TAMKANG JOURNAL OF MATHEMATICS Volume 40, Number 1, 67-75, Spring 2009

FUNCTIONS AND REGULARITY OF TOPOLOGICAL SPACES

ZBIGNIEW DUSZYŃSKI

Abstract. Preservation of regularity, almost regularity, and s-regularity of topological spaces, is considered.

1. Introduction

It is known that regularity is preserved under continuous closed surjections with compact point inverses (i.e., under perfect functions). In 1978, Noiri [19] proved that if $f : (X, \tau) \rightarrow (Y, \sigma)$ is a continuous semi-closed surjection with compact point inverses, and (X, τ) is regular, then (Y, σ) is *s*-regular. Murdeshwar [15] showed that regularity is preserved under surjections that are open, continuous, and closed. In 1986, Greenwood and Reilly gave a certain generalization of the Murdeshwar's result. In this paper we, in turn, generalize the Greenwood and Reilly's result [7, Proposition 8]. Moreover, we propose a number of further theorems related to preservation of regularity, almost regularity, and *s*-regularity of spaces, under surjections.

2. Preliminaries

Throughout, (X, τ) (and (Y, σ)) means a topological space (briefly: a space). Let $S \subset X$ be a subset of a space (X, τ) . The **closure** of *S* and the **interior** of *S* will be denoted by $cl_{\tau}(S)$ and $int_{\tau}(S)$ (or simply cl(S) and int(S)), respectively. The set *S* is said to be *regular open* (resp. α -open [16]; semi-open [10]; preopen [13]) in (X, τ) , if S = int(cl(S)) (resp. $S \subset int(cl(int(S)))$); $S \subset cl(int(S))$; $S \subset int(cl(S))$). The *S* is said to be α -closed (resp. semi-closed [3]) in (X, τ) , if $cl(int(cl(S))) \subset S$ (resp. $int(cl(S)) \subset S$). The collection of all regular open (resp. α -open; semiopen; preopen) subsets of (X, τ) is denoted by $RO(X, \tau)$ (resp. τ^{α} ; $SO(X, \tau)$; $PO(X, \tau)$). It is known that $\tau \subset \tau^{\alpha}$ (the equality does not hold, in general), and that τ^{α} forms a topology on *X*. Obviously, *S* is semi-closed in (X, τ) iff $X \setminus S$ is semi-open in (X, τ) . Moreover, *S* is semiclosed in (X, τ) iff $S = scl_{\tau}(S)$ [3, Theorem 1.4(2)], where $scl_{\tau}(S)$ (the semi-closed of *S* in (X, τ)) is defined analogously to the ordinary closrue. It is known that $\tau^{\alpha} = SO(X, \tau) \cap PO(X, \tau)$ [21, Lemma 2.1].

Received March 23, 2007; revised September 23, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 54C08.

Key words and phrases. Almost regular, *s*-regular spaces, almost open, α -open, α -closed, semi-closed functions, almost continuity, \Re -mapness, α -irresolutness.

A function $f : (X, \tau) \to (Y, \sigma)$ is called **almost open in the sense of Wilansky** (briefly **a.o.W.**) [27, for injections], [20, Definition 1.3], if $f^{-1}(cl_{\sigma}(V)) \subset cl_{\tau}(f^{-1}(V))$ for every $V \in \sigma$. In 1984, Rose [24, Theorem 11] has proved that f if a.o.W. iff $f(U) \in PO(Y, \sigma)$ for every $U \in \tau$ (i.e., iff f is preopen [13]. A function $f : (X, \tau) \to (Y, \sigma)$ is called **almost open in the sense of the Singals** (briefly **a.o.S.**) [24], if $f(U) \in \sigma$ for every $U \in RO(X, \tau)$. A function f is said to be α -**open** [14] (resp. **pre**- α -**open**; **s**-**open** [1]), if $f(U) \in \sigma^{\alpha}$ (resp. $f(U) \in \sigma^{\alpha}$; $f(U) \in \sigma$) for any set $U \in \tau$ (resp. $U \in \tau^{\alpha}$; $U \in SO(X, \tau)$). A function f is called α -**closed** [14] (resp. **pre**- α -**closed** [5]; **semi-closed** [17]; **pre-semi-closed** [26]), if f(U) is an α -closed (resp. an α -closed; a semiclosed; a semi-closed) subset of (Y, σ) for each closed (resp. α -closed; semi-closed) subset U of (X, τ) .

