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Fitted numerical scheme for solving singularly

perturbed parabolic delay partial differential

equations

Mesfin Mekuria Woldaregay and Gemechis File Duressa

Abstract. In this paper, exponentially fitted finite difference scheme is developed

for solving singularly perturbed parabolic delay partial differential equations hav-

ing small delay on the spatial variable. The term with the delay is approximated

using Taylor series approximation. The resulting singularly perturbed parabolic

partial differential equation is treated using implicit Euler method in the temporal

discretization with exponentially fitted operator finite difference method in the spa-

tial discretization. The parameter uniform convergence analysis has been carried

out with the order of convergence one. Test examples and numerical results are

considered to validate the theoretical analysis of the scheme.
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1 Introduction

In Mathematical biology, there are different models, in which small values of diffusive parameter
play a significant role to capture the behavior of the physical phenomena. Small values of the
diffusive parameter in the differential equations have been seen in different physiological process.
For example in hemoglobin molecules and oxygen in blood have diffusion coefficient of order 10−7

and 10−5cm2/s, respectively [11, 12].

The feasibility of recording single neuron movement induces the development of accurate
mathematical models of neuronal variability[3]. The modeling of spiking movement of neuron to
any level of exactness, one has to consider special features of each kind of neuron and its input
processes. In 1965, Stein [19] developed a mathematical model for the stochastic movement of
neuron. After two years, the author gives a generalized model to handle a distribution of past
synaptic potential amplitudes [20].

In 1991, Musila and Lansky [13] gives a generalizetion on the Stein’s model and proposed
the mathematical model to consider the time evolution trajectories of the membrane potential in
the form of singularly perturbed parabolic delay partial differential equations (SPPDPDEs)

∂u

∂t
=
σ2

2

∂2u

∂x2
+ (µD −

x

τ
)
∂u

∂x
+ λsu(x+ as, t) + ωsu(x+ is, t)− (λs + ωs)u(x, t), (1.1)
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where the first derivative term is due to the exponential decay between two consecutive jumps
caused by the input processes. The membrane potential decays exponentially to the resting
level with a membrane time constant τ . µD and σ are diffusion moments of Wiener process
characterizing the influence of dendritic synapses on the cell excitability. The excitatory input
contributes to the membrane potential by an amplitude as with intensity λs and similarly the
inhibitory input contributes by an amplitude is with intensity ωs.

The model in (1.1) is in the form of SPPDPDEs, which is difficult to drive its exact solution.
Thus, to find solution of this model, we have to deal with the numerical techniques. Still know only
a few numerical schemes have been developed for solving this type of model problems. In recent
years, different scholar’s have devoted for the study of numerical solution of SPPDPDEs with
the delay on the spatial variable. In papers [1, 2, 3], Bansal and Sharma have developed different
numerical schemes for the problem with general shift arguments (where the delays are large). In
[8], Kumar and Kadalbajoo used implicit Euler in temporal direction and B-spline collocation
method on piece-wise uniform mesh in spatial direction. In [15], Ramesh and Kadalbajoo used
implicit Euler in temporal direction and upwind and midpoint upwind finite difference method
on piecewise uniform mesh in spatial direction. Daba and Duressa [5] used implicit Euler method
in temporal direction and extended cubic B-spline basis functions consisting of a free parameter
for the resulting system of ordinary differential equations in the spatial direction. Shivhare et
al. [18] semi-discretized using the Crank Nicolson method in the time direction on uniform mesh
and used quadratic B-spline collocation method in the space direction on exponentially graded
mesh. In [22, 23] Woldaregay and Duressa applied numerical schemes by using non-standard finite
difference scheme for the spatial discretization with Runge Kutta on the temporal direction.

The main contribution of this paper is to develop an exponentially fitted numerical scheme
which converges independent of the influence of the perturbation parameter. In addition, to
analyse the parameter uniform convergence of the scheme.
Organization of the paper: In section 2, description of the problem and the properties of
the analytical solution is given. In section 3, the discretization and techniques of exponentially
fitted finite difference and the parameter uniform convergence of the discrete scheme is given. In
section 4, numerical examples and results are given and finally in section 5, the conclusion of the
work is given.
Notations: Throughout the paper N and M are denoted for the number of mesh in space and
time discretization. The symbol C is denoted for positive constant independent of cε, N and ∆t.
The norm ‖.‖ denotes the supremum norm which is defined as ‖g‖= max|g(x, t)|,∀(x, t) ∈ D and
in discrete case ‖g‖= maxxi,tj |g(xi, tj)|.

2 Problem Formulation

The time dependent singularly perturbed parabolic delay differential equations with delay on the
spatial variable of the reaction term is given by

∂u

∂t
− ε2 ∂

2u

∂x2
+ a(x)

∂u

∂x
+ α(x)u(x− δ, t) + β(x)u(x, t) = f(x, t), (x, t) ∈ D, (2.1)

where D = Ω× Λ = (0, 1)× (0, T ] with smooth boundary ∂D = D̄−D = DL∪D0∪DR for some
positive number T, subject to the initial and interval-boundary conditions

u(x, 0) = u0(x), x ∈ D0 = {(x, 0) : x ∈ Ω̄},
u(x, t) = φ(x, t), (x, t) ∈ DL = {(x, t) : −δ ≤ x ≤ 0, t ∈ Λ},
u(1, t) = ψ(1, t), (x, t) ∈ DR = {(x, t) : x = 1, t ∈ Λ},

(2.2)
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where, ε is a singular perturbation parameter satisfying 0 < ε � 1 and δ is delay parameter
assumed to be sufficiently small as order of o(ε). The coefficient functions a(x), α(x), β(x) source
function f(x, t) and the initial and boundary solutions u0(x), φ(x, t), ψ(1, t) are assumed to be
sufficiently smooth, bounded and independent of ε. The coefficient functions of reaction term
α(x) and β(x) are assumed to satisfy the condition α(x) + β(x) ≥ ζ > 0, ∀x ∈ Ω̄ where ζ is
constant. This condition ensures the solution of the problem in (2.1)-(2.2) exhibits boundary
layer in the neighborhood of DL or DR depending on whether a(x)− δβ(x) < 0 or > 0 for x ∈ Ω̄.

