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Existence and Stability of the Solution to a Coupled System of
Fractional-order Differential with a p-Laplacian Operator

under Boundary Conditions

Wadhah Al-Sadi

Abstract. This paper is devoted to studying the uniqueness and existence of the solution to
a nonlinear coupled system of (FODEs) with p-Laplacian operator under integral boundary
conditions (IBCs). Our problem is based on Caputo fractional derivative of orders o, A, where
k—1<o0,X <k, k> 3. For these aims, the nonlinear coupled system will be converted
into an equivalent integral equations system by the help of Green function. After that, we use
Leray-Schauder’s and topological degree theorems to prove the existence and uniqueness of
the solution. Further, we study certain conditions for the Hyers-Ulam stability of the solution
to the suggested problem. We give a suitable and illustrative example as an application of the
results.

1 Introduction

Recently, fractional calculus has proved to be more important in applied science than in the
integer-order differential equations to obtain better explanations and better results. Therefore,
fractional calculus is the generalization of classical calculus. For information about applications
of fractional equations, we suggest to the readers see these papers ([1, 2, 3,4, 5,6, 7, 8,9, 10, 53]).
Fractional calculus has got the attention of researchers in the various applied sciences due to the
important applications, high profile accuracy, and usability in the different fields like image pro-
cessing, fractals theory, control system, electromagnetic theorem, control theory ecology, met-
allurgy, plasma physics, aerodynamics, economics, and biology. For further details, see these
papers ([11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]). We are interested in a study a nonlinear
coupled system of fractional-order because this type is very important in various models such as
blood flow phenomena, Chemical Kinetics, Irregular Heartbeats, chemical reaction design, etc
([24, 25, 26, 27, 28, 29, 30, 31, 32]). At first, we introduce some important and recent contribu-
tions to researchers about study different aspects of existence and uniqueness of solution (EUS)

of a nonlinear coupled system of FODEs. Shah, K., Kumam [33] used the Perov-type fixed point
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theory to study existence of a solution for a nonlinear coupled system of FODEs under integral
boundary conditions (IBCs).

D (s) + b(s,¢(s), x(s)) = 0, s€(0,1) k—1<A<Kk,
DQ(s) +n(s,Q(s),((s)) =0, s€(0,1) k—1<a<k,
() =¢(0)=¢"(0) = . =D =0, ((1)=p 5 ¢(s)ds
Q) =QO)=Q"0)=-.=Q" =0,  Q)=r¢f; Qs)ds
where s € [0,1],k > 3,p,0 € (0,2),= ¢,n : [0,1] x [0,+00] x [0,+00] — [0,+00] are

continuous functions, D* and D* are Caputo derivatives. Cheng et al.[34] studied the BVPs for
a high order of FDEs with p-Laplacian operator at resonance by using degree theorem given by

D ¢, (D71 (s) + Q1 (s, y(s)) = 0,

D ¢, (D2y(s) + Q2(s,z(s)) = 0,

Do1x(0) = D7'x(1) = D?2y(0) = D?2y(1) = 0,
where D7 and D* are Caputo derivatives, where i=1,2, 5 € [0,1],1—1 < 01,00 < 1,0 < A < 1,
Q1,Q2 : [0,1] x R — R are continuous functions. By means topological degree theory, Hu and

Zhang [35] showed existence solutions of a nonlinear coupled system of FDEs with infinite-point
boundary conditions as follow

D/\lqbp(D”lQ(s)) = x(s,w(s), D721, D72~ Ly(s), ... Daz_("_l)w(s)), s€(0,1),
(

D¢, (D72w(s)) = Y (s,Q(s), D771, DT171Q(s), ..., DT~ (" DQ(s)), s€(0,1),

A0) =..= Q0 D(0) =DQt) =0,  Q0) = 35, i),

W(0) = ... = (0) = Dw(t) =0,  w(0) = X2, diw(G),
where D, D% for i = 1,2 are Caputo derivatives, 0 < A, Ao < 1,n —1 < 01,09 < 1,0 <
M1<M2< < << L0< G < Q< <G < < LY ] < 00, YT <
00, ) . 1 I Z d; = 1, x,Y are continuous functlons J. Tariboon, at al.[36] used the

Riemann-Liouville to study EUS for a nonlinear coupled system of FDEs with Hadamard frac-
tional conditions given by

