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P53-Mdm2 Loop Stability and Oscillatory Dynamics with
Mdm2-Induced Delay Effect in P53

Mohd Younus Baba, Mohammad Saleem and Abdur Raheem

Abstract. In this paper, we consider P53-Mdm2 negative feedback loop supposed to be the
core circuit of genome. We study stability and the oscillatory dynamics of the loop. Many
of the studies modeled this loop by delay-differential equations with P53-induced transcrip-
tional delay in the production of Mdm2. We, however, highlight the importance of Mdm2-
induced delay in the degradation of P53 protein. We consider two forms of P53 protein i.e.,
plain P53 and active P53 along with its principal antagonist protein Mdm2 to formulate a
minimal model. Active P53 finds its inclusion in the loop in the presence of DNA damage
represented by a Boolean variable ‘s’. The analysis of the model provides thresholds on delays
usingNyquist criterion such that delays in the degradation of P53 lower than these thresholds
guarantee stability of the loop in that all proteins plain P53, active P53 and Mdm2 approach
to stable equilibrium state. The oscillatory dynamics in proteins, if any, would exist beyond
these thresholds.

1 Introduction

Protein P53 is a well-known tumor suppressor. Also known as the “Master of the Genome”, it
helps preserve genomic integrity in mammalian cells [1, 2]. About 50 percent of human cancers
occur due to mutations in the P53 gene [3]. In cells, P53 stays in association with another protein
Mdm2 in an interesting relationship: P53 → Mdm2 ⊣ P53 i.e., P53 promotes transcription of
Mdm2 and the Mdm2 on the other hand stimulates degradation of P53. This relationship, known
since early 90s, is called the P53-Mdm2 negative feedback loop. It helps maintain P53 levels low
in normal cells [1, 4, 5, 6, 7]. When the cells are stressed due to DNA damage (double strand
breaks, single strand breaks) or oncogenic activation, the negative feedback loop with Mdm2 is
disrupted (or weakened) and P53 no longer in strict control of Mdm2 starts accumulating and
triggers a transcriptional program that may lead to cell senescence, DNA damage repair or apop-
tosis [2, 8]. It is then not surprising that P53 activity is restricted by Mdm2 in normal cells and its
concentration is kept low in these cells [1, 9].
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The main characteristic feature of the P53-Mdm2 regulatory network has been its oscillatory
behavior both in stressed and non-stressed conditions. The generation of oscillations in this net-
work has been a challenge to modelers, more so, because they have been well aware of the fact
that a negative feedback is necessary for oscillations but it is not sufficient [10]. It can be argued
that a negative feedback with only two elements i.e., P53 → Mdm2 ⊣ P53 cannot oscillate [11].

The occurrence of oscillations in the P53 concentration after radiation induced DNA dam-
age has been reported in many experimental studies [1, 12, 13]. The earlier works consider cell
populations and show occurrence of one or two irregularly spaced P53 peaks with different ampli-
tudes. Alon and collaborators, in their important studies on single cells in culture under gamma-
irradiated stressed conditions give well-established oscillation’s pattern in the form of a series of
discrete pulses in both P53 and Mdm2 concentrations [13, 14]. In the first study [13], this group
reports a sort of “digital” response to stress with peaks of gene expression of constant amplitude
repeating in average a number of times proportional to signal strength. In the second study [14],
this team presents a more regular oscillatory pattern during the whole observation time (up to 3
days) and in large traction of cells proportional to the radiation dose. Theoretical studies suggest
that oscillations can arise from a combination of positive and negative feedbacks [11, 15] or from
a long negative feedback by augmenting the core P53-Mdm2 loop with some putative interme-
diary (or unidentified supplementary) components [16, 17]. Some later experiments show that
P53 pulses occur due to repeated initiation of ATM activation from persistent DNA damage and
that P53 pulses are excitable [18]. Excitability means once a pulse is initiated it will make a full
pulse irrespective of whether the damage signal persists or not. Experimental study of Batchelor
et al. [19] suggests that it requires a positive feedback loop in the P53-Mdm2 network to generate
excitable P53 pulses.