For the case δ = o(ε), it is applicable to use a Taylor series approximation for the delay term
[21]. In the next subsection, we use this procedure to tackle the delay term. In general, computing
numerical solution of singularly perturbed problems by using classical numerical methods leads to
oscillations or divergence in computed solutions [15]. To overcome this problem, a large number
of mesh points are required when ε is very small. This is not applicable and fails to give accurate
results due to round off error. So, in this paper we develop a uniformly convergent numerical
method using implicit Euler in the temporal discretization and exponentially fitted operator
finite difference method in the spatial discretization, which treat the problem without creating
an oscillations.

2.1 Approximation for the delay term

From the assumption δ = o(ε), so using Taylor series approximation, we obtain

u(x− δ, t) ≈ u(x, t)− δ ∂u
dx

+
δ2

2

∂2u

dx2
+O(δ3). (2.3)

Using (2.3) into (2.1) and truncating O(δ3), we obtain

∂u

∂t
− cε(x)

∂2u

∂x2
+ p(x)

∂u

∂x
+ q(x)u(x, t) = f(x, t), (x, t) ∈ D, (2.4)

where cε(x) = ε2 − δ2

2
α(x), p(x) = a(x)− δα(x), q(x) = α(x) + β(x) with initial and boundary

conditions

u(x, 0) = u0(x), x ∈ Ω̄,

u(0, t) = φ(0, t), t ∈ Λ̄,

u(1, t) = ψ(1, t), t ∈ Λ̄.

(2.5)

For small δ, the problems in (2.1)-(2.2) and (2.4)-(2.5) are asymptotically equivalent, since the
truncated term is O(δ3). By assuming 0 < cε(x) ≤ ε2 − δ2M1 = cε where α(x) ≥ 2M1,∀x ∈ Ω.
We assume also p(x) = a(x) − δα(x) ≥ p∗ > 0,∀x ∈ Ω which imply the existence of the right
boundary layer of thickness O(cε). For the case p(x) = a(x)− δα(x) ≤ p∗ < 0,∀x ∈ Ω imply the
existence of left boundary layer of thickness O(cε) and can be treated similarly as the right layer.

2.2 Properties of the Analytical Solution

We establish the existence and uniqueness of the solution of (2.4)-(2.5) by the assumption that
the data are Holder continuous and imposing appropriate compatibility conditions at the points
(0,0), (1,0).
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Lemma 2.1. Let u0(x) ∈ C2[0, 1], φ ∈ C1[0, T ] and ψ ∈ C1[0, T ] by imposing the compatibility
conditions u0(0) = φ(0, 0), u0(1) = ψ(1, 0) and

∂φ(0, 0)

∂t
− cε

∂2u0(0)

∂x2
+ p(0)

∂u0(0)

∂x
+ q(0)u0(0) = f(0, 0),

∂ψ(1, 0)

∂t
− cε

∂2u0(1)

∂x2
+ p(1)

∂u0(1)

∂x
+ q(1)u0(1) = f(1, 0),

(2.6)

so that the data matches at the two corners (0, 0) and (1, 0). Let p(x), q(x) and f(x, t) be contin-
uous on D. Then the problem (2.4)-(2.5) has unique solution u ∈ C2((0, 1)× (0, T ]).

In case of the compatibility conditions are not satisfied, a unique solution may exist but may
not be differentiable on all of ∂D.

In case p(x) ≥ p∗ > 0 and q(x) ≥ ζ > 0, regular boundary layer exist near x = 1. With the
help of the compatibility conditions, we conclude that there exist a constant C independent of
cε such that ∀(x, t) ∈ D̄, we have the following conditions

|u(x, t)− u(x, 0)| = |u(x, t)− u0(x)| ≤ Ct and

|u(x, t)− u(0, t)| = |u(x, t)− φ(0, t)| ≤ C(1− x),

for the detail one can refer [17],[24].

Remark 1. Since the boundary layer exist on the right side of the domain we have to note that
there does not exist C independent of cε such that |u(x, t)− u(1, t)| = |u(x, t)− ψ(1, t)| ≤ Cx.

To show the bounds of the solutions u(x, t) of (2.4), we assume, without loss of generality
the initial condition to be zero. Since u0(x) is sufficiently smooth and using the property of norm,
we prove the following lemma.

Lemma 2.2. The bound on the solution u(x, t) of the problem in (2.4)-(2.5) is given by

|u(x, t)| ≤ C, ∀(x, t) ∈ D̄.

Proof. See on [22].

Let L be a differential operator denoted for the differential equation Lu(x, t) = ∂u
∂t − cε

∂2u
∂x2 +

p(x)∂u∂x + q(x)u(x, t).

Lemma 2.3. Continuous maximum principle. Let z be a sufficiently smooth function defined
on D which satisfies z(x, t) ≥ 0, (x, t) ∈ ∂D and Lz(x, t) ≥ 0, (x, t) ∈ D. Then, implies that
z(x, t) ≥ 0, ∀(x, t) ∈ D̄.