Du(s) = &(s,w(s),v(s)), s € [0, M], 1<o<2,
D w(s) = n(s,v(s),w(s)), s € [0, M], l1<o<2,
(0 )= v(M) = 31 i ISw(ei),
w(0) = w(M) =370 651" a(v;),

where D7, D* are the Riemann-Liouville derivative of orders o, A, H' G JH! Y are the non-local
Hadamard fractional of orders (*,97 > 0,¢;,v; € (0,M),&n : [0,M] x R*> — R and
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0;,0; € R,i = 1,2,...,n,7 = 1,2,...,m are real constants. Using classical fixed point the-
ory one needs strong conditions to establish conditions for EUS of solutions to fractional order
differential equations and therefore restrict the applicability to certain classes of FODEs and their
coupled systems. Various degree theories play excellent roles for the existence of solutions to
FODEs and their most systems. Brouwer and Leray-Schauder degree theories were established
to deal with the existence theorem of FODEs. In 1979 introduced Mawhin [37] an important
degree theory which known as topological degree theory and later on extended by Isaia [38], has
been used to establish the existence theorem for solutions to nonlinear fractional differential and
integral equations. The mentioned method is called prior-estimate method which needs no com-
pactness of the operator and relaxes much the condition for existence and uniqueness of solutions
to fractional differential and integral equations. In recent years, the mentioned degree theory has
been applied to investigate certain classes of FODEs with Integral boundary conditions, for fur-
ther ([39],[40],[41]). Inspired by the aforesaid works, in this literature, we use the topological
degree theory to study EUS of a nonlinear coupled system of FODEs with IBCs and p-Laplacian
operator and also, we study the Hyers-Ulam stability technique to the suggested problem given
by

(DM (¢ (D7 u(Q))) + Qi v(Q) =0, D (¢(*D721(C))) + Qa(C, 1(<)) = 0,

(DT () D=0 =0,  (¢p(D72(())Vemo =0  for i=0,3,4,...k—1,
(p(“D7 u(()))l¢=1 = 0, (0p(“D7 () le=1 = T 2Q1 (¢, v(¢)) =1,
(0p(°D72v(()))"|¢=1 = 0, (¢p(“D72v(())) [c=1 = T2 Qa((, p())|¢=1,

(u(o))ﬂ =0 w(O)D =0 for j=2,34,.. k-1,
1) = (1) = =Z7 =Yg ( [y HM(C,0) Q1 (9, v(¥))dV)
) = —T72 (g ([, H2(C,9)Q2(9, u(0))dV)

/

#(
V(1) = v(1

)

)dv))
)dd)),

(1.1)
where k — 1 < \;,0; < k, Q1, Q2 € L[0, 1], and ¢, () = |9]?P~2)9 is the p-Laplacian operator
and ¢, 1 = ¢, such that 1/p + 1/q = 1 ,°D* and “D° where i = 1,2 for Caputo deriva-
tives. We prove necessary conditions for EUS and HU-stability of a nonlinear coupled system
(1.1) with the help of topological degree theorem and nonlinear functional analysis greatly de-
veloped by Deimling [42]. Our problem is more general and complicated than previous studies

before and aforementioned.

2 Preliminaries

Here we recall some fundamental and necessary definitions and theories from fractional calculus

and functional analysis which have a role in the results throughout this paper.



40 W. Al-Sadi

Definition 2.1 For Q(¢) : (0,400) — R, the fractional integral Riemann-Liouville of order
o > 0, is defined by

170(t) - F(la) /0 (t = n)"1 Q) di,

where that integral pointwise on the right side on (0, 4+00).
Definition 2.2 for Q(t) : (0,400) — R, the fractional Caputo derivative of order ¢ > 0 is

defined by

1 t
“DCO(t) = t— k—o—1 (k) d
(1) F(k:—a)/o( n) Q™ (n)dn,
provided that the integral pointwise on the right side on (0, o), Q(t) is continuous function and

—-1<o<k.

Lemma 2.1. Leto > 0 and ¥ € C(0,1) N LY(0,1),then
DeI(t) = Q(t), is given by

I(t) = Q(t) + do + dit + dot® + ... + dpp_1t"™ L,

where m is integer and for somed; € R,j5 =0,1,2,....m — 1

such thatm > o.