Mathematical modeling has played a very important role in exploring challenging problems
in biological, medical and physical sciences [3, 20, 21, 22]. The contribution of modeling has been
in producing analytical and numerical solutions ofmany difficult real world problems. It has dealt
with questions of stability of solutions including exploring even regions of chaotic nature. In the
studies on cancer, modeling inmany cases has validated experimental data on oscillatory behavior
in P53 andMdm2 concentrations (see references listed above). Mihalas et al. [23] consider the in-
teraction of P53 andMdm2 genes in a chemical kinetics-typemodel of four differential equations:
two equations for mRNAs and other two equations for proteins. Through computer simulation
of this model, they show the oscillatory behavior with some realistic assumptions on the model
parameters. Bar-Or et al. [16] consider a long negative feedback loop for possible oscillations by
adding an intermediary component in between P53 and Mdm2 and thus introducing the idea of
delay between P53 activation and P53-dependent induction of Mdm2. Mihalas et al. [24] modify
the model considered in Mihalas et al. [23] and introduce three stiff delays τi in it: τ1 is the delay
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that represents the total time required to complete the three activities namely (i) binding ofMdm2
to P53 (ii) interactions of the Mdm2 isoforms (P76 and P90) and (iii) translocation of P53 in cy-
tosol. τ2 is the delay required for P53 to enter in the nucleus to bind P2 promoter of the Mdm2
gene; τ3 is the delay required for the HAUSP to interact with P53 and Mdm2 to de-ubiquitinate
both proteins. Mihalas et al. [24] obtain oscillatory behavior similar to that observed experimen-
tally [13, 16]. Zatorsky et al. [14] consider a set of six models covering almost all the variations
in molecular interactions, loops, non-linearities, inclusion of stiff-delays etc. of previous mod-
els. They simulate all the six models numerically and produce onset of oscillations. Using the
idea of the model III of Zatorsky et al. [14], Bottani and Grammaticos [25] study a time delayed
differential equation model of the regulatory loop for P53 expression. Their model, based on a
“minimal” set of well-established bio-molecular regulations, shows how a negative feedback loop
with delay can be used in dual role i.e., tomaintain a stable steady state and to generate oscillations
depending on the input signal. In Layek et al. [26], authors give a general theoretical framework
to convert genetic pathways information to Boolean networks to includemultivariate interactions
between the genes. Using this approach to the P53 pathway including ATM and Wip1 considered
in [13, 18] and simulating their resulting Boolean network, Layek et al. [26] exhibit P53 related
oscillations similar to those reported in [13, 18]. Using a computational model, Purvis et al. [27]
identify a sequence of precisely timed drug addition of small molecule Nutlin-3 that could alter
P53 pulses (due to double strand breaks) to sustained P53 response. They report different cell-fate
decisions: recovery of cells from DNA damage with P53 pulses and cell cycle arrest (senescence)
with sustained P53 response. Sun et al. [28] analyze a delay-differential equationmodel consisting
of 12 equations including 4 equations for p53, mdm2, wip1 and p21 mRNAs and rest for proteins.
They include phosphorylation, acetylation of proteins and dynamic activation of ATM into their
model. Their results relate to the basal dynamics of P53 and show that the dynamics of P53 under
non-stressed conditions is initiated by an excitable mechanism and cells fully respond when they
are confronted with severe damage. Chong et al. [29] extend the model of Sun et al. [28] by in-
corporating into it some recently found molecular interactions and hypotheses and thus invoking
more accurate design principles of the P53 molecular system. In particular, they add the dynam-
ics of MdmX (an Mdm2-related P53 antagonist protein) along with P53-Mdm2, Mdm2-MdmX
and P53-MdmX complexes. Their model results very well exhibit the basal dynamics particularly
the excitability response and oscillatory behavior of P53 proteins.