Proof. Let (x∗, t∗) be such that z(x∗, t∗) = min(x,t)∈D̄ z(x, t) and suppose that z(x∗, t∗) < 0. It
is clear that (x∗, t∗) /∈ ∂D. From the theory in extrema values in Calculus, since z(x∗, t∗) =
min(x,t)∈D̄ z(x, t) which implies zx(x∗, t∗) = 0, zt(x

∗, t∗) = 0 and zxx(x∗, t∗) ≥ 0 and implies that
Lz(x∗, t∗) < 0, (x, t) ∈ D which is contradiction to the assumption that made above Lz(x∗, t∗) ≥
0, (x, t) ∈ D. Hence, z(x, t) ≥ 0, ∀(x, t) ∈ D̄.

Lemma 2.4. Uniform Stability Estimate. Let u(x, t) be the solution of the problem in (2.4)-
(2.5). Then, we obtain the bound

|u(x, t)|≤ ζ−1‖f‖+ max{|u0(x)|, |φ(0, t)|, |ψ(1, t)|}. (2.7)
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Proof. We define two barrier functions ϑ±(x, t) as
ϑ±(x, t) = ζ−1‖f‖+ max{|u0(x)|, |φ(0, t)|, |ψ(1, t)|} ± u(x, t). At the initial value, we have

ϑ±(x, 0) = ζ−1‖f‖+ max{|u0(x)|, |φ(0, t)|, |ψ(1, t)|} ± u(x, 0) ≥ 0.

On the boundaries, we have

ϑ±(0, t) = ζ−1‖f‖+ max{|u0(x)|, |φ(0, t)|, |ψ(1, t)|} ± u(0, t) ≥ 0,

ϑ±(1, t) = ζ−1‖f‖+ max{|u0(x)|, |φ(0, t)|, |ψ(1, t)|} ± u(1, t) ≥ 0,

and for the differential operator

Lϑ±(x, t) =ϑ±t (x, t)− cεϑ±xx(x, t) + p(x)ϑ±x (x, t) + q(x)ϑ±(x, t)

=(0± ut(x, t))− cε(0± uxx(x, t)) + p(x)
(
0± ux(x, t)

)
+ q(x)

(
ζ−1‖f‖+ max{|u0(x)|, |φ(0, t)|, |ψ(1, t)|} ± u(x, t)

)
=q(x)

(
ζ−1‖f‖+ max{|u0(x)|, |φ(0, t)|, |ψ(1, t)|}

)
± f(x, t)

≥0, since q(x) ≥ ζ > 0,

which implies Lϑ±(x, t) ≥ 0. Hence by using maximum principle, we obtain ϑ±(x, t) ≥ 0, ∀(x, t) ∈
D̄.

Lemma 2.5. The bounds for the derivative of the solution u(x, t) of the problem in (2.4)-(2.5)
are given by ∣∣∣∣∂k+lu(x, t)

∂xk∂tl

∣∣∣∣ ≤ C(1 + c−kε e−p
∗(1−x)/cε), 0 ≤ k ≤ 4, 0 ≤ k + l ≤ 4.

Proof. For the proof one can refer [4].

3 Numerical Scheme Formulation

3.1 Temporal Discretization

Let sub-divide the temporal domain [0, T ] into M sub-intervals as t0 = 0, tj = j∆t, j =
0, 1, 2, ...,M , where ∆t = T/M . In the first step, we semi-discretize the problem (2.4)-(2.5)
using the implicit Euler method. In this stage of discretization, a system of BVPs are obtained
as

U j+1(x)− U j(x)

∆t
− cε

d2

dx2
U j+1(x) + p(x)

d

dx
U j+1(x) + q(x)U j+1(x) = f(x, tj+1), (3.1)

where U j+1(x) is denoted for the approximation of u(x, tj+1) at the (j + 1)th time level dis-
cretization. Rearranging we write as

L∆tU j+1(x) = g(x, tj+1), x ∈ Ω̄, j = 0, 1, 2, ...,M − 1, (3.2)

with discretized boundary conditions

U j+1(0) = φ(0, tj+1), U j+1(1) = ψ(1, tj+1), (3.3)
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where

L∆tU j+1(x) = −cε
d2

dx2
U j+1(x) + p(x)

d

dx
U j+1(x) + d(x)U j+1(x)

and

g(x, tj+1) =
1

∆t
U j(x) + f(x, tj+1)

for d(x) = 1
∆t + q(x). Here d(x) ≥ ζ∗ > 0, since q(x) > 0.

Lemma 3.1. Semi-discrete maximum principle. Let zj+1 be a sufficiently smooth function
on the domain Ω̄. If zj+1(0) ≥ 0, zj+1(1) ≥ 0 and L∆tzj+1(x) ≥ 0, x ∈ Ω, then zj+1(x) ≥
0, ∀x ∈ Ω̄.

Proof. Let x∗ be such that zj+1(x∗) = minx∈Ω̄ z
j+1(x) and suppose that zj+1(x∗) < 0. From

the above assumption it is clear that x∗ /∈ {0, 1}. Which implies that x∗ ∈ (0, 1). Applying the
property in calculus, we have (zj+1)xx(x∗) ≥ 0 and (zj+1)x(x∗) = 0. So we obtain L∆tzj+1(x∗) <
0 which is contradiction to L∆tzj+1(x∗) ≥ 0, x ∈ Ω̄. Therefore we conclude that zj+1(x) ≥
0, ∀x ∈ Ω̄.