Lemma 2.2. Leto € (m — 1,m], Q € AC™~1) Then
T°D°Q(t) = Q(t) + do + dit + dot® + ... + dpp_1t™ L.
Fordj € R for i=0,1,2,....m—1.

let § = C([0, 1], R) be the space of all continuous functions ¥ : [0, 1] — R endowed with a
norm supycio,1)1|9(t)| : ¥ € C[0, 1]} which is a Banach space. Then the product space denoted
by w* = F1 x F2 under the norms ||(J,w)(t)|| = ||[I(¢)]| + ||w(t)|| is also a Banach space which
will need throughout this manuscript. For the topological degree theorem and functional analysis,
we recall some definitions, from the available literature papers ([43, 44, 45, 46, 47, 48, 49, 50, 51,
52]).

Definition 2.3 Let the class of all bounded sets of P(§§) be denoted by {.Then the mapping L :
¢ — (0, 400) for Kuratowski measure of non-compactness is defined as

L(u) =1inf{a > 0 : uis the finite cover for sets of diameter< a},

where u € (.

Proposition 2.1 The following are the characteristics of themeasure L :

(¢1) For relative compact u, the Kuratowski measure £(u) = 0;
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(19) For seminorm £, £(Ju) = |J|L(u), J € R, and L(uy + ug) < L(u1) + L(us);
(t3) w1 C up yields £(u1); £(ur Uug) = sup{L(uy), L(us)}:

(1a) Llconv u)=L(u);

(t5) L(u) = L(uw).

Definition 2.4 Suppose that mapping ¢ : # — F is a continuous and bounded such that
0 C §. Then v is an L-Lipschitz, where n > 0 such that

L(¢(u) < nk(u) Vbounded u C 6.

Then ) is a strict £-contraction under the condition n < 1.

Definition 2.5 The function continuous v is £-condensing if

L(¢(u) < L(u), for all bounded u C 6 such that £(u) > 0.

Therefore £(¢(u)) > k(u) yields L(u) =

Further we have ¢ : § — § is Lipschitz for > 0, such that

|(w) — Y(@)]|< n|lw — @], for all w,w € 6. The condition 77 < 1, yields that 1 is strict con-
traction.

Proposition 2.2 The mapping 1 is £-Lipschitz with constant 7 = 0 if and only if ) : § — F is
said to be compact.

Proposition 2.3 The operator 1 is £-Lipschitz for some constant 7 if and only if ¢ :  — F is
Lipschitz with constant 7.

Theorem 2.1. Let ) : § — § is a L-contraction and
E ={v € § : thereexist 0 < pu < 1 such that v = p(v)}.

if EC vp(0), is bounded in § there exists h > 0 and E C u,(0) with degree

deg(I — prp,v(0),0) = 1, for very p € [0, 1].
Then, 1) has at least one fixed point.

Theorem 2.2. 3 Let ¢ : w* N (F2\T1) — w@*; we say 1 is compact operator iff it is uni-
formly bounded and is equitcontiuous. Whereas §1, 82 are two bounded subsets of § such that
0€F1,82 C S, andry: ' N (F2\F1) — @ is an operator.

Lemma 2.3. Let ¢, be p-Laplacian. Then we have
(&) If1 <p<2,01,02>0and|o1], 02| > p > 0,then

6p(01) — dp(02)| < (p— 1)p* |01 — 0o
(&) Ifp > 2 and | 01|, |02| < p*,then

|ép(01) — dp(02)| < (p— 1)p*™ %01 — oal.
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3 Existence the solution

Theorem 3.1. Let the function Q € C|0, 1] be an integrable satisfying (1.1) for A1, 01 € (3, k| and
integer k > 4.Then the solution of

(DY (6,(“D7 1(€))) + Qu1(¢, () =0,

(¢p(cDUl ( )))(Z)|C—0 = O fOT 1= 07 3747 X k — 1>
(%(CD"1 (8 ))) =1 =0, (6D () Ie=1 = TN PG v())le=1, B
(11(0)0) = for =2,3,4,....k—1,

W) =0, p(1) = =TI (gy( [y HM(C0)Qu(0, v(9))dv),

is given by integral equation

1 1
u(¢) = /0 G (¢ 9) b4 /0 1 (9,7) Q1 (n, (1)) dn) . (32)

