under such an isometry the normal component along the surface normal is
invariant if the position vector of β is in the binormal direction or the normal curvature
is invariant.

Remark 1. Let J : S → S̃ be an isometry, then the dilation factor of conformality is
ζ = 1. From (3.16) and (3.17), it is straightforward to check Γ̃k

ij = Γk
ij , (i, j, k = 1, 2), i.e.,

Christoffel symbols are invariant under isometry.

Theorem 3.7. Let S and S̃ be two conformal smooth surfaces and β(s) be a normal curve
on S. Then for the tangential component, we have

β̃ · T̃ − ζ2 (β · T) = (ag1 + bg2) + η

κ

(
κ̃n − ζ2κn

)
(av′ + bu′), (3.20)

where g1 and g2 are given by (3.22) and (3.24), respectively.
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Proof. From (3.1), we see that

β · Ψu = ν

κ

[
u′′E + v′′F + u′2Ψuu · Ψu + 2u′v′Ψuv · Ψu + v′2Ψvv · Ψu

]
+η

κ

[
u′2v′L + 2v′2u′M + v′3N

]
or by using (3.10), (3.11) and (2.4), we can write the above equation as

β · Ψu = ν

κ

[
u′′E + v′′F + u′2 Eu

2
+ 2u′v′ Ev

2
+ v′2

(
Fv − Gu

2

) ]
+ η

κ
v′κn.

Now if β̃ be the conformal image of β on S̃, we have

β̃ · Ψ̃u = ν̃

κ̃

[
u′′Ẽ + v′′F̃ + u′2 Ẽu

2
+ 2u′v′ Ẽv

2
+ v′2

(
F̃v − G̃u

2

)]
+ η̃

κ̃
v′κ̃n.

In view of (3.14) and (3.15), the above equation turns out to be

β̃ · Ψ̃u = ν

κ

[
u′′ζ2E + v′′ζ2F + u′2 (2ζζuE + ζ2Eu)

2
+ u′v′(2ζζvE + ζ2Ev)

+v′2
(

2ζζvF + ζ2Fv − 2ζζuG + ζ2Gu

2

)]
+ η

κ
v′κ̃n

or
β̃ · Ψ̃u − ζ2(β · Ψu) = g1(E , F , G, ζ) + η

κ
v′
(
κ̃n − ζ2κn

)
, (3.21)

where
g1(E , F , G, ζ) = ν

κ

[
u′2ζζuE + 2u′v′ζζvE + v′2 (2ζζvF − ζζuG)

]
. (3.22)

On the similar lines, it is easy to find

β̃ · Ψ̃v − ζ2(β · Ψv) = g2(E , F , G, ζ) + η

κ
u′
(
κ̃n − ζ2κn

)
, (3.23)

where
g2(E , F , G, ζ) = ν

κ

[
u′2 (2ζζuF − ζζvE) + 2u′v′ζζuG + v′2ζζvG

]
. (3.24)

Now with the help of (3.21) and (3.23), we get

β̃ · T̃ − ζ2 (β · T) = β̃ · (aΨ̃u + bΨ̃v) − ζ2β · (aΨu + bΨv)

= a(β̃ · Ψ̃u − ζ2β · Ψu) + b(β̃ · Ψ̃v − ζ2β · Ψv)

= a

{
(g1 + η

κ
v′
(
κ̃n − ζ2κn

)}
+ b

{
g2 + η

κ
u′
(
κ̃n − ζ2κn

)}
= (ag1 + bg2) + η

κ

(
κ̃n − ζ2κn

)
(av′ + bu′).
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Corollary 3.8. Let J : S → S̃ be a conformal homothetic map and β be a normal curve on
S. The the tangential component of β is homothetic invariant if and only if the position
vector of β is in the normal direction or the normal curvature is homothetic invariant.

Proof. For a homothetic conformal map, from (3.20), we have

β̃ · T̃ − c2 (β · T) = η

κ

(
κ̃n − c2κn

)
(av′ + bu′).

The conclusions are straightforward from the above expression.

Corollary 3.9. Let J : S → S̃ be an isometry and β be a normal curve on S. The for
the tangential component of β, we have

β̃ · T̃ − (β · T) = η

κ
(κ̃n − κn) (av′ + bu′)

and is invariant if and only if the position vector of β is in the normal direction or the
normal curvature is invariant.

Proposition 3.1. Let J be a conformal map between two smooth surfaces S and S̃ and let
β(s) be a parameterized curve on S such that β̃(s) = J ◦β(s) is conformal parameterized
image of β on S̃. Then for the geodesic curvature of β, we have

κ̃g − ζ2κg = f(E , F , G, ζ). (3.25)

Proof. Let β be a parameterized curve on a smooth surface S, then the geodesic curvature
is given by Beltrami formula as:

κg =
[
Γ2

11u′3+(2Γ2
12−Γ1

11)u′2v′+(Γ2
22−2Γ1

12)u′v′2−Γ1
22v′3+u′v′′−u′′v′

]√
EG − F2. (3.26)

Now, let β̃ = J ◦ β be the conformal image of β on S̃, then with the help of (3.16), we
have

κ̃g =
[
Γ2

11u′3 + (2Γ2
12 − Γ1

11)u′2v′ + (Γ2
22 − 2Γ1

12)u′v′2 − Γ1
22v′3 + u′v′′ − u′′v′

]
W 2

+
[
θ2

11u′3 + (2θ2
12 − θ1

11)u′2v′ + (θ2
22 − 2θ1

12)u′v′2 − θ1
22v′3

]
W 2

or
κ̃g − ζ2κg = f(E , F , G, ζ),

where f(E , G, F , ζ) =
{

θ2
11u′3 + (2θ2

12 − θ1
11)u′2v′ + (θ2

22 − 2θ1
12)u′v′2 − θ1

22v′3
}

W 2.

This proves the claim.

Note: It is to be noted that, in particular, if β is a normal curve and J is isometry
(or homothetic), from (3.25) we see that κg is invariant (or homothetic invariant).
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