Next, we analyze the discretization error. Let us denote u(x, tj+1) and U j+1(x) be the exact
and approximate solution of the problem in (2.4)-(2.5) using the above discretization. Let us
denote the local error by ej+1(x) := u(x, tj+1)− U j+1(x), j = 0, 1, 2, ...,M − 1

Lemma 3.2. Local error estimate. Suppose that
∣∣ ∂l

∂tl
u(x, t)

∣∣ ≤ C, (x, t) ∈ Ω̄×Λ, 0 ≤ l ≤ 2.
The local error estimate in the temporal direction is given by

‖ej+1‖≤ C1(∆t)2. (3.4)

Proof. Using the series expansion to u(x, tj+1), we obtain

u(x, tj+1) = u(x, tj) + ∆tut(x, tj) +O((∆t)2). (3.5)

Substituting (3.5) into (2.4), we obtain

u(x, tj+1)− u(x, tj)

∆t
=ut(x, tj) +O((∆t)2)

=−
(
− cεu(x, tj)xx + p(x)u(x, tj)x + q(x)u(x, tj)− f(x+ tj)

)
+O((∆t)2).

Since error satisfies the differential equations. So the local error satisfies the semi-discrete operator

L∆tej+1 =O((∆t)2),

ej+1(0) =0 = ej+1(1).
(3.6)

Hence, applying the maximum principle, we obtain

‖ej+1‖≤ C1(∆t)2. (3.7)

Next, we need to give the bound for the global error of the semi-discretization. Let denote
TEj+1 be the global error estimate up to the (j + 1)th time step.
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Lemma 3.3. Global error estimate. The global error estimate at tj+1 is given by

‖TEj+1‖≤ C(∆t), j = 0, 1, 2, ...,M − 1. (3.8)

Proof. Using the results in local error estimate up to the (j + 1)th time step in Lemma 3.2, the
global error estimate is obtained as

‖TEj+1‖=
∥∥∥∥ j+1∑
l=1

el
∥∥∥∥

≤‖e1‖+‖e2‖+...+ ‖ej+1‖
≤C1(j∆t)(∆t)

≤C1T (∆t), since (j + 1)∆t ≤ T
=C(∆t), C1T = C,

where C is constant independent of cε and ∆t.

In the above section, the continuous problem is semi-discretized and converted to a system
of BVPs given in (3.2)-(3.3). Next, we set a bound for the derivatives of solution of the problems
in (3.2)-(3.3).

Lemma 3.4. For each j = 0, 1, 2, ...,M − 1. The derivative of solution of the boundary value
problems in (3.2)-(3.3) satisfies the bound∣∣∣∣dkU j+1(x)

dxk

∣∣∣∣ ≤ C(1 + c−kε e−
p∗(1−x)

cε

)
, x ∈ Ω̄, 0 ≤ k ≤ 4. (3.9)

Proof. Direct from Lemma 2.5 .

3.2 Spatial Discretization

Now, the spatial domain [0, 1] is discretized into N equal number of subintervals, each of length
h = 1/N . Let x0 = 0, xN = 1 and xi = ih, i = 1, 2, ..., N − 1. To find the numerical solution
of system of syngularly perturbed BVPs, we use exponentially fitted operator finite difference
method (FOFDM). In the considered case the boundary layer is on the right side of the domain
i.e. near x = 1. From the theory of singular perturbations given in O’Malley [14] for singularly
perturbed boundary value problem of the form in (3.2)-(3.3), the asymptotic solution up to zero
order approximation is given as:

U j+1(x) = U j+1
0 (x) + (ψ(1, tj+1)− U j+1

0 (1)) exp
(
−
∫ 1

x

(p(x)

cε
− d(x)

p(x)

)
dx
)
. (3.10)

Using Taylor’s series expansion for p(x) about x = 1 and restriction to their first terms and
simplifying, we get the asymptotic solution as

U j+1(x) = U j+1
0 (x) + (ψ(1, tj+1)− U j+1

0 (1)) exp
(
− p(1)(1− x)

cε

)
, (3.11)

where U j+1
0 is the solution of the reduced problems (obtained by setting cε = 0) given by

p(x)
d

dx
U j+1

0 (x) + d(x)U j+1
0 (x) = gj+1(x), U j+1

0 (0) = φ(0, tj+1). (3.12)
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Considering h is small enough, the discretized form of (3.11) becomes

U j+1(ih) = U j+1
0 (ih) + (ψ(1, tj+1)− U j+1

0 (1)) exp(−p(1)(1/cε − iρ)) (3.13)

Using Taylor series we approximate U j+1
0 ((i± 1)h) by U j+1

0 (ih) and we obtain

U j+1((i− 1)h) = U j+1
0 (ih) + (ψ(1, tj+1)− U j+1

0 (1)) exp(−p(1)(1/cε − (i− 1)ρ)),

U j+1((i+ 1)h) = U j+1
0 (ih) + (ψ(1, tj+1)− U j+1

0 (1)) exp(−p(1)(1/cε − (i+ 1)ρ)),
(3.14)

where ρ = h/cε, h = 1/N .

To handle the effect of the perturbation parameter artificial viscosity (exponentially fitting
factor σ(ρ)) is multiplied on the term containing the perturbation parameter as

−cεσ(ρ)
d2

dx2
U j+1(x) + p(x)

d

dx
U j+1(x) + d(x)Uj+1(x) = gj+1(x). (3.15)

Next, considering a uniform grid points Ω̄N = {xi}Ni=0 and denoting h = xi+1 − xi, for any
mesh function zi, define the forward, backward and central finite difference for first derivative
approximation as

D+zi =
zi+1 − zi

h
, D−zi =

zi − zi−1

h
and D0zi =

zi+1 − zi−1

2h

respectively and the second derivative approximation as

D+D−zi =
zi+1 − 2zi + zi−1

h2
.