A function $f : (X, \tau) \to (Y, \sigma)$ is almost continuous in the sense of the Singals (briefly *a.c.S.*) [24] (resp. an \mathscr{R} -map [2]; α -irresolute [12]), if the preimage $f^{-1}(V) \in \tau$ [24, Theorem 2.2(b)] (resp. $f^{-1}(V) \in \operatorname{RO}(X, \tau)$; $f^{-1}(V) \in \tau^{\alpha}$) for every set $V \in \operatorname{RO}(Y, \sigma)$ (resp. $V \in \operatorname{RO}(Y, \sigma)$; $V \in \sigma^{\alpha}$). Every \mathscr{R} -map is a.c.S., but the converse is false in general [22, Example 4.14]. It is known that α -irresoluteness and continuity are independent notions [12, Examples 1 & 2].

A space (X, τ) is called *extremally disconnected* (briefly *e.d.*) if $cl(S) \in \tau$ for every $S \in \tau$. A space (X, τ) is e.d. iff $\tau^{\alpha} = SO(X, \tau)$ [8, Theorem 2.9].

A space (X, τ) is called **almost regular** [25, Theorem 2.2(b)] (resp. *s*-**regular** [11, Theorem 2(b)] if for each point $x \in X$ and each set $V \in \text{RO}(X, \tau)$) (resp. $V \in \tau$) containing x, there exists a set $U \in \text{RO}(X, \tau)$ (resp. $U \in \text{SO}(X, \tau)$) such that $x \in U \subset \text{cl}(U) \subset V$ (resp. $x \in U \subset \text{scl}(U) \subset V$). Every regular space is almost regular (resp. *s*-regular) and the converse is not always true [18, Remark 1] (resp. [11, Example 1]). Conditions of almost regularity and *s*-regular if for each $x \in X$ and each $V \in \tau$ with $x \in V$, there exists a set $U \in \text{RO}(X, \tau)$ such that $x \in U \subset V$.

3. Almost regular spaces

Theorem 1. [7, Proposition 8]. If $f : (X, \tau) \to (Y, \sigma)$ is an open, continuous, and α -closed surjection, and (X, τ) is regular, then (Y, σ) is regular.

It is clear that for any bijection $f : (X, \tau) \to (Y, \sigma)$, the properties of being α -closed and being α -open are equivalent. Thus, Theorem 1 leads to the well known result: *every homeomorphism preserves the regularity property*.

In order to generalize Theorem 1 we need the following lemma, which is, in turn, a generalization of [7, Lemma 2].

Lemma 1. Let (X, τ) be a space, $U \in PO(X, \tau)$ and $U \subset V$. Then $cl(U) \subset cl(int(cl(V)))$.

Proof. We have $U \subset int(cl(U))$, whence as $int(cl(U)) \subset int(cl(V))$ we get $cl(U) \subset cl(int(cl(V)))$.

Theorem 2. Let a functon $f : (X, \tau) \to (Y, \sigma)$ be an a.o.W., continuous, and α -closed surjection. If (X, τ) is regular, then (Y, σ) is regular.

Proof. Let $y \in Y$ and $U \in \sigma$, $U \ni y$, be arbitrary, and let $x \in X$ be such that f(x) = y. By regularity of (X, τ) there exists a set $G \in \tau$ such that $x \in G \subset cl_{\tau}(G) \subset f^{-1}(U)$. Then $y \in f(G) \subset f(cl_{\tau}(G)) \subset U$. But, f is a.o.W. and so, by Lemma 1, $f(G) \subset int_{\sigma}(cl_{\sigma}(f(G))) \subset cl_{\sigma}(f(G)) \subset cl_{\sigma}(f(G)))$. Put $V = int_{\sigma}(cl_{\sigma}(f(G))) \in RO(Y, \sigma)$. We obtain $y \in V \subset cl_{\sigma}(V) \subset U$. This shows that (Y, σ) is regular.

Corollary 1. Let a bijection $f : (X, \tau) \to (Y, \sigma)$ be α -open and continuous. If (X, τ) is regular, then so is (Y, σ) .

Proof. Follows from Theorem 2. Just use the fact that each α -open mapping is a.o.W.

An analysis of the proof of Theorem 2 leads to Theorems 3 and 4 below. The details are left to the reader.

Theorem 3. Let $f : (X, \tau) \to (Y, \sigma)$ be an a.o.W., a.c.S., and α -closed surjection. If (X, τ) is regular, then (Y, σ) is almost regular.

Corollary 2. Let a bijection $f : (X, \tau) \to (Y, \sigma)$ be α -open and a.c.S. If (X, τ) is regular, then (Y, σ) is almost regular.

Theorem 4. Let a surjection $f : (X, \tau) \to (Y, \sigma)$ be an a.o.S. and α -closed \mathscr{R} -map. If (X, τ) is almost regular, then (Y, σ) is almost regular.

Corollary 3. Assume a bijection $f : (X, \tau) \to (Y, \sigma)$ is an open \mathscr{R} -map. If (X, τ) is almost regular, then (Y, σ) is almost regular.

Noiri has stated [20, Examples 1.6 & 1.7] that a.o.W. and a.o.S. are independent notions. The following examples show that these notions remain independent if considered within the class of bijective mappings.

Example 1. (a). Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{\emptyset, X\}$. The identity id: $(X, \tau) \to (X, \sigma)$ is a.o.W. and not a.o.S.

(b). Let $X = \{a, b\}, \tau = \{\emptyset, X, \{a\}\}, \sigma = \{\emptyset, X, \{b\}\}$. Then: id: $(X, \tau) \rightarrow (X, \sigma)$ and id⁻¹ are a.o.S., but not a.o.W.

Now, we provide an example of bijection $f : (X, \tau) \to (X, \sigma)$ which is continuous (and so a.c.S.), but is not an \mathscr{R} -map (compare this example to [22, Example 4.14] for the non-bijective case).

Example 2. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}, \sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Let $f : (X, \tau) \to (X, \sigma)$ be defined as follows: f(a) = c, f(b) = a, f(c) = b. Then f is not an \mathscr{R} -map singce $f^{-1}(\{a\}) \notin \operatorname{RO}(X, \tau)$.

 \mathscr{R} -mapness and continuity are independent notions, even in the class of bijections. Because of Example 2, it is enough to indicate an \mathscr{R} -map which is not continuous.

Example 3. Let $X = \{a, b\}, \tau = \{\emptyset, X\}, \sigma = \{\emptyset, X, \{a\}\}$. The identity id: $(X, \tau) \rightarrow (X, \sigma)$ is an \mathscr{R} -map which is not continuous.

Remark 1. An a.c.S. functon (even a bijection) need not be continuous (compare the following example to [24, Example 2.2]) nor an \mathscr{R} -map. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \sigma = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}\}, \text{ and let } f(a) = c, f(b) = b, f(c) = a, f(d) = d.$

Theorem 5. Let (X, τ) be a space. If (X, τ^{α}) is regular, then (X, τ) is regular.

Proof. Assume (X, τ^{α}) is regular. Suppose $x \in X$ and $U \in \tau$ such that $x \in U$, are arbitrary. By the hypothesis, there is a set $V \in \tau^{\alpha}$ such that $x \in V \subset cl_{\tau^{\alpha}}(V) \subset U$. But, $cl_{\tau^{\alpha}}(V) = cl_{\tau}(V)$ [6, Lemma 1(i)] and as $V \in PO(X, \tau)$ we get $x \in V \subset int_{\tau}(cl_{\tau}(V)) \subset cl_{\tau}(int_{\tau}(cl_{\tau}(V))) \subset cl_{\tau}(V)$. This shows (X, τ) is regular.