The study of this paper concerns stability and the oscillatory dynamics of the circuit for P53
expression but in a different context. Inmost of the delay-differential equationmodels formulated
for the P53-Mdm2 regulatory loop, the production of Mdm2 has been considered to be affected
by P53-induced transcriptional delays. In a recent paper, Pant and Lozano [30], while working
on a genetically engineered mouse model, observe delayed P53 degradation through Mdm2 via
Mdm4 after DNA damage. Moreover, different proteins in the family of Mdm2 such as Mdm4
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[30], MdmX [29], and P76Mdm2, P90Mdm2 [24] have been suggested to have taken part in the
degradation of P53. We postulate that the degradation of P53 by any of these proteins along with
Mdm2 may not be simultaneous. In this paper, we therefore incorporate Mdm2-induced time-
delay degradation in P53. This delay represents the time required for Mdm2 to bind P53 and the
time required for the linkage between Mdm2 and any of its isoforms. The main question that this
paper addresses to is whether a Mdm2-induced delay in P53 degradation can explain previously
observed oscillations in P53 concentration in absence or presence of stress?

2 Themodel

Bottani and Grammaticos [25] consider a minimal model for the P53-Mdm2 regulatory loop

dx

dt
= a− sx− bx− cxz,

dy

dt
= sx− by − dyz,

dz

dt
= h+ fF (x(t− τ3) + y(t− τ3))− g(s)z. (2.1)

This model has two types of variables i.e. state variables x(t), y(t), z(t) for plain P53, active P53
and Mdm2 protein populations at time t and binary Boolean variable s which assumes value 1
(one) when the system is stressed and 0 (zero) when the system is not stressed.
Further interpretation of functions and model parameters are given below.
a - is the constant production rate of plain P53 (x)
b - denotes self degradation rate of both plain P53 (x) and active P53 (y)
c and d - are the parameters that represent different induced degradation rates of plain P53 (x) and
active P53 (y) resulting from their different binding strengths withMdm2. Based on experimental
data, it is assumed that d < c.
h - is the basal production rate of Mdm2 protein
f - is the P53-induced production rate of Mdm2 (z)
F - defines the process how the transcription induced by P53 for the production of Mdm2 works.
F is assumed to have a form of Hill function as follows:

F (u) =
u4

K4 + u4
(2.2)

withK representing the dissociation constant between P53 and the Mdm2 promoter
g - is a bi-valued function of Boolean variable s defined as

g(s) = (1− s)g1 + sg2 (2.3)
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with g1 and g2 as positive constants. g1 represents the self-degradation rate of Mdm2 when s = 0

i.e., when the system is not stressed. On the other hand g2 denotes the self-degradation rate of
Mdm2 for s = 1 i.e., when the system is stressed due to DNA damage. It is assumed that g1 < g2.
τ3 - represents the time-delay in the production ofMdm2 protein (z) after transcription initiation
induced by P53.

Model (2.1) represents a negative feedback loop of P53-Mdm2 interactions, where P53 pro-
tein stimulatesMdm2 protein andMdm2 degrades P53 protein. It is well known that the ubiquiti-
nation of P53 is amust for its degradation. Mdm2ubiquitinates P53 through its ring domain in the
C-terminus. Mihalas et al. [24] consider two Mdm2 proteins namely P90Mdm2 and P76Mdm2
and their interaction within to complete the ubiquitination of P53 by Mdm2. They suggest that
while P53 stimulates P76Mdm2 for its production but it having a truncated N-terminus does not
bind P53 and hence cannot ubiquitinate it. It is indeed P90Mdm2 protein having complete N-
terminus that binds P53 and ubiquitinates it through a link of P76Mdm2 in between P53 and
P90Mdm2. Mihalas et al. [24] introduce stiff time-delay τ1 in Mdm2 protein and use the term
y2(t − τ1) in their model to represent the time delay required for Mdm2 to bind P53 and for
completion of the loop. Recently, Pant and Lozano [30] reported Mdm2-induced time-delayed
degradation of P53 while working on a genetically engineered mouse model. Motivated by these
studies, we assume in this paper that τ1 and τ2 are time delays that consist of (i) time required
for Mdm2 to bind plain P53 (x) and active P53 (y) respectively and (ii) the time required for
the linkage of Mdm2 with other E3 ligases or its isoforms to complete the degradation process.
Incorporating these assumptions, the model (2.1) is modified as

dx

dt
= a− sx− bx− cxz(t− τ1),

dy

dt
= sx− by − dyz(t− τ2),

dz

dt
= h+ fF (x(t− τ3) + y(t− τ3))− g(s)z, (2.4)

with all other variables and parameters having same interpretation as in (2.1)-(2.3).