Applying the central finite difference scheme on (3.15) takes the form

−cεσ(ρ)D+D−U j+1(xi) + p(xi)D
0U j+1(xi) + d(xi)U

j+1(xi) = gj+1(xi). (3.16)

Equivalently (3.16) is rewritten as

Lh,∆tU j+1
i ≡ −cεσ(ρ)

U j+1
i−1 − 2U j+1

i + U j+1
i+1

h2
+ p(xi)

U j+1
i+1 − U

j+1
i−1

2h
+ d(xi)U

j+1
i = gj+1

i . (3.17)

Multiplying (3.17) by h and considering h is small and truncating the term h(gj+1
i − d(xi)U

j+1
i ),

(since gj+1
i − d(xi)U

j+1
i is bounded) results to

−σ(ρ)

ρ

(
U j+1
i−1 − 2U j+1

i + U j+1
i+1

)
+
p(xi)

2

(
U j+1
i+1 − U

j+1
i−1

)
= 0

which gives

σ(ρ) =
ρp(xi)

2

U j+1
i+1 − U

j+1
i−1

U j+1
i−1 − 2U j+1

i + U j+1
i+1

. (3.18)

From (3.13) and (3.14) we obtain the difference

U j+1
i−1 − 2U j+1

i + U j+1
i+1 =(ψ(tj+1)− U j+1

0 (1)) exp(−p(1)(1/cε − iρ)×[
exp(p(1)ρ)− 2 + exp(−p(1)ρ)

]
,

U j+1
i+1 − U

j+1
i−1 =(ψ(tj+1)− U j+1

0 (1)) exp(−p(1)(1/cε − (i)ρ)
)
×[

exp(−p(1)ρ)− exp(p(1)ρ)
]
.

(3.19)
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Now using the results in (3.19) into (3.18) gives

σ(ρ) =
ρp(xi)

2

exp(−p(1)ρ)− exp(p(1)ρ)

exp(p(1)ρ)− 2 + exp(−p(1)ρ)

=
ρp(xi)

2

(exp(−p(1)ρ
2 )− exp(p(1)ρ

2 ))(exp(−p(1)ρ
2 ) + exp(p(1)ρ

2 ))

(exp(p(1)ρ
2 )− exp(−p(1)ρ

2 ))2
,

simplifying the exponential fitting factor is obtained as

σ(ρ) =
ρp(xi)

2
coth

(ρp(1)

2

)
. (3.20)

Hence, the required finite difference scheme becomes

Lh,∆tU j+1
i ≡

(cεσ(ρ)

h2
− p(xi)

2h

)
U j+1
i−1 +

(−2cεσ(ρ)

h2
+ d(xi)

)
U j+1
i +

(cεσ(ρ)

h2
+
p(xi)

2h

)
U j+1
i+1 = gj+1

i

(3.21)
for i = 1, 2, ..., N − 1 and j = 0, 1, 2, ...,M − 1.

3.3 Stability and Uniform Convergence Analysis

Next, we need to prove the discrete maximum principle for the scheme in (3.17).

Lemma 3.5. Discrete maximum principle. Assume that the mesh function zj+1(xi) satisfies
zj+1(x0) ≥ 0 and zj+1(xN ) ≥ 0. If Lh,∆tzj+1(xi) ≥ 0 for 1 ≤ i ≤ N − 1, then zj+1(xi) ≥ 0
∀i, 0 ≤ i ≤ N .

Proof. Let choose k such that zj+1(xk) = minxi
zj+1(xi), 1 ≤ i ≤ N − 1. If zj+1(xk) ≥ 0, the

the proof completed. We can see that zj+1(xk+1)−zj+1(xk) ≥ 0 and zj+1(xk)−zj+1(xk−1) ≤ 0.
Now from (3.17), we obtain Lh,∆tzj+1(xk) < 0 which contradicts Lh,∆tzj+1(xk) < 0. Hence, the
assumption is wrong. We conclude that zj+1(xi) ≥ 0, ∀i, 0 ≤ i ≤ N .

Lemma 3.6. Uniform stability estimate. The solution U j+1
i of the discrete scheme in (3.17)

satisfy the bound

|U j+1
i | ≤ max|Lh,∆tU j+1

i |
ζ∗

+ max{|φ(0, tj+1)|, |ψ(1, tj+1)|}. (3.22)

Proof. Let p =
max|Lh,∆tUj+1

i |
ζ∗ + max{|φ(0, tj+1)|, |ψ(1, tj+1)|} and define the barrier function

ϑ±i,j+1 by ϑ±i,j+1 = p± U j+1
i . On the boundary points, we obtain

ϑ±0,j+1 = p± U j+1
0 =

max|Lh,∆tU j+1
i |

ζ∗
+ max{|φ(0, tj+1)|, |ψ(1, tj+1)|} ± φ(0, tj+1) ≥ 0.

ϑ±N,j+1 = p± U j+1
N =

max|Lh,∆tU j+1
i |

ζ∗
+ max{|φ(0, tj+1)|, |ψ(1, tj+1)|} ± ψ(1, tj+1) ≥ 0.
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On the discretized spatial domain xi, 1 < i < N − 1, we obtain

Lh,∆tϑ±i,j+1 = −cεσ(ρ)
(p± U j+1

i+1 − 2(p± U j+1
i ) + p± U j+1

i−1

h2

)
+ p(xi)

(p± U j+1
i+1 − p± U

j+1
i−1

2h

)
+ d(xi)(p± U j+1

i )

= d(xi)p± Lh,∆tU j+1
i

= d(xi)
(max|Lh,∆tU j+1

i |
ζ∗

+ max{|φ(0, tj+1)|, |ψ(1, tj+1)|}
)
± gj+1(xi)

≥ 0, since d(xi) ≥ ζ∗.

