Characterization of n-Jordan Homomorphisms on Rings

Abbas Zivari-Kazempour and Mohammad Valaei

Abstract

In this paper, we prove that if $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ is an n-Jordan homomorphism, where \mathcal{R} has a unit e, then the map $a \longmapsto \varphi(e)^{n-2} \varphi(a)$ is a Jordan homomorphism. As a consequence we show, under special hypotheses, that each n-Jordan homomorphism is an n-homomorphism.

1 Introduction and Preliminaries

The study of additive mappings from one ring \mathcal{R} into another ring \mathcal{R}^{\prime} which preserve squares was initiated by Ancochea [1] in connection with problems arising in projective geometry. Among others, Kaplansky [8], Jacobson and Rickart [7] and Herstein [6] then proceeded to carry out an extensive study of such functions.

The additive mapping $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ between two rings is called an n-homomorphism if for all $a_{1}, a_{2}, \cdots, a_{n} \in \mathcal{R}$,

$$
\varphi\left(a_{1} a_{2} \cdots a_{n}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right)
$$

and it is called an n-Jordan homomorphism if $\varphi\left(a^{n}\right)=\varphi(a)^{n}$, for all $a \in \mathcal{R}$.
The concept of an n-homomorphism was studied in [4, 5], and the notion of n-Jordan homomorphism was dealt with firstly by Herstein [6]. For the case $n=2$, this concepts coincides the classical definitions of homomorphism and Jordan homomorphism, respectively.

It is clear that every n-homomorphism is an n-Jordan homomorphism, but in general the converse is false. There are plenty of known examples of n-Jordan homomorphism which are not n-homomorphism. For $n=2$, it is proved in [7] that some Jordan homomorphism on the polynomial rings can not be homomorphism.

Obviously, each homomorphism is an n-homomorphism for every $n \geqslant 2$, but the converse does not hold in general. For instance, if $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ is a homomorphism, then $\psi:=-\varphi$ is a 3-homomorphism which is not a homomorphism [4].

Let $n \geqslant 2$ be an integer and \mathcal{R} be an associative ring. Following [6], we say that \mathcal{R} is of characteristic not n if $n a=0$ implies $a=0$ for every $a \in \mathcal{R}$, and \mathcal{R} is of characteristic greater than n if $n!a=0$ implies $a=0$ for every $a \in \mathcal{R}$. A ring \mathcal{R} is a domain if $\mathcal{R} \neq 0$ and either $a=0$ or $b=0$ whenever $a b=0$.

The Jacobson radical $\mathfrak{J}(\mathcal{R})$ of a ring \mathcal{R} is the intersection of the primitive ideals of \mathcal{R}, and \mathcal{R} is called semisimple whenever $\mathfrak{J}(\mathcal{R})=\{0\}$.

Theorem 1.1. [6, Theorem H] If φ is a Jordan homomorphism of a ring \mathcal{R} onto a prime ring \mathcal{R}^{\prime} of characteristic different from 2 and 3 , then either φ is a homomorphism or an anti-homomorphism.

Zelazko [10] has given a characterization of Jordan homomorphism, that we mention in the following (see also [9]).

Theorem 1.2. Every Jordan homomorphism from Banach algebra \mathcal{A} into a commutative semisimple Banach algebra \mathcal{B} is a homomorphism.

This result has been proved by the author in [11] for 3-Jordan homomorphisms with the additional hypothesis that the Banach algebra \mathcal{A} is unital. In other words, he presented the next theorem.

Theorem 1.3. Suppose that \mathcal{A} is a unial Banach algebra, which need not be commutative, and suppose that \mathcal{B} is a semisimple commutative Banach algebra. Then each 3-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is a 3 -homomorphism.