The analysis of the model (2.4) for the stability of its positive equilibria can provide an op-
portunity to see the effects of time delays in the production of Mdm2 and the degradation of P53
proteins on the nature of oscillations in the P53-Mdm2 network. But this analysis relates to lo-
cating the roots in the complex plane of a characteristic equation in the form of an exponential
polynomial equation of the type

∑m
i=0 fi(λ) exp(wiλ) = 0, where fi(λ) is a polynomial in λ

and wi as τ1, τ2, τ3 or a combination of these such as τ1 + τ2,τ1 + τ3, τ2 + τ3, τ1 + τ2 + τ3.
This equation containing thirteen terms of the form fi(λ) exp(wiλ) turns out to be cumbersome
to handle analytically. If we relax our assumption a bit and consider τ3 = 0 in model (2.4), the
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number of terms in the exponential polynomial equation
∑m

i=0 fi(λ) exp(wiλ) = 0 reduces from
thirteen to four and its analysis becomes a bit simpler.The assumption τ3 = 0 is quite reasonable
as the production of Mdm2 by P53 in the literature mostly has been considered direct without
any intermediary proteins between them [9]. However, the degradation of P53 by Mdm2 fol-
lows different pathways that include the activation of various kinases such as ATM, Chk2, ATR,
P14arf etc. which justifies considering delays τ1 and τ2 to be non zero. Furthermore, τ1 and τ2
may include the time required for the interaction between proteins P76MDM2 and P90MDM2
in addition to the time required for translocation of P53 in cytosol [24, 30, 31]. Thus introducing
τ3 = 0 in model (2.4) for the purpose of simplicity but without comprising with the reality for
the arguments cited as above, we shall consider the following model in this paper.

dx

dt
= a− sx− bx− cxz(t− τ1),

dy

dt
= sx− by − dyz(t− τ2),

dz

dt
= h+ fF (x+ y)− g(s)z. (2.5)

The analysis of this model would certainly help compare P53-Mdm2 network stability and oscil-
lations for delays in production of Mdm2 versus delays in degradation of P53.

Since model (2.5) represents dynamics of populations of plain P53, active P53 and Mdm2
proteins, it is natural and biologically feasible to assume that these populations remain positive
and bounded. We discuss the positivity and boundedness of the solutions of the model (2.5) in
the next section.

3 Positivity and boundedness

Let
max (τ1, τ2) = τ. (3.1)

Let C denote the Banach space of continuous functions ϕ : [−τ, 0] → R3 with sup-norm

∥ϕ∥ = max

{
sup

−τ≤θ≤0

|ϕ1(θ)| , sup
−τ≤θ≤0

|ϕ2(θ)| , sup
−τ≤θ≤0

|ϕ3(θ)|

}
, (3.2)

where
ϕ = (ϕ1, ϕ2, ϕ3) . (3.3)

Let
C+ = {ϕ = (ϕ1, ϕ2, ϕ3) ∈ C : ϕi ≥ 0, i = 1, 2, 3; θ ∈ [−τ, 0]} . (3.4)

The initial conditions for the model (2.5) are

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), z(θ) = ϕ3(θ), θ ∈ [−τ, 0] . (3.5)
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3.1 Positive invariance

Lemma 3.1. Every solution of the model (2.5) with initial conditions (3.5) remains positive for all
time t > 0.

Proof. Denoting
W = (x, y, z)T ∈ R3

+, (3.6)

G(Wt) =

 G1(Wt)

G2(Wt)

G3(Wt)

 =

 a− sx− bx− cxz(t− τ1)

sx− by − dyz(t− τ2)

h+ fF (x+ y)− g(s)z

 , (3.7)

where the mapping G : C+ −→ R3
+ is such that G ∈ C∞(R3

+), system (2.5) can be written in
matrix form as

.
W= G(Wt) (3.8)

withWt(θ) = W (t+ θ), θ ∈ [−τ, 0]. ForW0(θ) = 0, θ ∈ [−τ, 0], G1 = a ≥ 0, G2 = 0, G3 =

h ≥ 0; it follows from a lemma in Yang et al. [32] that any solution of (3.8) withW0(θ) ∈ C+ is
such thatW (t) ∈ R3

+ ∀t ≥ 0.