From Lemma 3.5, we obtain ϑ±i,j+1 ≥ 0, ∀xi ∈ Ω̄N . Hence the required bound is obtained.

The following theorem gives the truncation error of the developed scheme.

Theorem 3.1. Let U j+1(xi) and U j+1
i be respectively the continuous solution of (3.2)-(3.3) and

approximate(discrete) solutions of (3.21). Then, for sufficiently large N , the following truncation
error estimate holds:∣∣Lh,∆t(U j+1(xi)− U j+1

i )
∣∣ ≤ CN−2

N−1 + cε

(
1 + c−3

ε exp
(
− p∗(1− xi)

cε

))
. (3.23)

Proof. Let us consider the local truncation error in space discretization as

|Lh,∆t(U j+1(xi)− U j+1
i )| =

∣∣− cεσ(ρ)
( d2

dx2
−D+D−

)
U j+1(xi) + p(xi)

( d
dx
−D0

)
U j+1(xi)

∣∣
≤
∣∣− cε[p(xi)ρ

2
coth

(
p(1)

ρ

2

)
− 1
]
D+D−U j+1(xi)

∣∣
+
∣∣cε( d2

dx2
−D+D−

)
U j+1(xi)

∣∣+
∣∣p(xi)( d

dx
−D0

)
U j+1(xi)

∣∣,
where σ(ρ) = p(xi)

ρ
2 coth

(
p(1)ρ2

)
, and ρ = N−1

cε
.

Let C1 and C2 are constants we have ρ coth(ρ) − 1 ≤ C1ρ
2 for ρ ≤ 1. For ρ → ∞, since

limρ→∞ coth(ρ) = 1 gives ρ coth(ρ)− 1 ≤ C1ρ. In general for all ρ > 0 we have

C1
ρ2

ρ+ 1
≤ρ coth(ρ)− 1 ≤ C2

ρ2

ρ+ 1
and

cε
[
ρ coth(ρ)− 1

]
≤cε

(N−1/cε)
2

N−1/cε + 1
=

N−2

N−1 + cε
since, ρ = N−1/cε.

(3.24)

From Taylor series expansion we obtain the bound as∣∣D+D−U j+1(xi)
∣∣ ≤ C∣∣d2U j+1(xi)

dx2

∣∣,∣∣( d2

dx2
−D+D−

)
U j+1(xi)

∣∣ ≤ CN−2
∣∣d4U j+1(xi)

dx4

∣∣, (3.25)

Similarly for first derivative term,∣∣( d
dx
−D0

)
U j+1(xi)

∣∣ ≤ CN−2
∣∣d3U j+1(xi)

dx3

∣∣. (3.26)
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Using the bounds for the differences of the derivatives in (3.24),(3.25) and (3.26) into (3.3) gives∣∣Lh,∆t(U j+1(xi)− Ui,j+1)
∣∣ ≤C N−2

N−1 + cε

∣∣d2U j+1(xi)

dx2

∣∣+ cεCN
−2
∣∣d4U j+1(xi)

dx4

∣∣
+ CN−2

∣∣d3U j+1(xi)

dx3

∣∣
≤ N−2

N−1 + cε

∣∣d2U j+1(xi)

dx2

∣∣+ CN−2
[
cε
∣∣d4U j+1(xi)

dx4

∣∣
+
∣∣d3U j+1(xi)

dx3

∣∣].
Here, the target is to show the scheme convergence independent of the perturbation parameter.
Using the bounds for the derivatives of the solution in Lemma 3.4, we obtain∣∣Lh,∆t(U j+1(xi)− U j+1

i )
∣∣ ≤ CN−2

N−1 + cε

(
1 + c−2

ε exp
(
− p∗(1− xi)

cε

))
+ CN−2

[
cε
(
1 + c−4

ε exp
(
− p∗(1− xi)

cε

))
+
(
1 + c−3

ε exp
(
− p∗(1− xi)

cε

))]
≤ CN−2

N−1 + cε

(
1 + c−2

ε exp
(
− p∗(1− xi)

cε

))
+ CN−2

[(
cε + c−3

ε exp
(
− p∗(1− xi)

cε

))
+
(
1 + c−3

ε exp
(
− p∗(1− xi)

cε

))]
.

Since c−3
ε ≥ c−2

ε , we obtain∣∣Lh,∆t(U j+1(xi)− U j+1
i )

∣∣ ≤ CN−2

N−1 + cε

(
1 + c−3

ε exp
(
− p∗(1− xi)

cε

))
, (3.27)

which gives the required bound.

Lemma 3.7. For a fixed number of mesh numbers N and for cε → 0, it holds

lim
cε→0

max
i

exp
(
− p∗(1−xi)

cε

)
cmε

= 0, m = 1, 2, 3, ... (3.28)

where xi = ih, h = 1/N,∀i = 1, 2, · · · , N − 1.

Proof. Interested reader can refer from [23].

Using Lemma 3.7 into (3.27) results to∣∣Lh,∆t(U j+1(xi)− U j+1
i )

∣∣ ≤ CN−2

N−1 + cε
. (3.29)

Hence, by the the discrete maximum principle we obtain∣∣U j+1(xi)− U j+1
i

∣∣ ≤ CN−2

N−1 + cε
. (3.30)
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Remark 2. From the bound in (3.30) one can observe that for the case cε > N−1 the scheme
secures second order convergence. We expect to lose an order of convergence for small values of
cε, and in fact it turns out that the scheme is first-order uniformly convergent.

Theorem 3.2. Let u and U be respectively the exact solution of (2.4)-(2.5) and numerical so-
lutions of (3.21) on discretized domain. Then for sufficiently large N , the following parameter
uniform error estimate holds:

sup
0<cε≤1

‖u− U‖ ≤ C(N−1 + ∆t). (3.31)

Proof. Immediate result from (3.8) and (3.30).

4 Numerical Examples and Discussion

To validate the theoretical justifications and results in this paper, we developed an algorithm and
perform experiments using the proposed scheme for the problem in (2.1)-(2.2).

Example 1. From [22] consider the problem

∂u

∂t
− ε2 ∂

2u

∂x2
+ (2 + x+ x2)

∂u

∂x
+
(1 + x2

2

)
u(x− δ, t) = sin(πx(1− x))

with initial interval-boundary conditions u0(x) = 0, on x ∈ [0, 1], φ(x, t) = 0, on x ∈ [−δ, 0],
ψ(x, t) = 0, x = 1 and T = 1.

Example 2. From [22] consider the problem

∂u

∂t
− ε2 ∂

2u

∂x2
+
∂u

∂x
+ (2− x2)u(x− δ, t) + (1 + x2 + exp(x))u(x, t) = 50(x(1− x))3

with initial interval-boundary conditions u0(x) = 0, on x ∈ [0, 1], φ(x, t) = 0, on x ∈ [−δ, 0],
ψ(x, t) = 0, x = 1 and T = 2.

Exact solution of the examples given above are not known. With the help of double mesh
techniques, we compute the maximum point-wise absolute error, ε-uniform error, rate of conver-
gence and ε-uniform rate of convergence of the scheme by using the double mesh techniques. We
define the maximum point-wise absolute error as

EN,Mε,δ = max
i,j

∣∣UN,Mi,j − U2N,2M
i,j

∣∣,
where N,M are the number of mesh points in spatial and temporal direction respectively. Let
UN,Mi,j be the computed solution of (2.4)-(2.5) using N,M mesh points and let U2N,2M

i,j be the
computed solution on double number of mesh points 2N, 2M by including the mid points xi+1/2 =
xi+1+xi

2 and tj+1/2 =
tj+1+tj

2 into the mesh points.

Next, we calculate the ε-uniform error estimate by using the formula

EN,M = max
ε,δ

(
EN,Mε,δ

)
.

We calculate the rate of convergence of the scheme by using the formula

rN,Mε,δ = log2

(
EN,Mε,δ

E2N,2M
ε,δ

)
.
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and similarly we calculate the ε- uniform rate of convergence by using the formula

rN,M = log2

(
EN,M

E2N,2M

)
.

The solutions of the above two examples exhibits a right boundary layer of thickness O(cε)
near x = 1. One can clearly observe from the Figures 1 and 2 the formation of the boundary
layer as ε goes small. In Figure 3 the effect of the delay parameter on the solution is show.
When the magnitude of delay grows the thickness of the boundary layer decreases as see on
the Figure 3 (a) and (b). From Figure 4 on the Log-Log scale plot, one can see that while
the perturbation parameter goes very small the scheme converges uniformly independent of the
perturbation parameter. This is the main result claimed to shown in this paper. In Table 1 and
3 one can observe the maximum absolute error of the scheme. In these tables, in each column as
the perturbation parameter goes small the maximum absolute error becomes stable and uniform.
From the results in Tables 1-4 the developed scheme is more accurate than the results in [15],
[16] and [22] and in addition that it is parameter uniform convergent with order of convergence
one.

Table 1: Example 1, maximum absolute error of the proposed scheme for δ = 0.6ε.
ε N=32 64 128 256 512 1024
↓ M=60 120 240 480 960 1920

20 1.7851e-05 4.3116e-06 9.9398e-07 2.0898e-07 5.8327e-08 3.3946e-08
2−2 1.2040e-03 3.3664e-04 8.6686e-05 2.1835e-05 5.4690e-06 1.3679e-06
2−4 2.7316e-03 1.5408e-03 7.9725e-04 3.3395e-04 1.0489e-04 2.8136e-05
2−6 2.7035e-03 1.5252e-03 8.1049e-04 4.1778e-04 2.1210e-04 1.0683e-04
2−8 2.6965e-03 1.5213e-03 8.0835e-04 4.1667e-04 2.1153e-04 1.0657e-04
2−10 2.6948e-03 1.5203e-03 8.0781e-04 4.1640e-04 2.1139e-04 1.0650e-04
2−12 2.6944e-03 1.5200e-03 8.0768e-04 4.1633e-04 2.1136e-04 1.0649e-04
2−14 2.6943e-03 1.5200e-03 8.0765e-04 4.1631e-04 2.1135e-04 1.0648e-04
2−16 2.6942e-03 1.5200e-03 8.0764e-04 4.1631e-04 2.1135e-04 1.0648e-04
2−18 2.6942e-03 1.5200e-03 8.0764e-04 4.1631e-04 2.1135e-04 1.0648e-04
2−20 2.6942e-03 1.5200e-03 8.0764e-04 4.1631e-04 2.1135e-04 1.0648e-04

EN,M 2.7316e-03 1.5408e-03 8.1049e-04 4.1778e-04 2.1210e-04 1.0683e-04
rN,M 0.8261 0.9268 0.9561 0.9780 0.9894 -

5 Conclusion

An exponentially fitted numerical method is developed for solving singularly perturbed parabolic
delay differential equations with the delay on the spatial variable of the reaction term. We consider
the case when the solution exhibits a boundary layer at x = 1. First, the considered problem is
converted to asymptotically equivalent singularly perturbed parabolic PDEs by applying Taylor’s