The converse to Theorem 5 may not be true as the following example shows.

Example 4. Consider the real line \mathbb{R} endowed with the Euclidean topology τ_e . The space $(\mathbb{R}, \tau_e^{\alpha})$ is not regular: take into account x = 0 and its α -neighbourhood $V = [-1, 1] \setminus \bigcup_{i=1}^{\infty} \{-\frac{1}{i}, \frac{1}{i}\}$.

Lemma 2. [9, Corollary 2.4(a)]. $\operatorname{RO}(X, \tau) = \operatorname{RO}(X, \tau^{\alpha})$ for each space (X, τ) .

Theorem 6. A space (X, τ) is almost regular if and only if (X, τ^{α}) is almost regular.

Proof. Clear by Lemma 2 and the fact that $cl_{\tau}(S) = cl_{\tau^{\alpha}}(S)$ for each $S \in SO(X, \tau)$ [6, Lemma 1(i)].

Definition 1. A function $f : (X, \tau) \to (Y, \sigma)$ is α -*a.o.W*. if $f(U) \in PO(Y, \sigma)$ for every $U \in \tau^{\alpha}$.

Obviously, each α -a.o.W. function is a.o.W. The converse implication does not hold.

Example 5. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}, \sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. The identity id: $(X, \tau) \rightarrow (X, \sigma)$ is open (and hence a.o.W.), but it is not α -a.o.W. because $id(\{a, c\}) \notin PO(X, \sigma)$.

Lemma 3. Let (X, τ) be a space. Then, (1) [9, Corollary 2.5(a)]. PO $(X, \tau) = PO(X, \tau^{\alpha});$ (2) [16, Proposition 10]. $\tau^{\alpha} = (\tau^{\alpha})^{\alpha}.$

Theorem 7. Let a surjection $f : (X, \tau) \to (Y, \sigma)$ be α -a.o.W. α -irresolute, pre- α -closed. If (X, τ^{α}) is regular then (Y, σ^{α}) is regular.

Proof. By Lemma 3, the surjection $f_* : (X, \tau^{\alpha}) \to (Y, \sigma^{\alpha})$, where $f_*(x) = f(x)$ for each $x \in X$ (see [9, page 86, line 11]), is also a.o.W., continuous, and α -closed. Thus by Theorem 2 we get (Y, σ^{α}) is regular.

Since every bijection is pre- α -closed if and only if it is pre- α -open, one obtains the well known result for homeomorphisms: $(X, \tau^{\alpha}) \rightarrow (Y, \sigma^{\alpha})$ (the one stated right under Theorem 1).

Recall that a function $f : (X, \tau) \to (Y, \sigma)$ is a semi-homeomorphism [4] if it is bijective, pre-semi-open $(f(U) \in SO(Y, \sigma)$ for every $U \in SO(X, \tau)$), and irresolute $(f^{-1}(V) \in SO(X, \tau)$ for every $V \in SO(Y, \sigma)$). The following result is known: a function $f : (X, \tau) \to (Y, \sigma)$ is a semihomeomorphism if and only if $f_* : (X, \tau^{\alpha}) \to (Y, \sigma^{\alpha})$ is a semi-homeomorphism [6, Theorem 1].

Corollary 4. Let a function $f : (X, \tau) \to (Y, \sigma)$ be a semi-homeomorphism. If (X, τ^{α}) is regular, then (Y, σ^{α}) is also regular.

This corollary is interesting in regard for Theorem 5 and Example 4 above, and the fact that the image of a regular space under a semi-homeomorphism is not necessarily regular [4, Example 1.5]. Moreover, by Corollary 4 and Theorem 5, [4, Example 1.5] is another illustration that regularity of (X, τ) need not imply regularity of (X, τ^{α}) .

The next theorem is a simple consequence of Theorems 3, 5, and 6.

Theorem 8. Let $f : (X, \tau) \to (Y, \sigma)$ be an a.o.W., a.c.S., and α -closed surjection. If (X, τ^{α}) is regular, then (Y, σ^{α}) is almost regular.

Corollary 5. Let a bijection $f : (X, \tau) \to (Y, \sigma)$ be α -open and a.c.S. If (X, τ^{α}) is regular, then (Y, σ^{α}) is almost regular.

Proof. Follows from Theorem 8.

In the class of bijective mappings, α -irresoluteness and continuity are independent of each other [12, Examples 1 & 2].

Example 6. (a). Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}, \sigma = \{\emptyset, X, \{a\}\}$. The identity id: $(X, \tau) \rightarrow (X, \sigma)$ is continuous (hence a.c.S.) and not α -irresolute, since $\mathrm{id}^{-1}(\{a, b\}) \notin \tau^{\alpha}$.

(b). Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \sigma = \tau^{\alpha} = \tau \cup \{\{a, b, c\}\}$. Then id: $(X, \tau) \to (X, \sigma)$ is discontinuous but α -irresolute.

Problem 1. Find an α -irresolute bijection (or just a surjection) which is not a.c.S.

Theorem 9. Let $f : (X, \tau) \to (Y, \sigma)$ be a surjective α -closed and a.o.S. \mathscr{R} -map. If (X, τ^{α}) is regular, then (Y, σ^{α}) is almost regular.

Proof. We apply Theorems 5, 4, and 6, respectively.

Corollary 6. Let a bijection $f : (X, \tau) \to (Y, \sigma)$ be an open \mathscr{R} -map. If (X, τ^{α}) is regular then (Y, σ^{α}) is almost regular.

Comparing Theorems 7 and 9 it is worthy of notice that α -a.o.W. and a.o.S. are independent notions, even within the class of bijections.

Example 7. (a). Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, $\sigma = \{\emptyset, X\}$. Then, id: $(X, \tau) \rightarrow (X, \sigma)$ is α -a.o.W. and not a.o.S., because for $S = \{a\}$ (or $S = \{b\}$), id(S) $\notin \sigma$.

(b). Let $X = \{a, b\}, \tau = \{\emptyset, X, \{a\}\}, \sigma = \{\emptyset, X, \{b\}\}$. The identity id: $(X, \tau) \rightarrow (X, \sigma)$ is a.o.S. and not α -a.o.W.

In order to see that α -irresoluteness and \mathscr{R} -mapness are independent of each other, it is enough to apply Examples 2 and 3.

4. s-regular spaces

It is well-known that regularity implies semi-regularity. Examples of spaces which are semi-regular and not regular are also known [25, Remark 3.2] and [11, Example 1].

Theorem 10. If a space (X, τ) is semi-regular, then it is s-regular.

Proof. We shall use [9, Proposition 2.7(a)]: scl(S) = int(cl(S)) for any $S \in PO(X, \tau)$. Let $x \in X$ and $U \in \tau$ be such that $x \in U$. By hypothesis there exists a set $V \in RO(X, \tau)$ with $x \in V \subset U$. So, $x \in int(cl(V)) = scl(V) \subset U$.

Problem 2. One does not know an example of *s*-regular space that fails to be semi-regular.

Theomre 11. Let an (X, τ) be e.d. The following conditions are equivalent:

- (a) (X, τ) is regular,
- (b) (X, τ) is semi-regular,
- (c) (X, τ) is s-regular.

Proof. Since the implication (b) \Rightarrow (a) is clear by the definition of e.d. space, only (c) \Rightarrow (b) requires a proof. Let $x \in X$ and $U \in \tau$ be such that $x \in U$. By hypothesis, there exists a set $G \in$ SO(X, τ) with $x \in G \subset scl(G) \subset U$. Since $int(cl(S)) \subset scl(S)$ for any $S \subset X$ [21, Lemma 4.14] and SO(X, τ) \subset PO(X, τ) [9, Proposition 4.1], one obtains $x \in V \subset int(cl(V)) \subset U$ for V = int(cl(G)). Therefore (X, τ) is semi-regular.