After that, An [2] extended Theorem 1.3 for all $n \in \mathbb{N}$, and obtained the next result.
Theorem 1.4. [2, Theorem 2.4] Let \mathcal{R} and \mathcal{R}^{\prime} be two rings, where \mathcal{R} has a unit e and $\operatorname{char}\left(\mathcal{R}^{\prime}\right)>n$. Then every n-Jordan homomorphism $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ is an n-homomorphism provided that every Jordan homomorphism $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ is a homomorphism.

Some significant results concerning characterization of n-Jordan homomorphisms on Banach algebras obtained by the first author in [11, 12] and [13].

In this paper we prove that if $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ is an n-Jordan homomorphism, where \mathcal{R} has a unit e and $\operatorname{char}\left(\mathcal{R}^{\prime}\right)>n$, then the map $a \longmapsto \varphi(e)^{n-2} \varphi(a)$ is a Jordan homomorphism. As a consequence we generalize Theorem 1.3 for all $n \in \mathbb{N}$, and obtain [2, Corollary 2.5].

2 Characterization of n-Jordan homomorphisms

The next example provided that we cannot assert that n-Jordan homomorphisms of rings are always n-homomorphisms.

Example 1. Let

$$
\mathcal{R}=\left\{\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]: \quad A, B \in M_{2}(\mathbb{C})\right\}
$$

Then under the usual matrix operations, \mathcal{R} is a unital and semisimple ring. Define additive map $\varphi: \mathcal{R} \longrightarrow \mathcal{R}$ by $\varphi\left(\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]\right)=\left[\begin{array}{cc}A & 0 \\ 0 & B^{T}\end{array}\right]$, where B^{T} is the transpose of matrix B. Then, for all $X \in \mathcal{R}$, we have $\varphi\left(X^{n}\right)=\varphi(X)^{n}$. Thus, φ is n-Jordan homomorphism, but φ is not n-homomorphism.

Throughout this paper \mathcal{R} denotes a unital ring with unit e. Recall that the Lie product of element $a, b \in \mathcal{R}$, is $[a, b]=a b-b a$, and it is easy to check that if $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ is a Jordan homomorphism, then $[\varphi(a), \varphi(e)]=0$, for all $a \in \mathcal{R}$.

Lemma 2.1. Let \mathcal{R} and \mathcal{R}^{\prime} be two rings, $\operatorname{char}\left(\mathcal{R}^{\prime}\right) \neq 2$ and $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ be a 3 -Jordan homomorphism. Then $[\varphi(a), \varphi(e)]=0$, for all $a \in \mathcal{R}$.

Proof. By assumption $\varphi\left(x^{3}\right)=\varphi(x)^{3}$, for all $x \in \mathcal{R}$. Replacing x by $y+e$, we get

$$
\begin{align*}
3 \varphi\left(y^{2}+y\right)= & \varphi(y)^{2} \varphi(e)+\varphi(e) \varphi(y)^{2}+\varphi(y) \varphi(e) \varphi(y) \\
& +\varphi(e)^{2} \varphi(y)+\varphi(y) \varphi(e)^{2}+\varphi(e) \varphi(y) \varphi(e) \tag{2.1}
\end{align*}
$$

Interchanging y by $-y$ in (2.1), gives

$$
\begin{align*}
3 \varphi\left(y^{2}-y\right)= & \varphi(y)^{2} \varphi(e)+\varphi(e) \varphi(y)^{2}+\varphi(y) \varphi(e) \varphi(y) \\
& -\varphi(e)^{2} \varphi(y)-\varphi(y) \varphi(e)^{2}-\varphi(e) \varphi(y) \varphi(e) \tag{2.2}
\end{align*}
$$

The equalities (2.1) and (2.2) imply that

$$
\begin{equation*}
3 \varphi\left(y^{2}\right)=\varphi(y)^{2} \varphi(e)+\varphi(e) \varphi(y)^{2}+\varphi(y) \varphi(e) \varphi(y) \tag{2.3}
\end{equation*}
$$

for all $y \in \mathcal{R}$. Replacing y by $a+e$ in (2.3), we get

$$
\begin{equation*}
3 \varphi(a)=\varphi(e)^{2} \varphi(a)+\varphi(a) \varphi(e)^{2}+\varphi(e) \varphi(a) \varphi(e) . \tag{2.4}
\end{equation*}
$$