For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.
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Table 2: Example 1; ε-uniform error (EN.M ) and ε-uniform rate of convergence (rN,M )
of the proposed method and results in [22], [16] and (in [15] for the case δ = 0.9ε).
Schemes N=32 64 128 256 512 1024
↓ M=60 120 240 480 960 1920

Proposed 2.7316e-03 1.5408e-03 8.1049e-04 4.1778e-04 2.1210e-04 1.0683e-04
Scheme 0.8261 0.9268 0.9561 0.9780 0.9894 -
Result 3.9288e-03 1.9657e-03 9.8350e-04 4.9194e-04 2.4602e-04 1.2302e-04
in [22] 0.9990 0.9991 0.9994 0.9997 0.9999 -
Result 5.9125e-03 3.6155e-03 2.1167e-03 1.1957e-03 6.5593e-04 3.5160e-04
in [16] 0.7096 0.7724 0.8240 0.8662 0.8996 0.9256
Upwind 8.3467e-03 5.3894e-03 3.3649e-03 2.0082e-03 1.1571e-03 6.4904e-04
in [15] 0.6311 0.6796 0.7447 0.7954 0.8341 -
Mid pt Up 8.3467e-03 5.3894e-03 3.3649e-03 2.0082e-03 1.1571e-03 6.4904e-04
wind in [15] 0.6311 0.6796 0.7447 0.7954 0.8341 -

Table 3: Example 2, maximum absolute errors when δ = 0.5ε.
ε ↓ N=M=32 64 128 256 512 1024

2−0 2.5106e-05 6.2740e-06 1.5689e-06 3.9220e-07 9.8052e-08 2.4524e-08
2−2 2.4000e-04 6.0279e-05 1.5099e-05 3.7831e-06 9.4982e-07 2.3948e-07
2−4 2.1542e-03 9.1450e-04 2.9008e-04 7.8109e-05 1.9917e-05 5.0043e-06
2−6 2.1620e-03 1.1183e-03 5.6972e-04 2.8736e-04 1.4130e-04 5.8760e-05
2−8 2.1503e-03 1.1124e-03 5.6674e-04 2.8591e-04 1.4360e-04 7.1963e-05
2−10 2.1473e-03 1.1111e-03 5.6599e-04 2.8553e-04 1.4341e-04 7.1867e-05
2−12 2.1466e-03 1.1108e-03 5.6580e-04 2.8543e-04 1.4335e-04 7.1843e-05
2−14 2.1464e-03 1.1107e-03 5.6575e-04 2.8541e-04 1.4335e-04 7.1837e-05
2−16 2.1464e-03 1.1107e-03 5.6574e-04 2.8540e-04 1.4335e-04 7.1836e-05
2−18 2.1464e-03 1.1107e-03 5.6575e-04 2.8540e-04 1.4335e-04 7.1836e-05
2−20 2.1464e-03 1.1107e-03 5.6575e-04 2.8540e-04 1.4335e-04 7.1836e-05

EN,M 2.1464e-03 1.1107e-03 5.6575e-04 2.8540e-04 1.4335e-04 7.1836e-05
rN,M 0.9504 0.9732 0.9872 0.9934 0.9968 -

Table 4: Example 2, ε-uniform error (EN.M ) and ε-uniform rate of convergence (rN,M )
of the proposed method and results in [22].
ε ↓ N=M=32 64 128 256 512 1024

Proposed 2.1503e-03 1.1124e-03 5.6674e-04 2.8591e-04 1.4360e-04 7.1963e-05
Scheme 0.9509 0.9729 0.9871 0.9935 0.9967 -
Result 5.7389e-03 2.9180e-03 1.4718e-03 7.3915e-04 3.7036e-04 1.8537e-04
in [22] 0.9758 0.9874 0.9936 0.9969 0.9985 -
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(a) (b)

Figure 1: 3D view of computed solution of Example 1, with the effect of the singular
perturbation parameter on (a) for ε = 20, on (b) for ε = 2−20, δ = 0. (For interpre-

tation of the references to color in this figure legend, the reader is referred to the web version of this article,

DOI:10.5556/j.tkjm.53.2022.3638)

(a) (b)

Figure 2: 3D view of computed solution of Example 2, with the effect of the singular
perturbation parameter on (a) for ε = 20, on (b) for ε = 2−20, δ = 0. (For interpre-

tation of the references to color in this figure legend, the reader is referred to the web version of this article,

DOI:10.5556/j.tkjm.53.2022.3638)

series approximation for the delay term. By inducing exponential fitting factor for terms with
perturbation parameters, we developed the discrete scheme. The developed scheme is uniformly
convergent (it converges independent of the perturbation parameter). A detail uniform stability
and convergence analysis is given to show the uniform convergence of the scheme with rate
of convergence O(N−1 + ∆t). The developed scheme is investigated by considering two test
examples. The influence of ε and δ on the solution of the problem are shown using figures. The
results of the proposed scheme is investigated by comparing the results with published articles.
We observed that the proposed method gives more accurate and ε-uniform numerical results.

https://dx.doi.org/10.5556/j.tkjm.53.2022.3638
https://dx.doi.org/10.5556/j.tkjm.53.2022.3638
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(a) (b)

Figure 3: Effect of the delay on solution on (a) Example 1, on (b) Example 2, for ε = 2−2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article, DOI:10.5556/j.tkjm.53.2022.3638)

(a) (b)

Figure 4: The Log-Log plot of the maximum absolute error on (a) Example 1, on (b)
Example 2, for different values of ε. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article, DOI:10.5556/j.tkjm.53.2022.3638)
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