Where G71(¢, 1), H M (9, n) are Green functions defined by

((—o)r—t  (A-9)ort L (1-9)712
G7(¢,0) = { e STeen 9=vsest (3.3)
’ 1—9)1— 1—9)o1— .
- T(o1) —¢ L(o1—1) * 0<¢=d=<L,
_(C_ﬁ)/\l 1 1 19 1—2 1 19)>\1 3
HM ) = g e A;)f 3+C g OSUSCEL gy
’ 1—9) M~ (1 1- :
CTou=D +<22F>\1 —3) 0<¢<v<,
Proof. By using Lemma 2.2 and applying integral Z*! on (3.1), we get from the problem (3.1) as
follows
(6p(“D7 1(Q))) = ~TM(Qu(¢,v(O))) + a0+ ar¢ + ax® + o+ ar—a P (3.5)
For the coefficients i = 0, 3,4, ..., k — 1, by using the conditions (¢,(°D7* 11(¢)))?|¢—¢ = 0 in
y & p ¢
(3.5), we obtain ag = a3 = a4 = ... = ap_1 = 0, we get

(6p(“D7 1(C))) = =T (Qu(¢, () + axC + anC”. (3.6)
Applying the condition (¢, (“D7* 11(()))"|¢=1 = 0 in the equation (3.6), we get
A IS (o) 67)

By using the condition (¢, (“D* (€)' [c=1 = Z*7201(¢, v(¢))|¢=1 in the equation (3.6), we
obtain

a; = I Q1(¢,v(C))|c=1. (3.8)
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Putting the values a;, ag in (3.6), we get

2
(8p(*D7 ($))) = =T (Qu (¢, #(¢)) + TN HQuC () le=1 + %I“%Ql(c, v(O))le=1
_ ¢ (4_19))\171 )\1 2 ,
= [ e+ [ G S o
2 A1—3
+C2/0 ((M%Ql(ﬁ,y(ﬁ))dﬁ

(6D u(C))) = / H 01 (9 w(9))d).

Where H*1 (¢, 1) is a Green function given in(3.4). From(3.9), we further have 7
D)) = [ 0w G.10
Applying ¢, 1 = ¢, on sides of (3.10), we get
(D) =6 [ WO Q0w G

Applying the fractional integral Z°' and using Lemma 2.2 again on both sides of (3.11), we obtain

1
1(¢) = I (¢q /0 HM Q1 (0, v(9)))dD + bo + b1C + bal? + ... + by CF7L (3.12)

For the coefficients j = 2,3,4, ...,k — 1, by the conditions ((¢))¥)|¢=¢ in (3.12), then by =
bg =bs = ... = br_1 = 0, we get

1
H(Q) =70y [ HN Q0. 0(9)))d0 + by + b (.13)
0
Applying the condition (x(1))" = 0 in the equation (3.13), we have
1
b= 1714, / HM Q4 (9, v(9))d9) 1. (3.14)
0

By using the condition y(1) = —Z71"1(g, fol HM Q1 (9, v(¥9))dd)|¢c=1 in the equation (3.13),

we have

1
bo = —I7 (¢, / HM Q1 (0, v(0))dD)|¢=1. (3.15)
0
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Putting the values by, by in (3.13), we get
1 1
u(Q) = T (&, /0 H Q, (9, 1(9))d) — I7 (4, /0 HM Q1 (9, 1(9))d9) |1
1
g, / HM Q, (9, 1(9))d0) 1.
0

— ¢ (C — 19)0171 ! 1
_ /0 i / HN (0,1) Q1 (1, v(n)) )

) Q- 19)01_1 (3.16)
_ / i)¢ N / HY (9, 7) Q1 (1, v(n))dn)d
01 -2
¢ [ G e [ 0 mi v
_ / 7 (¢, D)y / (9, 1) Qu (7, () iy .
0 0
]

Where G71(¢,99), H ' (9, ) are Green functions defined by (3.3),(3.4).
According to Theory 3.1, then system (1.1) is equivalent to the following a nonlinear coupled

system of Hammerstein-type integral equations:

1 1
w(Q) = /O G (¢, )by /O HY (9, 1) Qu (1, () iy . (3.17)

1 1
V() = / G (¢, 0) by / H2 (9, 1) Qa1 (1)) . (3.18)

Where G2(¢,9), H?2 (19, 1) are the following Green functions:

(=972t (1-0)72"! (1-9)72—2
Go2(¢,09) = [(o2) =~ T(o2) ¢ T(o2—1) 0<9 <<, (3.19)
’ (1—9)o2—1 (1—9)o2—2 .
~ (o) —C 021 ; 0<¢<V<I,
—(¢=0)*2~! (1—9)’2—2 | (2 (1-g)r2—3
H2(¢,09) = o)~ T T T2 Tow-2 0<9<(¢<, (3.20)
C? - (1_,‘9)>\272 <2 (1_,[9)>\273 < < 79 <1 .
TOe—1) T 2 TOe—2) ’ 0<(¢<v<T,
Define M} : § — § for (i = 1,2) by
1 1
(€)= /0 g“((ﬁ)%(/o HM (9, 1) Q1 (n, v(n))dn)dd. (3.21)

1 1
Mw(C) = /0 G (¢, 0) by /O H2(9, 1) Qa1 (1)) . (3.22)
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by Theorem 3.1, then the solution of the Hammerstein-type integral equations (3.17),(3.18) is

equivalent to the fixed point, say (u, v/),0f the operator equation

(b, v) = M*(p,v) = (M (), M3(v))(C)- (3.23)

For M* = (M}, M3).

To proceed further, we need some the propositions:

(A1) With positive constant value a, b, 73 , 75, and e1, 2 € [0, 1], the functions Q1, Q2 satisfy
the growth conditions

1Q1(C )] < dplall2ll™ + T, ),

1Qa2(¢, )| < dp(blIVI[** + Tg,),
(Ag2) There exist real valued constants vo, , vo,, forall y, v, {,w € §,

|Q1(C7y) - QI(C>£)| < ’7Q1|V_£|>

1Q2(¢, 1) — Q2(Cw)| < g, i — wl,

For simplicity, we define these symbols:

( 2 n 1 14+ XM n 1
(o +1)  T(o)" T'(Ar+1)  20(A —1)
2 1 14 X 1

( + +
F(UQ + 1) F(Jg) F()\Q + 1) 2F(/\2 — 1)

Vi =

Vi =

Theorem 3.2. Under the supposition (A1), The operator M* : w* — w™ is continuous and satisfies

the growth condition given by:
M (k) < 6l (s, )7 + e (3.24)

where
o= (Vl + Vz)('Tl* + 7-2*> o= (CL -+ b)(V1 + VQ)

foreach (p,v) € Q. C wx.

Proof. Assume a bounded set 2, = {(u,v) € w : ||u, v|| < r} with sequence (py,, vy,) converg-
ing to (i, v) in Q,.. To show that ||M*(pp, vn) — M*(u,v)|| — 0asn — 400, let us consider
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1 1
Migin(C) — MEu(O)] = | /0 G (¢, 0)by /O HA (9, 1) Qu (1, v () iy
1 1
- / G (¢, D)y / HX (9, 1) Qa (7, (1)) o)
0 0
B (0, ) 01 1, v )
S/O\Q (C,ﬁ)l\cﬁq[/o HM(9,m)Q1(n, vn(n))dn (3.25)
1
~ / H (9, 1) Qu (1, ()i 4D

<(g—1)p /|g"1¢z9 /rmlﬂn

x| Q1(n, vn(n)) — Qu(n, v(n))dn]|d?,

and

1 1
Min(C) — ME(Q)] = | /0 G (¢, 0) by /0 H2(0, 1) Qa1 in (1)) )9
1 1
= [ @ el [ 100 Qun utn)dn)dol
0 0
B2 (0, 1) Qa1 o ()
s/ow (c,ﬁ>|¢q[/0 H2(9,1) Q2 (m, ()l 26
1
_ &, / H2(9, 1) Qa(n, ()] 9

<(g—1p /IQUZ’Cﬁ /|HA21977

From (3.25) and (3.26), we have

M (s v2)(€) — M (1) (9)] < (g — Dp / 97 (¢, 0)] / HM (5,)]
X [Q1(n, vn(n)) — Q1(n, v(n))dn]|dY
—(g-1)p /\g@w /\H”(ﬁ,n)\
x |Qa(n, tn(n)) — Qa2(n, u(n))dn]|dy.

(3.27)

From the continuity of the functions Q;, Q2 and (3.27), we get | M* (pup,, vy,) (t) =M™ (1, ) (C)| —
0 as n — +oo. This that implies M* is a continuous. Further, By using (3.21) and (3.22) , we
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obtain as follows

1 1
M) = | /O G (¢, 9) b /0 HY (0, 7)1 (1, () ) )
1 1 N
< /0 167 (C, 0)] /0 HY (9, 7)| Q1 (1, () )9

1 1
< /0 1671 (1, 9) |y /0 H 9, m)dplallv |7t + T, )dn)do
2 1 14+ XM 1
= (F<O'1 + 1) + F(O’l))(r<)\1 + 1) + 2F()\1 — 1)
% (alv] +T3,)
< Vilallr| +73,),

!

and

1 1
M3(O)] = | / G (¢, 9) b / H2(5,17) Qa (1, (1)) )|
01 01
< [ 17 olen( [ #0.0)] el ) dn)ao
0 0

1 1
< /0 1672 (1, 9) [ /0 H2 (9, m) b (Bl + TG, dm)dd
2 1 1+ X 1
<ot D ")) et D) T 0w - 1)
< (bllull® +78,)
< Vo (bl ]2 + 7'9*2).

)

From (3.28) and (3.29), we obtain

M (p,v)(€) < Vila|v[|t +Tg,) + Vo bllpl™ +7g,)
< (a+b)(Vi+Vo)(lW™ + ™) + (Vi + V2)(T1" +T5)
= af ()| + 0.

This completes the proof.

(3.28)

(3.29)

(3.30)

O]

Theorem 3.3. Under supposition that (A1) hold.Then the operator M* : w* — w™ is compact

and L-Lipschitz with constant zero.

Proof. By using Theorem 3.2, we conclude that M* : w — w is bounded. Next, by supposition
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(A1), Lemma 2.3,and equations (3.17),(3.18), for any (1, (2 € [0, 1], we get
1 1
M) = Min(G)| = | / G (1, 9) / HA (9, 7)1 (n, v(n))diy)dd
0 0
1 1
- /0 G (Ca, 9) b /O H (9, 1) Qs (1, (1)) ) )|

1 1
< / 1G71(C1,9) — G (Co 9) | / H(O, 0| Q1 (1, v(n)|d) do
0 0

-l -Gl 1+ L
- F(O’l + 1) F(0'1> F()\l -+ 1) 2F(/\1 — 1)

x (aly[** +73,),

(3.31)

and

1 1

M5O — Ma(G)| = | /0 G72 (1, D)y /0 H2 (0, 0) Qa7 ()l 9
1 1

- / G (o, 0) by /0 2 (9, 7) Qa1 (1)l )

1
/ 1G72(1, 9) — G7*(Ca, 9) | /0 H2(9,7)| Qa(n, () |d) o

— (2 16 =Gl 14+ X L e
- F(O‘Q + 1) F(O’Q) F()\Q + 1) 21_‘()\2 - 1)

x (blul? + T3,)-

(3.32)
With the help of (3.31), (3.32), we have

. x G =G G =Gl 1+M 1 _
|M (/’L7V)(C1) - M (M?V)(CQ)‘ < F1(0'1 +21) F(O’l) P()\1+1) 2F(>\1 _1))(1 !

x (aly|t +73,)

672 =671 16— Gl 1+ X 1 ot
(o2 +1) = T(o2) T(A24+1) 2I(A2—1)

x (blul? +T3,)-

(3.33)

As (1 — (o, the right hand side of (3.33) approaches zero. Thus, the operator M* = (M7, M)
is an equicontinuous on S. By theory 2.2 implies that M*(S) is compact. Subsequently, S is
L-Lipschitz with constant zero. O

Theorem 3.4. Under the suppositions (A1) and (Az) hold and o < 1. Then the nonlinear cou-
pled system (1.1) of FODEs has at least one solution with condition that the set of the solutions o is

bounded in w™.
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Proof. For EUS of the nonlinear coupled system of FODEs (1.1), with the help of Theory 2.1. Let
us consider that p = {(p, V) € w”* : there exist Y € [0, 1], where (p, ) = Tx(p,v)} , To proof
that  is bounded we assume that (u, v) € p, with that(u,v) = N — oo, from theorem 3.2, we

get

1) = 110X 0) | < )| < all () + (3.34)

as ||(z,y)|| = N then (3.34) implies that

(s, )| < al[(u, )]+ 6

(e, v) € 4
1<«
I [ )]
1<ai+£—>0 as N — oo
=N TN ) :

This is a contradiction. In the end, ||(4, v)|| < oo which means that g is bounded, by theory 2.1,
then the p has at least one the solution to our problem (1.1). Thus, the set of the solutions g of the

nonlinear coupled system is bounded. O

Theorem 3.5. Let suppositions (A1) and (Ag) hold. Then the nonlinear coupled system (1.1) has a

unique solution if and only if k* < 1, such that

B ) 1 14+ X 1
= (g —1)p?2
k1= (q—1)py (F(o—l 1) + (o)) ' T(A + 1) + 2\ — 1))’7Q17
B 2 1 1+ Ao 1
— (g —1)pl2
) (q )p2 (F(Ug T 1) + F(UQ) 1"()\2 + 1) + QF()\Q — 1) )7Qza

K = K1 + Ko.
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Proof. From (3.21),(3.22),and suppositions (A1) and (Az), we have

1 1
IMG(C) — MIA(C)| = | /D G (¢, 0y /0 HA (9, 1) Q1 (1, () )
1 1
- / G (¢, 9)4( / HA W, 7)1 (1, 5(n))diy) D)
0 0
g 3 (0,m) Qu (. () )
s/org <<,z9>\|¢q</0 HA (9, 1) Q1 (1, ()

1
o, / N (5,m) Q1 (1, 7)) 9

< (g— 1) /rgf“w /Hwn

x |Q1(n,v(n) — Qi(n, v(n))|dndd
2 N 1 Y 1+ XM
o1+ 1) F(O'1> F(Al + 1)

(3.35)

<(qg—1)p{" Q(F(

1

* ar0n =11 MO = HOl= il () = 7))

and

1 1
IMsw(Q) — M3 (0)] = | /O G (¢, 9)da /0 H2(9,m) Qaln, pu(n)) )9
1 1
- / G72 (¢, 0)4( / H2 (5, 1) Qs (1, i(n))dn) o)
0 0
2% (0, ) Qo ()
§/0|9 (C,ﬂ)llcbq(/o H?(9,m)Q2(n, u(n))dn

1
_ &, / 2 (5,17) Qa(n, i) ) |9

< (- ot /\9021191/ W (9,)

x |Qa2(n, u(n) — Qa(n, fi(n))|dndd
2 1 1+ X
(F(Uz +1) * [(og) ' T'(A2+ 1)

(3.36)

< (q— 1)P2

+ Sy el (® — (O

= ralu(t) — B(Q)l;
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with the help of (3.35), (3.36), we get

* *(— — — 1 2 1 1+)\1
IM* (11, ) (¢) = M* (7, 7)(O)] < (¢ — 1)p] 2(1“(01))(1“(01 1) + o) TOn £ 1)
+ 2F()j_1))791’”(§) —v(Q)]
o 2 1 14 A
=00 1) T o) T+ 1)
1

+

m)VQQW(C) — Q)|

= r|v(¢) = 7(Q)[+ra|u(C) — v({)]
(

= & ([1(a () — (&, D).
(3.37)

With the help of Banach’s fixed point theory and * < 1, the contraction M* has a unique fixed
point. Thus, the nonlinear coupled system of FODEs (1.1) has a unique solution. O]

4 Hyers-Ulam stability of system

Here we study HU-stability of a solution for the nonlinear coupled system of FODEs with p-
Laplacian operator (1.1) and boundary conditions.

Definition 4.1 The nonlinear coupled system of Hammerstein-type integral Eqs (3.17),(3.18) is
HU-stable if there exist positive constants Wy, W5 achieves the these conditions:

For every (31, B2 > 0, if

1 1
Q) /0 G4 (¢, 0) by /0 HY(9,7) Q1 (n, v(1))dn)dd] < By,

) ) (4.1)
() / G2 (¢, 9)4 / H2 (9, 1) Qa(n, () d) 9| < P
0 0
There exists a pair, say (1*(¢), v*(()), satisfying
1 1
() — / G (¢, 0y / HA (9, 1) Qa (7, " () dip) b,
O1 01 (4.2)
V(0 - / G2 (¢, 0y / H2 (9, ) Qa (17, () )dn) o,
0 0
such that
Q) — 1(O)] < Wi, )

w(t) =" (O < Wy .
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Theorem 4.1. . With the suppositions (A1) and (Az) hold, the solution of the nonlinear coupled
system of FODEs with p-Laplacian operator(1.1) is HU-stable.

Proof. From Theory 3.5 and definition 4.1 let ((¢), v(¢)) be a solution of the system (3.17),(3.18).
Let (1*(¢), v*(C)) be any other approximation achieves (4.2).Then we get

1 1
(O) — 1Ol = | /0 G (¢, 9)4 /0 HA (9, 1) Q1 (1, () ) 9
1 1
‘/ 67 (¢, ) / HA (9, 1) Q1 (1, " (n) ) )|
0 0
1 1
S/o rgwc,wuqﬁq(/o Y (9,7) Q1 (n, v())dn)

&, / W (9,1) Q1 (n, v ()l 9

<(qg—1)p /|g”11q9\/7#11977

% |Qu(m, v(n) = Qulm, v (n))|dndd
B 2 2 1 14+ X
< (g—1)p} (P(O'l 1) + [(o1)" ' T(AM +1)

+ S O ()

= Wilw(Q) = v (Q)l= Wih,

(4.4)

and

1 1
Q) = (0| = | /O G (¢, 9)da /0 H2(9,7) Qaln, pu(n)) )9
1 1
- / G72 (¢, 9)4( / H2 (9, 1) Qa (1, 1 (1) )dn) o)
0 0
2% (0, m) Qo ()
§/0|9 (C,l?)llaﬁq(/0 H?(9,m)Q2(n, u(n))dn

1
_ o, / H2(9, 1) Qaln, 1* () )| O

< (qg—1)p /g@my/?wﬂn

x |Qa(n, u(n) — Qa(n, u*(n))|dndd
_ 2 1 1+ A
< (q-1)p8 (F(U2 5 T Ton) (T +21)

(4.5)

+ QF(Ai_l))mz!u(C) — 1 ()]

= Wa|pu(C) — p* (Q)l= Wa b2,
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% -2 +A
where Wl == ((q — 1)p({ (F(Ul2+1) + F((lj'l))( (1)\1_’_11) + 21"()\1 1) )791)

Wi = ((q — 1)'03_2(1“(03“) + F(£2))(F(1A2+1) + 21ﬂ(/\z_l))’yQQ) Hence, with the help of (4.4)
and (4.5), the system (3.17) and (3.18) is HU- stable. Consequently, the system with p-Laplacian
operator (1.1) is HU-stable ]

5 Illustrative examples

Here we will introduce an example to prove our results of proposed problem in sections 3 and 4.

Example 5.1. let the system with p-Laplacian operator with FODE and IBCs as following:

D5 (d5(“D2 u(C))) + Q1(¢,v(C) =0, D3 (¢5(°D31(())) + Q2(C, u(¢)) =0,

(@53 u(O)) Dm0 =0,  (@5(D2(O))D)ezo=0  for i=0,3,4,...k—1,
(@5(DIpONle1 =0, (#5(“D3u(0)) =1 = T2 2Q1(¢, ()1,
(@5(D(O))) cc1 =0, (¢5(“D2(Q))) e = z%*@xc,u(c))k:h

(w(0)U) =0 @wONYD =0  for j=2,3,4,....k—1,

¢q (Jy H5(C,0)Q1(0, v(9))d)),
o(fy H3(C,0) a0, pu(9))d)),

(5.1)
where ¢ € [0,1],p = 5,p; = 3,0, = %,)\i = %, fori = 1,2, Q1((,u(¢)) = —21/13 +
1/17sin(v), Q2 = 28/16 + 1/19cos (1), which implies 75 = 75, = 1. By simple mathemat-

ical computations, we get

- 2 1 14+ A 1
F = (= 1)p Z(F(al 0 T\t +11) taro, - )@
4 2 1 1+4 1 .1
=320 T tams
- 2 1 14 Ao 1
r2 = (@ =1)p, Q(F(Ug D T T £ 1) T 200 = 1)@
4 2 1 . 1+4 1 1
=3P EE T Tam)s
. 4 2 1 1+4% 1 .1
K* =K1 + ko = 2(533(F(§) + F(%))( F(%;’ + 2r(§))5) < 1. (5.2)

By Theory 3.5 and Eq (5.2), we deduce that (5.1) has positive a unique solution. Thus, the
conditions of Theory 4.1 may be verified simply. Similarly, the system (5.1) is HU-stable.
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6 Conclusion

In this literature, we applied the topological degree theory successfully to investigate sufficient
conditions for existence and uniqueness of solutions to a nonlinear coupled system of FODEs
with IBCs and a p-Laplacian operator. For these goals, we used Green functions to convert the
proposed problem (1.1) into an integral equation and then to topological degree theory. Further,
we had investigated the conditions of the Hyers-Ulam stability to the proposed problem. For
application, we included an illustrative example to verify from the results. For future work, we
suggest to readers study the problem for multiple solutions. Also, the problem may be studied for

the existence of the solution using various definitions of the fractional derivative.
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