Notice that *s*-regularity and e.d. are independent one of the other [11, Examples 1 and 2]. Recall also, that there is an almost regular and e.d. space which is not *s*-regular [11, Example 2], and a semi-regular not e.d. space which is almost regular [11, Example 1].

Theorem 12. Let a surjection $f : (X, \tau) \to (Y, \sigma)$ be α -a.o.W., continuous, and semi-closed. If (X, τ) is s-regular and e.d., then (Y, σ) is semi-regular.

Proof. Let $y \in Y$ and $U \in \sigma$ with $y \in U$. Let for an $x \in X$, y = f(x). By *s*-regularity of (X, τ) we have $x \in V \subset \operatorname{scl}_{\tau}(V) \subset f^{-1}(U)$ for a certain $V \in \operatorname{SO}(X, \tau)$. Hence $y \in f(V) \subset f(\operatorname{scl}_{\tau}(V)) \subset U$. But (X, τ) is e.d., so by [8, Theorem 2.9], $\operatorname{scl}_{\tau}(V) = \operatorname{cl}_{\tau^{\alpha}}(V)$. On the other hand $\operatorname{cl}_{\tau^{\alpha}}(V) = \operatorname{cl}_{\tau}(V)$ [6, Lemma 1(i)]. As *f* is semi-closed, $\operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(f(V))) \subset \operatorname{scl}_{\sigma}(f(\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(V))))) \subset f(\operatorname{cl}_{\tau}(V))$; [21, Lemma 4.14] and [8, Theorem 2.9]. Put $G = \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(f(V)))$. Thus $y \in G \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(G)) \subset U$, because *f* is α -a.o.W. This completes the proof.

Definition 2. A mapping $f : (X, \tau) \to (Y, \sigma)$ is *s*-**a.o.W**. if $f(U) \in PO(Y, \sigma)$ for every $U \in SO(X, \tau)$.

Obviously, each *s*-a.o.W. mapping is α -a.o.W. The converse is false, even for bijections.

Example 8. Let $X = \{a, b, c, d\}$, $\sigma = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}$, $\tau = \sigma \cup \{\{b\}, \{a, b\}\}$. Then, id: $(X, \tau) \rightarrow (X, \sigma)$ is α -a.o.W. and not *s*-a.o.W., because id $(\{a, d\}) \notin PO(x, \sigma)$.

We notice that α -a.o.W. with openness and *s*-a.o.W. with openness, are couples of independent notions; see the examples below.

Example 9. (a). Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{\emptyset, X\}$. The identity from (X, τ) to (X, σ) is *s*-a.o.W., but it is not open.

(b). Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}, \sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. The identity from (X, τ) to (X, σ) is open and not α -a.o.W., since $id(\{a, c\}) \notin PO(X, \sigma)$.

Theorem 13. Let a surjection $f : (X, \tau) \to (Y, \sigma)$ be s-a.o.W., continuous, and pre-semiclosed. If (X, τ) is s-regular, then (Y, σ) is semi-regular.

Proof. Let $y \in Y$ and $U \in \sigma$ with $y \in U$, and let $x \in X$ be such that f(x) = y. As (X, τ) is *s*-regular, there exists a set $V \in SO(X, \tau)$ such that $x \in V \subset scl_{\tau}(V) \subset f^{-1}(U)$. So, $y \in f(V) \subset f(scl_{\tau}(V)) \subset U$. From pre-semi-closedness of f and from [21, Lemma 4.14] it follows that

 $\operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(f(\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(V))))) \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(f(\operatorname{scl}_{\tau}(V)))) \subset f(\operatorname{scl}_{\tau}(V)).$

Continuity of *f* implies $f(cl_{\tau}(int_{\tau}(cl_{\tau}(V)))) \subset cl_{\sigma}(f(int_{\tau}(cl_{\tau}(V))))$. But, *f* is *s*-a.o.W. and thus

 $f(V) \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(f(V))) \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(f(\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(V))))) \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(f(\operatorname{scl}_{\tau}(V)))).$

Put $G = int_{\sigma}(cl_{\sigma}(f(scl_{\tau}(V))))$. This shows (Y, σ) is semi-regular.

Deinition 3. A function $f : (X, \tau) \to (Y, \sigma)$ is $s\alpha$ -open if $f(U) \in \sigma^{\alpha}$ for every $U \in SO(X, \tau)$.

Corollary 7. Let a bijection $f : (X, \tau) \to (Y, \sigma)$ be continuous and $s\alpha$ -open. If (X, τ) is s-regular, then (Y, σ) is semi-regular.

Proof. By Theorem 13 and [21, Lemma 3.1].

Each *s*-open mapping is $s\alpha$ -open, but the reverse implications does not hold in general, even for bijections.

Example 10. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, c\}\}$, $\sigma = \{\emptyset, X, \{a\}\}$. The identity from (X, τ) to (X, σ) is $s\alpha$ -open and not *s*-open (consider $\{a, b\} \in SO(X, \tau)$, for instance).

Acknowledgement

The author is grateful to referee for his/her helpful suggestions and comments.

References

- [1] D. E. Cameron and G. Woods, s-continuous and s-open mappings, preprint.
- [2] D. A. Carnahan, Some properties related to compactness in topological spaces, Ph.D. thesis, University of Arkansas, 1973.
- [3] C. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22(1971), 99-112.
- [4] C. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fundamenta Mathematicae 74(1972), 233-254.

- [5] Z. Duszyński, Some remarks on almost α-continuous functions, Kyungpook Math. J. 44(2004), 249– 260.
- [6] G. L. Garg and D. Sivaraj, Semitopological properties, Mat. Vesnik 36(1984), 137–142.
- [7] S. Greenwood and I. L. Reilly, On feebly closed mappings, Indian J. Pure Appl. Math. 17(1986), 1101– 1105.
- [8] D. S. Janković, On locally irreducible spaces, Ann. Soc. Sci. Bruxelles 97(1983), 59-72.
- [9] D. S. Janković, A note on mappings of extremally disconnected spaces, Acta Math. Hungar. 46(1985), 83–92.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36–41.
- [11] S. N. Maheshwari and R. Prasad, On s-regular spaces, Glasnik Mat. 10(1975), 347–350.
- [12] S. N. Maheshwari and S. S. Thakur, On α-irresolute mappings, Tamkang J. Math. 11(1980), 205–214.
- [13] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc, Egypt 53(1982), 47–53.
- [14] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar. **41**(1983), 213–218.
- [15] M. G. Murdeshwar, General Topology, Halstead Press, New York, 1983.
- [16] O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961–970.
- [17] T. Noiri, A generalization of closed mappings, Lincei-Rend. Sc. Fis. Mat. e Nat. 54(1971), 412–415.
- [18] T. Noiri, A note an semi-regularizations, Glasnik Mat. 10(30)(1975), 141-143.
- [19] T. Noiri, A note on s-regular spaces, Glasnik Mat. 13(33)(1978), 107–110.
- [20] T. Noiri, Semi-continuity and weak-continuity, Czechoslovak Mathematical Journal 31(106)(1981), 314–321.
- [21] T. Noiri, On α-continuous functions, Čas. pěst. mat. 109(1984), 118–126.
- [22] T. Noiri, Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math. 15(1984), 241–250.
- [23] D. A. Rose, Weak continuity and almost continuity, Internat. J. Math. & Math. Sci. 7(1984), 311–318.
- [24] M. K. Singal and Asha Rani Singal, Almost-continuous mappings, Yokohama Math. J. 16(1968), 63– 73.
- [25] M. K. Singal and Shashi Prabha Arya, On almost-regular spaces, Glasnik Mat. 4(24)(1969), 89–99.
- [26] D. Sivaraj, Semihomeomorphisms, Acta Math. Hungar. 48(1986), 139–145.
- [27] A. Wilansky, Topics in Functional Analysis, Lecture Notes in Mathematics 45, Springer-Verlag, 1967.

Institute of Mathematics, Casimirus the Great University, Pl. Weyssenhoffa 11, 85-072, Bydgoszcz, Poland. E-mail: imath@ukw.edu.pl