Multiplying $\varphi(e)$ from the right in (2.4), we obtain

$$
\begin{equation*}
2 \varphi(a) \varphi(e)=\varphi(e)^{2} \varphi(a) \varphi(e)+\varphi(e) \varphi(a) \varphi(e)^{2} . \tag{2.5}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
2 \varphi(e) \varphi(a)=\varphi(e) \varphi(a) \varphi(e)^{2}+\varphi(e)^{2} \varphi(a) \varphi(e) \tag{2.6}
\end{equation*}
$$

It follows from (2.5) and (2.6) that $\varphi(a) \varphi(e)=\varphi(e) \varphi(a)$, for each $a \in \mathcal{R}$.

Theorem 2.1. Suppose that $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ is a 3-Jordan homomorphism. Then the map $\psi: \mathcal{R} \longrightarrow$ \mathcal{R}^{\prime} defined by $\psi(a)=\varphi(e) \varphi(a)$ is a Jordan homomorphism.

Proof. It follows from Lemma 2.1, that

$$
\psi\left(a^{3}\right)=\varphi(e) \varphi\left(a^{3}\right)=\varphi(e)^{3} \varphi(a)^{3}=(\varphi(e) \varphi(a))^{3}=\psi(a)^{3}
$$

and hence for all $a \in \mathcal{R}$,

$$
\begin{equation*}
\psi\left(a^{3}\right)=\psi(a)^{3} . \tag{2.7}
\end{equation*}
$$

Therefore ψ is a 3-Jordan homomorphism. Replacing a by $a+e$ in (2.7), we get

$$
\begin{equation*}
\psi\left(a^{2}+a\right)=\psi(a)^{2} \psi(e)+\psi(a) \psi(e)^{2} . \tag{2.8}
\end{equation*}
$$

From (2.8), we have

$$
\begin{aligned}
\psi\left(a^{2}+a\right) & =\psi(a)^{2} \psi(e)+\psi(a) \psi(e)^{2} \\
& =(\varphi(e) \varphi(a))^{2} \varphi(e)^{2}+\varphi(e) \varphi(a)\left(\varphi(e)^{2}\right)^{2} \\
& =\varphi(e)^{4} \varphi(a)^{2}+\varphi(e)^{5} \varphi(a) \\
& =\varphi(e)^{2} \varphi(a)^{2}+\varphi(e) \varphi(a) \\
& =\psi(a)^{2}+\psi(a)
\end{aligned}
$$

Thus, $\psi\left(a^{2}\right)=\psi(a)^{2}$, for all $a \in \mathcal{R}$ and so ψ is a Jordan homomorphism.
Next we generalize Theorem 2.1 for all $n \in \mathbb{N}$. For the proof we need the following two useful lemma.

Lemma 2.2. Let $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ be an n-Jordan homomorphism between rings. Then

$$
\varphi(e)^{(n-1)(n-2)} \varphi(e)^{2 n-4}=\left(\varphi(e)^{n-2}\right)^{2}
$$

Proof. By assumption $\varphi(e)=\varphi(e)^{n}$, hence we get

$$
\begin{aligned}
\varphi(e)^{(n-1)(n-2)} \varphi(e)^{2 n-4} & =\left(\varphi(e)^{(n-2)}\right)^{(n-1)}\left(\varphi(e)^{n-2}\right)^{2} \\
& =\left(\varphi(e)^{(n-2)}\right)^{(n+1)} \\
& =\left(\varphi(e)^{(n-2)}\right)^{n} \varphi(e)^{(n-2)} \\
& =\left(\varphi(e)^{n}\right)^{(n-2)} \varphi(e)^{(n-2)} \\
& =\varphi(e)^{(n-2)} \varphi(e)^{(n-2)} \\
& =\left(\varphi(e)^{n-2}\right)^{2},
\end{aligned}
$$

as claimed.

Lemma 2.3. Suppose that \mathcal{R} and \mathcal{R}^{\prime} are two rings, $\operatorname{char}\left(\mathcal{R}^{\prime}\right)>n$ and let $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ be an n-Jordan homomorphism. Then $\varphi(e)$ commute with $\varphi(a)$, for all $a \in \mathcal{R}$.

Proof. For $a, b \in \mathcal{R}$, define $f: \mathcal{R} \times \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ by

$$
f(a, b)=\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}\left(\varphi\left[(a+(n-1-k) b)^{n}\right]-[\varphi(a)+(n-1-k) \varphi(b)]^{n}\right) .
$$

Then for all $a, b \in \mathcal{R}, f(a, b)=0$. In particular, $f(a, e)=0$. Using $\varphi(e)=\varphi(e)^{n}$, we get

$$
\begin{equation*}
n!\varphi(a)=(n-1)!\left(\varphi(a) \varphi(e)^{n-1}+\varphi(e) \varphi(a) \varphi(e)^{n-2}+\ldots+\varphi(e)^{n-1} \varphi(a)\right) \tag{2.9}
\end{equation*}
$$

and since the characteristic of \mathcal{R}^{\prime} exceeds n, this simplifies to

$$
\begin{equation*}
n \varphi(a)=\left(\varphi(a) \varphi(e)^{n-1}+\varphi(e) \varphi(a) \varphi(e)^{n-2}+\ldots+\varphi(e)^{n-1} \varphi(a)\right) . \tag{2.10}
\end{equation*}
$$

Multiplying $\varphi(e)$ from the right in (2.10), we obtain

$$
\begin{equation*}
(n-1) \varphi(a) \varphi(e)=\varphi(e) \varphi(a) \varphi(e)^{n-1}+\ldots+\varphi(e)^{n-1} \varphi(a) \varphi(e) \tag{2.11}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
(n-1) \varphi(e) \varphi(a)=\varphi(e) \varphi(a) \varphi(e)^{n-1}+\ldots+\varphi(e)^{n-1} \varphi(a) \varphi(e) \tag{2.12}
\end{equation*}
$$

The equalities (2.11) and (2.12) lead to $(n-1) \varphi(a) \varphi(e)=(n-1) \varphi(e) \varphi(a)$. As $\operatorname{char}\left(\mathcal{R}^{\prime}\right)>n$, this forces $[\varphi(a), \varphi(e)]=0$, for each $a \in \mathcal{R}$.

Our main theorem is the following.
Theorem 2.2. Let $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ be an n-Jordan homomorphism and let char $\left(\mathcal{R}^{\prime}\right)>n$. Then the тар $\psi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ defined by $\psi(a)=\varphi(e)^{n-2} \varphi(a)$ is a Jordan homomorphism.

Proof. Let $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ be an n-Jordan homomorphism. From Lemma 2.3, for all $a \in \mathcal{R}$, we have

$$
\psi\left(a^{n}\right)=\varphi(e)^{n-2} \varphi\left(a^{n}\right)=\varphi(e)^{n-2} \varphi(a)^{n}=\left(\varphi(e)^{n}\right)^{n-2} \varphi(a)^{n}=\left(\varphi(e)^{n-2} \varphi(a)\right)^{n}=\psi(a)^{n},
$$

and hence ψ is an n-Jordan homomorphism. Replacing a by $a+m e$, where m is an integer with $1 \leqslant m \leqslant n$, we obtain

$$
\begin{equation*}
\psi\left((a+m e)^{n}\right)=\psi(a+m e)^{n}, \tag{2.13}
\end{equation*}
$$

for all $a \in \mathcal{R}$. It follows from the equality (2.13) that

$$
\begin{equation*}
\sum_{i=1}^{n-1} m^{n-i}\binom{n}{i}\left[\psi\left(a^{i}\right)-\psi(e)^{n-i} \psi(a)^{i}\right]=0, \quad(1 \leqslant m \leqslant n) \tag{2.14}
\end{equation*}
$$

for all $a \in \mathcal{R}$ where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$. We can rewrite the equalities in (2.14) as follows

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{2.15}\\
2^{n-1} & 2^{n-2} & \cdots & 2 \\
3^{n-1} & 3^{n-2} & \cdots & 3 \\
\cdots & \cdots & \cdots & \cdots \\
n^{n-1} & n^{n-1} & \cdots & n
\end{array}\right]\left[\begin{array}{c}
\Gamma_{1}(a) \\
\Gamma_{2}(a) \\
\Gamma_{3}(a) \\
\cdots \\
\Gamma_{n}(a)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cdots \\
0
\end{array}\right]
$$

where

$$
\Gamma_{i}(a)=\binom{n}{i}\left[\psi\left(a^{i}\right)-\psi(e)^{n-i} \psi(a)^{i}\right]
$$

for all $a \in \mathcal{R}$ and for each $1 \leqslant i \leqslant n$. It is shown in [3, Lemma 2.1] that the above square matrix is invertible. This implies that $\Gamma_{i}(a)=0$ for every $1 \leqslant i \leqslant n$ and all $a \in \mathcal{R}$. In particular, $\Gamma_{2}(a)=0$. Hence for all $a \in \mathcal{R}$,

$$
\begin{equation*}
\psi\left(a^{2}\right)=\psi(e)^{n-2} \psi(a)^{2} . \tag{2.16}
\end{equation*}
$$

It follows from definition of $\psi,(2.16)$, and Lemma 2.2 that

$$
\begin{aligned}
\psi\left(a^{2}\right) & =\psi(e)^{n-2} \psi(a)^{2} \\
& =\left(\varphi(e)^{n-1}\right)^{n-2}\left(\varphi(e)^{n-2} \varphi(a)\right)^{2} \\
& =\varphi(e)^{(n-1)(n-2)} \varphi(e)^{2 n-4} \varphi(a)^{2} \\
& =\left(\varphi(e)^{n-2} \varphi(a)\right)^{2} \\
& =\psi(a)^{2} .
\end{aligned}
$$

Consequently, ψ is a Jordan homomorphism. This finishes the proof.
Corollary 2.3. [2, Corollary 2.5] Let \mathcal{A} be unital Banach algebra and \mathcal{B} be a semisimple commutative Banach algebra. Then, every n-Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is an n-homomorphism.

Proof. By Theorem 2.2 the map $\psi: \mathcal{A} \longrightarrow \mathcal{B}$ defined by $\psi(a)=\varphi(e)^{n-2} \varphi(a)$ is a Jordan homomorphism. Hence by Theorem $1.2, \psi$ is a homomorphism. Therefore

$$
\varphi(e)^{n-2} \varphi(a b)=\psi(a b)=\psi(a) \psi(b)=\varphi(e)^{2(n-2)} \varphi(a) \varphi(b)
$$

for all $a, b \in \mathcal{A}$. Hence

$$
\varphi(e)^{n-2}\left(\varphi(a b)-\varphi(e)^{n-2} \varphi(a) \varphi(b)\right)=0
$$

Since $\varphi(e)^{n-2} \neq 0$ for every $n \in \mathbb{N}$, and \mathcal{B} is semisimple, we have

$$
\begin{equation*}
\varphi(a b)=\varphi(e)^{n-2} \varphi(a) \varphi(b) \tag{2.17}
\end{equation*}
$$

Replacing b by e in (2.17), we get $\varphi(a)=\varphi(e)^{n-1} \varphi(a)$, for all $a, \in \mathcal{A}$. Using (2.17) to obtain

$$
\begin{aligned}
\varphi\left(a_{1} a_{2} \ldots a_{n}\right) & =\left(\varphi(e)^{n-2}\right)^{n-1} \varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \ldots \varphi\left(a_{n}\right) \\
& =\left(\varphi(e)^{n-1}\right)^{n-2} \varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \ldots \varphi\left(a_{n}\right) \\
& =\left(\varphi(e)^{n-1} \varphi\left(a_{1}\right)\right) \ldots\left(\varphi(e)^{n-1} \varphi\left(a_{n-2}\right)\right) \varphi\left(a_{n-1}\right) \varphi\left(a_{n}\right) \\
& =\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \ldots \varphi\left(a_{n}\right)
\end{aligned}
$$

Thus, φ is an n-homomorphism.
Corollary 2.4. [12, Corollary 2.8] A unital linear map $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ between Banach algebras is a Jordan homomorphism if and only if it is an n-Jordan homomorphism.

Corollary 2.5. Let \mathcal{R} and \mathcal{R}^{\prime} be two rings, where \mathcal{R}^{\prime} is domain. If $\varphi(e)$ is an idempotent in \mathcal{R}^{\prime}, then every n-Jordan homomorphism $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ is a Jordan homomorphism.

Proof. By Theorem 2.2 the map $\psi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ defined by $\psi(a)=\varphi(e)^{n-2} \varphi(a)$ is a Jordan homomorphism. Therefore

$$
\varphi(e)^{n-2} \varphi\left(a^{2}\right)=\psi\left(a^{2}\right)=\psi(a)^{2}=\varphi(e)^{2(n-2)} \varphi(a)^{2}
$$

for all $a \in \mathcal{R}$. Since $\varphi(e)$ is an idempotent, we conclude that $\varphi(e)\left(\varphi\left(a^{2}\right)-\varphi(a)^{2}\right)=0$. As $\varphi(e) \neq 0$ and \mathcal{R}^{\prime} is domain, we get $\varphi\left(a^{2}\right)=\varphi(a)^{2}$, for all $a \in \mathcal{R}$.

Acknowledgments

The authors would like to express his sincere thanks to the referees for this paper.

References

[1] G. Ancochea, Le thtorime de von Staudt en geometrie projective quaiernionienne, J. Reine Angew. Math., 184 (1942), 192-198.
[2] G. An, Characterization of n-Jordan homomorphism, Linear Multi. Algebra, 66(4), (2018), 671-680.
[3] A. Bodaghi and H. İnceboz, n-Jordan homomorphisms on commutative algebras, Acta. Math. Univ. Comenianae., 87(1), (2018), 141-146 .
[4] J. Brac̆ič and M. S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malaysian Math. Sci. Soc., 30(2), (2007), 195-200.
[5] Sh. Hejazian, M. Mirzavaziri and M. S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc., 31(1), (2005), 13-23.
[6] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc., 81(1), (1956), 331-341.
[7] N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc., 69(3), (1950), 479-502.
[8] I. Kaplansky, Semi-automorphisms of rings, Duke Math. J. vol. 14 (1947), 521-527.
[9] T. Miura, S. E. Takahasi and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Ineq. Appl., 2005(4), (2005), 435-441.
[10] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math., 30 (1968), 83-85.
[11] A. Zivari-Kazempour, A characterization of 3-Jordan homomorphism on Banach algebras, Bull. Aust. Math. Soc., 93(2), (2016), 301-306.
[12] A. Zivari-Kazempour, Automatic continuity ofn-Jordan homomorphisms on Banach algebras, Commun. Korean Math. Soc., 33(1), (2018), 165-170.
[13] A. Zivari-Kazempour, A characterization of Jordan and 5-Jordan homomorphisms between Banach algebras, Asian. Eur. J. Math., 11(2), (2018), 1-10.

Abbas Zivari-Kazempour Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran.

E-mail: zivari@abru.ac.ir, zivari6526@gmail.com

Mohammad Valaei Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran.

E-mail: Mohammad.valaei@abru.ac.ir