3.2 Boundedness

The right hand side of the model system (2.5) is a Lipschitz continuous function. It thus implies
that there exists a unique solution of model system (2.5) with initial conditions (3.5). Using the
positivity of state variables we get from the first equation of the system (2.5)

dx

dt
≤ a− (s+ b)x, (3.9)

and it follows from the well known comparison principle that

sup
t→∞

x(t) ≤ a

s+ b
. (3.10)

Using first and second equations of (2.5) we get

d(x+ y)

dt
≤ a− b(x+ y), (3.11)

and hence
sup
t→∞

(x+ y) ≤ a

b
=M (say). (3.12)

Now from the third equation of (2.5) it follows

dz

dt
≤ h+ fF (M)− g(s)z, (3.13)
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which yields

sup
t→∞

z(t) ≤ h+ fF (M)

g(s)
. (3.14)

It follows from (3.12) and (3.14) that solutions of model (2.5) with initial conditions (3.5) are
bounded. Now Lemma (3.1) and the boundedness of solutions of model (2.5) yield the following
result.

Theorem 3.1. Every solution of the model (2.5) with initial conditions (3.5) is positive and bounded.

4 Results and discussion: stability analysis

An equilibriumE∗ = (x∗, y∗, z∗) of the model (2.5) will be a solution of the following system of
equations:

a− sx− bx− cxz = 0,

sx− by − dyz = 0,

h+ fF (x+ y)− gz = 0. (4.1)

Since the degradation function g depends on s and it will have different values depending on
whether the system is stressed or not, we discuss the two cases in the following.

4.1 Case 1: s = 0 (the system is not stressed)

When s = 0, the system (4.1) has a unique nonnegative equilibrium E0 = (x0, 0, z0) where x0

is a positive root of the 5th degree equation:

lx5 +mx4 + nx+ p = 0, (4.2)

with

l =
g1b

c
+ h+ f > 0, (4.3)

m = −ag1
c

< 0, (4.4)

n = K4 g1b

c
+ h > 0, (4.5)

p = −K
4ag1
c

< 0, (4.6)

and

z0 =
a− bx0

cx0
, (4.7)
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such that a− bx0 > 0.

Considering x = x0 + ξ, y = η, z = z0 + ρ and linearizing the system (2.5) about E0, we
obtain

dξ

dt
= −(b+ cz0)ξ − cx0ρ(t− τ1),

dη

dt
= −(b+ dz0)η,

dρ

dt
= fF

′
(x0)(ξ + η)− g1ρ, (4.8)

whereF ′ denotes the derivative ofF . The characteristic equation of this linearized system is given
by

(λ+ dz0 + b)[(λ+ g1)(λ+ cz0 + b) + cfx0F
′
(x0) exp(−λτ1)] = 0, (4.9)

which has one eigenvalue λ = −(dz0 + b) and the remaining eigenvalues will be roots of the
transcendental equation

λ2 + (g1 + cz0 + b)λ+ g1(cz
0 + b) + cfx0F

′
(x0) exp(−λτ1) = 0. (4.10)

The characteristic equation (4.10) is same as characteristic equation (5) in [25]. The authors in [25]
comment that this equation is a transcendental equation which can only be studied numerically.
We study this equation analytically based on the approach in [33]. This analysis provides the
following stability bifurcation result for equilibrium E0.

Theorem 4.1. (i) If g1 ≥ c

a
(x0)2fF

′
(x0), then there are no stability switches and E0 is asymp-

totically stable for τ1 > 0.
(ii) If g1 <

c

a
(x0)2fF

′
(x0), thenE0 is uniformly asymptotically stable for τ1 < τ1,0 and unstable

for τ1 > τ1,0, such that

τ1,0 =
θ

w+
, (4.11)

where θ and w+ satisfy

w2
+ =

−
(
g21 + (cz0 + b)2

)
+

√
(g21 − (cz0 + b)2)2 + 4(cfx0F ′(x0))2

2
, (4.12)

cos θ =
w2
+ − g1(cz

0 + b)

cfx0F ′(x0)
. (4.13)

(This result provides thresholds on degradation rate g = g1 of Mdm2 and the delay τ1 for stability or
switch in stability of the equilibriumE0. More specifically, it implies that for large degradation rates
g1 of Mdm2 the system always tends to stability but lower values of g1 may produce oscillations in
plain P53 and Mdm2 proteins.)
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Proof. Obviously, λ = 0 is not a root of equation (4.10) since g1(cz0 + b) + cfx0F
′
(x0) ̸= 0.

Furthermore, for τ1 = 0, all the roots λ of the quadratic equation (4.10) are such that Re(λ) < 0.
Suppose λ = iw, w > 0 is a root of (4.10), then substituting it in (4.10) it becomes

(iw)2 + (g1 + cz0 + b)(iw) + g1(cz
0 + b) + cfx0F

′
(x0) exp(−iwτ1) = 0. (4.14)

Separating real and imaginary parts of (4.14) we have

g1(cz
0 + b)− w2 + cfx0F

′
(x0) cos(wτ1) = 0, (4.15)

(g1 + cz0 + b)w − cfx0F
′
(x0) sin(wτ1) = 0. (4.16)

Squaring and adding equations (4.15) and (4.16), we get a fourth degree equation inw as follows

w4 + Lw2 +M1 = 0, (4.17)

where
L = g21 + (cz0 + b)2 > 0, (4.18)

and
M1 = g21(cz

0 + b)2 − (cfx0F
′
(x0))2. (4.19)

The roots of (4.17) are given by

w2
± =

−L±
√
L2 − 4M1

2
. (4.20)

SinceL > 0, it can be seen that equation (4.17) has no real rootw such thatw > 0whenM1 ≥ 0.
Thus roots of equation (4.10) would not cross over the imaginary axis and lie only in the left half
plane of the complex plane whenM1 ≥ 0

(
g1 ≥

c

a
(x0)2fF

′
(x0)

)
for τ1 > 0. Hence part (i) of

the theorem is established.

IfM1 < 0 (or g1 <
c

a
(x0)2fF

′
(x0)), the only real roots of (4.20) that would satisfy (4.17)

are w2
+ =

−L+
√

(L2 − 4M1)

2
. Thus there exists a unique positive real w = w+ of (4.17) and

hence implying one corresponding pure imaginary root λ = iw+ of equation (4.10). Substituting
w = w+ in equation (4.15), we get

cos(w+τ1) =
w2
+ − g1(cz

0 + b)

cfx0F ′(x0)
= cos θ (say). (4.21)

It thus implies

τ1,n = (
1

w+
)(θ + 2nπ), n = 0, 1, 2, · · · (4.22)

Theminimumof τ1 can be obtained by puttingn = 0 in equation (4.22). At τ1,0, the rootλ = iw+

will cross the imaginary axis the first time and thus τ1,0 will be the threshold for bifurcation in
the stability of E0. This establishes part (ii) of the theorem. This also completes the proof of the
Theorem (4.1).
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4.2 Case 2: s ̸= 0 (the system is stressed)

When s ̸= 0, the solution of the system (4.1) gives the equilibrium E∗ = (x∗, y∗, z∗), where

x∗ =
a

s+ b+ cz∗
, (4.23)

y∗ =
sx∗

b+ dz∗
, (4.24)

and z∗ is the unique positive root of the ninth degree equation in z

1

K4

(
f

gz − h
− 1

)
=

[
(s+ b+ cz)(b+ dz)

a(s+ b+ dz)

]4
. (4.25)

Considering the transformations x = x∗ + ξ, y = y∗ + η and z = z∗ + ρ, the linearized system
of (2.5) about E∗ is obtained as

dξ

dt
= −(s+ b+ cz∗)ξ − cx∗ρ(t− τ1),

dη

dt
= sξ − (b+ dz∗)η − dy∗ρ(t− τ2),

dρ

dt
= fF

′
(x∗ + y∗)(ξ + η)− gρ. (4.26)

The characteristic equation for this linearized system is

λ3 + a1λ
2 + a2λ+ a3 + (b1λ+ b2) exp(−τ2λ) + (c1λ+ c2) exp(−τ1λ) = 0, (4.27)

where

a1 = g + 2b+ s+ (c+ d)z∗,

a2 = g(b+ dz∗) + (s+ b+ cz∗)(g + b+ dz∗),

a3 = g(s+ b+ cz∗)(b+ dz∗),

b1 = dy∗fF
′
(x∗ + y∗),

b2 = dy∗fF
′
(x∗ + y∗)(s+ b+ cz∗),

c1 = cx∗fF
′
(x∗ + y∗),

c2 = cx∗fF
′
(x∗ + y∗)(s+ b+ dz∗). (4.28)

In (4.28), all the parameters ai, bi and ci are positive.

Remark 1. Equation (4.27) is new in that it is a transcendental equation, cubic in λ in non-delay
terms and it has two delays. To the best of our knowledge, this equation has not been studied in
the literature.
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We study the stability ofE∗ by using Nyquist criterion following Freedman and Rao [34] and
obtain the following result:

Theorem 4.2. Consider (4.28) and let τ = max(τ1, τ2). The positive equilibrium E∗ is locally
asymptotically stable under any of the following conditions

(i) a2 > v2+ + b1 + c1 and τ < τ∗1 ,

(ii) v2+ − b1 − c1 < a2 < v2+ + b1 + c1 and τ < τ∗2 ,

where,

v+ =
(b1 + c1) +

√
(b1 + c1)2 + 4a1(a3 + b2 + c2)

2a1
, (4.29)

τ∗1 =
−v2+ + a2 − b1 − c1

b2 + c2
, (4.30)

τ∗2 =
η

b2 + c2
, (4.31)

and η is such that

0 < η < −v2+ + a2 + b1 + c1 and cos τv+ =
η + v2+ − a2
b1 + c1

. (4.32)

(Result (i) provides upper bound τ∗1 on τ = max(τ1, τ2) such that any delays τ1, τ2 in model (2.5)
with τ1, τ2 less than or equal to τ∗1 ensure stability of its equilibrium E∗. This suggests that any
oscillatory behavior in plain P53, active P53 andMdm2 can be expected only when either τ1 or τ2 or
both τ1 and τ2 are greater than τ∗1 . Result (ii) provides another upper bound τ∗2 on τ = max(τ1, τ2)
under different condition on model parameters.)

Proof. It can be noted that λ = 0 is not a root of (4.27) since a3 + b2 + c2 ̸= 0.

If λ = u+ iv satisfies (4.27), then u and v are real solutions of

u3 − 3uv2 + a1(u
2 − v2)+a2u+ a3 + ((c1u+ c2) cos(vτ1) + c1v sin(vτ1)) exp(−τ1u)+

((b1u+ b2) cos(vτ2) + b1v sin(vτ2)) exp(−τ2u) = 0, (4.33)

and

3u2v − v3 + 2a1uv + a2v+(c1v cos(vτ1)− (c1u+ c2) sin(vτ1)) exp(−τ1u)

+(b1v cos(vτ2)− (b1u+ b2) sin(vτ2)) exp(−τ2u) = 0. (4.34)
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We note that in the absence of delays that is when τ1 = 0 and τ2 = 0, the characteristic equation
(4.27) reduces to

λ3 + a1λ
2 + (a2 + b1 + c1)λ+ a3 + b2 + c2 = 0. (4.35)

Using Routh-Hurwitz criteria, it can be shown that all roots λ of the equation (4.35) are such
that Re(λ) < 0. Furthermore, since λ = 0 is not a root of (4.27), it follows that the equilibrium
E∗ of our model (2.5) is always asymptotically stable in the absence of delays. By continuity, all
eigenvalues of (4.27) will have negative real parts for sufficiently small τi > 0 (i = 1, 2) provided
that no eigenvalues bifurcate with real parts from+∞. We shall assume that this condition holds
in our case. