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On the r-Stability Index of r-Maximal Closed Hypersurfaces
in de Sitter Spaces

B. Esmaeili, Gh. Haghighatdoost and F. Pashaie

Abstract. It is well-known that some minimal (or maximal) hypersurfaces are stable. How-
ever, there is a growing recognition on unstable minimal (or maximal) hypersurfaces by in-
troducing the concept of index of stability. Firstly, the index of stability for minimal hyper-
surfaces in the Euclidean n-sphere has been introduced by J. Simons [20], which is followed
recently by many people (see for instance [3, 9, 18, 21]). Also, Barros and Sousa in [10] have
payed attention to the concept of index of r-stability (as the r-extension of index of stability)
on r-minimal hypersurfaces in the Euclidean n-sphere. They gave low bounds for r-stability
index of r-minimal n-dimensional closed hypersurfaces in Sn+1. In this paper we give low
bounds for the r-stability index of r-maximal closed spacelike hypersurfaces in the de Sitter
space Sn+1

1 .

.

1 Introduction

The importance of hypersurfaces with null mean curvature in (semi-) Riemanian manifolds is
well-known in physics and mathematics. These hypersurfaces are critical points of the first vari-
ational problem of optimizing the area functional. The second variation problem of the area
functional leads us to the stability of hypersurfaces. The classification of stable hypersurfaces
in Euclidean spheres, as a well-known topic in differential geometry, has been started (firstly)
by J. L. Barbosa and M. de Carmo ([5]) and then, it is followed by other researchers (see, for in-
stance, [6, 7, 8]). Similarly, the hypersurfaces with null rth mean curvature in (semi-)Riemannian
manifolds, as the critical points of a suit variational problem, play interesting roles in the theory
of r-stability. Many people have studied the r-stability of r-minimal hypersurfaces in spheres
([6, 7, 8, 11]). The concept of index of stability, related to the second variational problem, on the
unstable hypersurfaces in Euclidean spheres has been introduced by Simons in [20], which is fol-
lowed by many researchers ([3, 9, 10, 18, 21]). Intuitively, the index of stability of a hypersurface

2010Mathematics Subject Classification. Primary 53C42, Secondary 53C20, 53B30, 83C99.
Key words and phrases. Spacelike hypersurface, r-index, stability, de Sitter space.
Corresponding author: F. Pashaie.

163

http://dx.doi.org/10.5556/j.tkjm.53.2022.3639


164 B. Esmaeili, Gh. Haghighatdoost and F. Pashaie

gives a rate of distance from being stable. In fact, it gives the number of independent directions
in which the hypersurface fails to be of minimum area. In the recent results, some lower bounds
have been found for the index of r-minimal hypersurfaces in the standard Euclidean sphere Sn+1

of sectional curvature 1. In [9], Barros and Sousa have estimated the index of stability of minimal
closed hypersurfaces in the Euclidean spheres. Also, in [10], they gave low bounds for the index
of r-stability of some r-minimal hypersurfaces in the Euclidean spheres. They proved that, closed
oriented non-totally geodesic minimal hypersurfaces of Sn+1 have index of stability greater than
or equal to n + 3, where the equality occurs only when the hypersurface is Clifford tori. Fur-
thermore, they have extended similar results to the closed oriented r-minimal hypersurfaces in
Sn+1, by estimating the index of r-stability. Up to Clifford tori, for closed oriented hypersurfaces
in Sn+1 satisfying the conditionsHr+1 = 0 andHr+2 < 0, we have Indr(Mn) ≥ 2n+ 5.

On the other hand, it is well-known that, the complete hypersurfaces with constant mean
curvature in Lorentz space forms (especially, in the de Sitter space Sn+1

1 ) have important role in
the relativity theory ([15]). Also, we know that, a maximal spacelike entire graph in the Lorentz-
Minkowski space-time Rn+1

1 is a linear hyperplane. As a generalization of this fact, the totally
geodesic hypersurfaces are the only complete spacelike maximal hypersurfaces in Sn+1

1 . Aku-
tagawa [1] and Ramanathan [19] have showed that, the complete spacelike hypersurfaces with
constant mean curvature H in Sn+1

1 , satisfying the condition n2H2 < 4(n − 1) for n > 2 and
H2 ≤ 1 for n = 2, are totally umbilical. In this paper, we extend the notion of index of r-stability
and give similar results for the r-maximal close spacelike hypersurfaces of Sn+1

1 . We give some
estimator low bounds for r-stability index of some hypersurfaces in Sn+1

1 .

2 Preliminaries

Here, we recall some basic preliminaries from [13, 16, 17]. By Rm
p we mean the vector space

Rm with metric < x, y >:= −Σp
i=1xiyi + Σj>pxjyj . Especially, Rm

0 = Rm, and Rm
1 is the

Minkowski space. For c > 0, the pseudo-sphere Sn+1
q (c) = {y ∈ Rn+2

q | < y, y >= c2}
denotes the Euclidean sphere (when q = 0) and the de Sitter space (when q = 1) of radius c and
curvature 1/c2. Similarly, Hn+1

q (−c) = {y ∈ Rn+2
q+1 | < y, y >= −c2} denotes the hyperbolic

space (when q = 0) and the anti-de Sitter space (when q = 1) of radius c and curvature −1/c2.
The simply connected space form M̃n+1

q (c) of curvature c and index q denotes Rn+1
q for c = 0,

Sn+1
q = Sn+1

q (1) for c = 1 and Hn+1
q = Hn+1

q (−1) for c = −1. When q = 0, we take a
component of Hn+1

0 . The Weingarten formula for a spacelike hypersurface x : Mn → Sn+1
1

is ∇̄V W = ∇V W− < SV,W > N, for V,W ∈ χ(M), where S is the shape operator of M
associated to a unit normal vector fieldN onM with< N,N >= −1. SinceSn+1

1 is time-oriented,
on each orientable spacelike hypersurface in Sn+1

1 there is a global unit normal timelike vector
field N such that the shape operator associated to N is diagonalizable. We denote the eigenvalues
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of its shape operator (i.e. the principal curvatures of M ) by the functions κ1, ..., κn on M . The
jth elementary symmetric function sj :=

∑
1≤i1<...<ij≤n κi1 ...κij can be used to define the jth

mean curvature functionHj onM as (nj )Hj = (−1)jsj . By definition, a spacelike hypersurface
x : Mn → M̃n+1

q (c) with null (j + 1)th mean curvature is said to be j-maximal.

In particular,H1 = −(1/n)tr(S) is the ordinary mean curvature function. The normal vec-
tor field H = H1N is called the mean curvature vector field on M . There is a relation between
the scalar curvature ofM and the 2nd mean curvature as tr(Ric) = n(n− 1)(c−H2). In gen-
eral, since the sign ofHj depends on the chosen orientation only in the odd case,Hj is extrinsic
(respectively, intrinsic) when j is an odd (respectively, an even) number.

For a spacelike hypersurface x : Mn → M̃n+1
q (c), as in [17], the jth Newton transformation

Pj : χ(M) → χ(M), associated with the shape operator S, is defined, inductively, by

P0 = I, Pj = (−1)jsjI + S ◦ Pj−1(j = 1, ..., n),

where I is the identity on χ(M). It can be seen that Pj has an explicit formula,

Pj = (−1)jΣj
l=0(−1)lsj−lS

l =

j∑
l=0

(nj−l)Hj−lS
l,

where,H0 = 1 and S0 = I . According to the characteristic polynomial of S,QS(t) = det(tI −
S) =

∑n
l=0(−1)n−lsn−lt

l, the Cayley-Hamilton theorem gives Pn = 0.

Let v1, ..., vn be a local orthonormal tangent frame of principal directions on M such that
Svi = κivi for i = 1, 2, ..., n. Clearly, we have Pjvi = µi,jvi, for i = 1, 2, ..., n, where µi,j =

(−1)jΣi1<...<ij ,il ̸=iκi1 ...κij , (for j = 0, 1, ..., n− 1). Using the identity

κiµi,j = µi,j+1 − (−1)j+1sj+1 = µi,j+1 − (nj+1)Hj+1,

the following formulae can be obtained easily:

tr(Pj) = (−1)j(n− j)sj = cjHj ,

tr(S ◦ Pj) = (−1)j(j + 1)sj+1 = −cjHj+1,

tr(S2 ◦ Pj) = (nj+1) (nH1Hj+1 − (n− j − 1)Hj+2) ,

tr(Pj ◦ ∇XS) = −(nj+1) < ∇Hj+1, X >, (X ∈ χ(M)),

(2.1)

where cj = (n − j)(nj ) = (j + 1)(nj+1) and ∇ stands for the gradient operator. For any vector
a ∈ Rn+2

1 , we define two height functions λa :=< x, a > and γa :=< N, a >. From [4, 17], we
have∇λa = aT and∇γa = −SaT .

Notation: We will use the following notations:
(1) Λ := {λa|a ∈ Rn+2

1 }, Λ̄ := span(Λ ∪ {1});
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(2) Γ := {γa|a ∈ Rn+2
1 }, Γ̄ := span(Γ ∪ {1});

(3) Ω := span(Λ ∪ Γ), Ω̄ := span(Ω ∪ {1}).
We note that Λ and Γ are linear subspaces of C∞(M), respectively generated by B := {λei}n+2

i=1

and B̂ := {γei}n+2
i=1 , where {ei}

n+2
i=1 is the canonical basis on the Lorentz-Minkowski spaceRn+2

1 .

Definition 1. The jth linearized operator Lj : C∞(M) → C∞(M) is a second order differen-
tial operator defined by Lj(f) := tr(Pj ◦ ∇2f), where ∇2f is given by < ∇2f(X), Y >=

Hess(f)(X,Y ) for everyX,Y ∈ χ(M).

From [3, 17], for j = 1, ..., n− 1, we have the following equalities:

Ljλa = cjHj+1γa − ccjHjλa,

Ljγa = (nj+1)grad(Hj+1) + (nj+1)[nH1Hj+1 − (n− j − 1)Hj+2]γa − ccjHj+1λa.

Definition 2. Let x : Mn → Sn+1
1 be a closed connected orientable spacelike hypersurface

isometrically immersed into Sn+1
1 . A smoothmapX : Mn×(−ϵ, ϵ) → Sn+1

1 is called a variation
of x if it satisfies the following conditions:

(1) For each t ∈ (−ϵ, ϵ), the map Xt : Mn → Sn+1
1 defined by Xt(p) := X(p, t), is a

spacelike immersion.

(2) X0 = x and for every t ∈ (−ϵ, ϵ),Xt|∂M = x|∂M .

Now, we introduce some notations that will be used in the rest. dMt denotes the volume
element of M endowed with the metric induced by Xt and Nt denotes the unit normal vector
field alongXt. The variational vector field associated to the variationX is the vector field ∂X

∂t |t=0.
Putting f := −⟨∂X∂t ,Nt⟩, we have the equality ∂X

∂t = fNt + (∂X∂t )
⊤, where⊤ stands for tangent

component. Throughout this paper, we will assume that M is compact. If f : Mn → R is a
smooth function and

∫
fdM = 0, then there exists a volume-preserving normal variation ofMn

whose variational field is fN (see [22]).

Lemma 2.1. Let x : Mn → Sn+1
1 be a closed spacelike hypersurface of the de Sitter space, X :

Mn× (−ϵ, ϵ) → Sn+1
1 be a variation of x and f := −⟨∂X∂t ,Nt⟩. Then, for r = 0, 1, · · · , n− 1 we

have :

∂sr+1

∂t
= (−1)r+1(Lrf + tr(Pr)f − tr(S2 ◦ Pr)f) + ⟨

(
∂X

∂t

)⊥
,∇sr+1⟩.

Proof. See the proof of Lemma 2.2 in [12].

The rth area functional Ar : (−ϵ, ϵ) → R, associated to a variation X of x : Mn → Sn+1
1 ,

is defined by Ar(t) :=
∫
M Fr(t)dMt, where Fr(t) is recursively given by F0(t) ≡ 1, F1(t) :=

−s1(t) and Fr(t) := (−1)rsr(t) − n−r+1
r−1 Fr−2(t) for 2 ≤ r ≤ n − 1. In the case r = 0,

the functional A0 is the classical area functional. If sr+1 = 0, there is a function f : M → R
supported in a compact domainK ⊂ M , that satisfies the following lemma.
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Lemma 2.2. Let x : Mn → Sn+1
1 be a closed oriented spacelike hypersurface of the de Sitter space

with constant (r + 1)th mean curvature, X : Mn × (−ϵ, ϵ) → Sn+1
1 be a variation of x and

f := −⟨∂X∂t ,Nt⟩. Then, we have

A′′
r(t) = (r + 1)

∫
M
[Lrf + tr(Pr)f − tr(S2 ◦ Pr)f ]fdMt.

Proof. It is derived from Proposition 2.3 in [12].

Associated to each variationX : Mn×(−ϵ, ϵ) → Sn+1
1 of x, we consider a Jacobi functional

Jr which is a second order self-adjoint differential operator defined by Jr := Lr + [tr(Pr) −
tr(S2 ◦ Pr)]I . So, we define a function Br : C∞

c (M) → R by rule Br(f) :=
∫
M fJrfdM ,

where C∞
c (M) stands for the set of compactly supported smooth functions onM . The spacelike

hypersurfaces isometrically immersed into Sn+1
1 maximizing the function Br can be interested

as stable hypersurfaces. The above discussion shows that M must have zero (r + 1)th mean
curvature.

Definition 3. Let x : Mn → Sn+1
1 be a closed spacelike hypersurface of zero (r + 1)th mean

curvature isometrically immersed into Sn+1
1 . We say that x is r-stable, if Br(f) ≤ 0 for every

function f ∈ C∞
c (M).

Definition 4. Let x : Mn → Sn+1
1 be a closed spacelike hypersurface of zero (r+1)th mean cur-

vature isometrically immersed into Sn+1
1 . the index of r-stability ofMn, denoted by Indr(Mn) is

the maximal dimension of the set {f ∈ C∞
c (M)|Br(f) > 0}.

3 Some examples of spacelike hypersurfaces in Sn+1
1

In this section, we show some examples of complete spacelike hypersurfaces with constant (r +
1)th mean curvature in the de Sitter space.

Example 1. Let a ∈ Rn+2
1 be a fixed vector and σ =< a, a >. For each positive real number c

where c2� ≥ −σ, The spacelike hypersurface

Mc := {y ∈ Sn+1
1 ⊂ Rn+2

1 | < y, a >=
√

c2 + σ}

is a totally umbilical hypersurface in Sn+1
1 . The Gauss map onMc is N(x) = 1

c (a −
√
c2 + σx),

and the principal curvatures ofMc are κi = 1
c

√
c2 + σ for i = 1, 2, · · · , n. So, for each 1 ≤ k ≤

n, we haveHk = (−1)k[1c
√
c2 + σ]k. When σ = −1 and c ≥ 1,Mc = Sn(c). When σ = 1 and

c > 0,Mc = Hn(−c).
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Example 2. Let g : Sn+1
1 → R be defined by g(x1, · · · , xn+2) := −x1 + x2. We consider the

hypersurfaceMt := g−1(e−t), for each t ∈ R. In fact, it can be restated as

Mt = {(f(y) + sinh t, f(y) + cosh t, y) ∈ Sn+1
1 |y ∈ Rn},

where f(y) = −et

2 Σn
i=1y

2
i . TheGaussmaponMt isN(x) = eta−x, where a := (−1, 1, 0, ..., 0) ∈

Rn+2
1 . Hence. the principal curvatures of Mt are κ1 = ... = κn = 1, and then we have

Hk = (−1)k for k = 1, 2, · · · , n.

Example 3. We define a smooth function f : Sn+1
1 → R by f(y) := y2m+2 + ...+ y2n+2 (where,

0 < m < n). For each real number d > 1, the hypersurface Md = f−1(d2) is a spacelike
hypersurface of Sn+1

1 . The Gauss map onMd will be

N(y) =
−d√
d2 − 1

(y1, ..., ym+1, (1−
1

d2
)ym+2, ..., (1−

1

d2
)yn+2).

In fact, Md denotes the standard product Hm(−
√
d2 − 1) × Sn−m(d) ⊂ Sn+1

1 . Similar to Ex-
ample 3.4 in [? ], the principal curvatures of Md are κ1 = ... = κm = d√

d2−1
, κm+1 = ... =

κn =
√
d2−1
d . Then, the mean curvatures ofMd (of all orders) are constant.

In particular, H1(c1) × Sn−1(c2) is called a hyperbolic cylinder and Hn−1(c1) × S1(c2) is
called a spherical cylinder.

4 Result

The main ingredient to determine the r-maximal closed spacelike hypersurfaces of the de-Sitter
space is the following result derived recently by Caminha [13].

Theorem 4.1. Let x : Mn → Sn+1
1 be a r-maximal closed spacelike hypersurface of the de-Sitter

space Sn+1
1 . Then, we haveHk = 0 onM , for all k’s where r + 1 ≤ k ≤ n.

First, we recall some properties of the spacelike hypersurfaces in Sn+1
1 .

Proposition 4.1. ([2]) Let x : Mn → Sn+1
1 be a spacelike hypersurface in Sn+1

1 , (n ≥ 2).
(i) IfMn is compact, then it is diffeomorphic to Sn;
(ii) IfMn is compact and totally umbilical in Sn+1

1 (for n ≥ 2), then it is a round n-sphere.

Proposition4.2. ([14]) Letx : Mn → Sn+1
1 be a complete oriented r-maximal compact spacelike

hypersurface in Sn+1
1 (where n ≥ 2) with positive rth mean curvature such that the rank of its

shape operator is greater than r. Then,Mn is not r-stable.
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Lemma 4.1. ([13]) Let x : Mn → Sn+1
1 be a closed spacelike hypersurface isometrically im-

mersed into the de-Sitter space Sn+1
1 , κ1, ..., κn be the principal curvatures and Hr be the rth

mean curvature ofMn. Then we have:

(i) For 0 < r < n,H2
r ≥ Hr−1Hr+1. If r = 1 or if r > 1 andHr+1 ̸= 0, then the equality

happens if and only if κ1 = ... = κn;

(ii)H1 ≥ (H2)
1/2 ≥ ... ≥ (Hk)

1/k ifHi > 0 for i = 1, ..., k;

Now, we state the auxiliary results on the r-stability and index of r-stability of spacelike hy-
persurfaces in the de Sitter space.

Lemma 4.2. Let x : Mn → Sn+1
1 be a connected orientable spacelike hypersurface isometrically

immersed into the de Sitter space. Then we have
(i) Lk(λa) = −ckHkλa + ckHk+1γa;
(ii) Lk(γa) = (nk+1)[nH1Hk+1 − (n− k − 1)Hk+2]γa − ckHk+1λa + (nk+1) < ∇Hk+1, a >.

Theorem4.2. Letx : Mn → Sn+1
1 be an isometric immersion of a complete connected orientable

spacelike hypersurface of the de Sitter space.
(i) IfMn is not totally geodesic in Sn+1

1 , then we have dim(Λ) = dim(Γ) = n+ 2;
(ii) IfMn is not totally umbilical in Sn+1

1 , then we have dim(Λ̄) =dim(Γ̄) = n+ 3.

Proof. (i) Remember thatΛ is the linear subspace of C∞(M), generated byB := {λei}n+2
i=1 , where

{ei}n+2
i=1 is the canonical basis on the Lorentz-Minkowski spaceRn+2

1 . We show that B is linearly
independent. Assuming B to be linearly dependent, we have a non-zero finite sequence of real
numbers {ri}n+2

i=1 such that
∑n+2

i=1 riλei ≡ 0. Putting v :=
∑n+2

i=1 riei we have λv ≡ 0. One can
assume that v is a non zero vector with < v, v >∈ {−1, 0, 1}. On the other hand, the image of
M by the isometric immersion x lies in the spacelike hyperplane with a timelike normal vector.
Remember that, the totally umbilic spacelike hypersurfaces in Sn+1

1 are obtained as intersection of
a spacelike hyperplane ofRn+2

1 with Sn+1
1 , and the causal character of the hyperplane determines

the type of the hypersurface. More precisely, we obtain< v, v >= −1 and x(Mn) is Sn ⊂ Sn+1
1 ,

totally geodesic hypersurface in de Sitter space(see [17]), which contradicts with the assumption.
Therefore, B is a linearly independent subset of C(M) and dim(Λ) = n+ 2.

Similarly, Γ is the linear subspace of C∞(M), generated by B̂ := {γei}n+2
i=1 . It is enough to

show that B̂ is linearly independent. If not, there is a non-zero sequence {ri}n+2
i=1 ,of real numbers

such that
∑n+2

i=1 riγei ≡ 0. Putting u :=
∑n+2

i=1 riei we have γu ≡ 0, which means that, N(M),
the Gauss image of M , is contained in the hyperplane P with normal vector u. By the sign
of P , its normal vector is positive definite. Without losing anything of generality, it is enough
to consider the cases < u, u >= 1. So, N(M) lies in P ∩ Hn+1

0 . So, as in [17], according to
completeness of N(M) we obtain that, N(M) lies in a connected component of the hyperbolic
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space (i.e. Hn). Similar to the well-known theorem of Nomizu-Smyth, one can see that in this
case N(M) is a fixed vector and so x(M) is a totally geodesic spacelike hypersurface of the de
Sitter space Sn+1

1 . This contradiction with the assumptions implies that B̂ is linearly independent
and then dim(Γ) = n+ 2.

(ii) It is enough to show that B ∪ {1} is linearly independent. Assume that it is linearly
dependent. So, by independence of B, there exists a finite sequence of real numbers as {ri}n+2

i=1

such that
∑n+2

i=1 riλei ≡ 1. Putting v :=
∑n+2

i=1 riei we have λv ≡ 1. Since x(M) is spacelike,
v may not be spacelike and it has to be timelike and then, we can assume that < v, v >= −1.
Hence, x(Mn) is a totally umbilical hypersurfaces in Sn+1

1 , which is in the contradiction with the
assumption. Therefore, B ∪ {1} is a linearly independent subset of C(M) and dim(Γ̄) = n+ 3.

In similar way, we show that B̂ ∪ {1} is linearly independent. If not, because of linearly
independence of B̂, there are real numbers si(i = 1, 2, ..., n + 2) such that

∑n+2
i=1 siγei ≡ 1.

Putting u :=
∑n+2

i=1 siei we have γu ≡ 1, which means that, N(M), the Gauss image of M ,
is contained in the intersection of a connected component of the hyperbolic space Hn+1

0 with
the hyperplane Q = {p ∈ Rn+2

1 | < p, u >= 1}. So, according to [17] and completeness and
connectedness of N(M), we obtain that N(M) lies in a connected component of the hyperbolic
space. Similar to the well-known theorem of Nomizu-Smyth, one can see that in this case, x(M)

is a totally umbilical spacelike hypersurface of the de Sitter space Sn+1
1 . This contradiction with

the assumptions implies that B̄∪{1} is linearly independent and then dim(W∪{1}) = n+3.

Proposition 4.3. Let x : Mn → Sn+1
1 be a non-totally geodesic r-maximal closed spacelike

hypersurface isometrically immersed into Sn+1
1 with Hr > 0 and rank(S) > r. Then, for any

non-zero vectors u, v ∈ Rn+2
1 , the set {λu, γv, 1} is linearly independent.

Proof. First we show that {λu, γv} is linearly independent. Suppose that λu = sγv for some non-
zero vectors u, v ∈ Rn+2

1 and some real number s ∈ R. If λu = 0, then Mn is totally geodesic
in Sn+1

1 which is a contradiction. Assume that λu ̸= 0. Then from λu = sγv we get s ̸= 0 and
Lr(λu) = sLr(γv). So, by Lemma 4.2 we have −crHrλu = 0 which is a contradiction again.
Therefore, {λu, γv} is linearly independent.

In the second stage, we show the linearly independence of {λu, γv, 1}. It is enough to con-
sider the case where λ2

u+γ2v > 0. Suppose that λu = s1γv+s2 for some real numbers s1, s2 ∈ R.
By the first part of proof, we know that s2 ̸= 0. So, by Lemma 4.2 we have−crHrλu = 0, which
is a contradiction.

Theorem 4.3. Let x : Mn → Sn+1
1 be a r-maximal closed spacelike hypersurface isometrically

immersed into Sn+1
1 withHr > 0 and rank(S) > r. Then:

(i) IfMn is totally geodesic in Sn+1
1 , then Indr(Mn) = 1;

(ii) IfMn is not totally geodesic in Sn+1
1 , then Indr(Mn) ≥ n+ 2,

(iii) IfMn is not totally umbilical in Sn+1
1 , then Indr(Mn) ≥ n+ 3.
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Proof. Part (i) is derived from a similar version of Theorem 5.1.1 in ([20]). For other parts, since
Hr+1 = Hr+2 = 0, we have Br(f) =

∫
M (Jrf)f =

∫
M (Lrf + crHrf)fdM for any f ∈

C∞(M). So, choosing f = t+ λu + γv to obtain

Jrf = Lrλu + Lrγv + tcrHr + crHrλu + crHrγv.

Then, by Lemma 4.2, we get Jrf = crHr(t+ γv) and therefore we obtain

fJrf = crHr(t+ γv)
2 + crHrλu(t+ γv).

Hence, we have

Br(f) = cr

∫
M

Hr(γv + t)2dM + cr

∫
M

Hrλu(t+ γv)dM.

Taking into account thatHr > 0, by putting u = 0, we have

Br(f) = cr

∫
M

Hr(γv + t)2dM > 0. (4.1)

Therefore,Br(f) > 0 for all f ∈ span{1, γe1 , ..., γen+2}. So, by parts (i) and (ii) ofTheorem 4.2,
we obtain (respectively) parts (ii) and (iii).
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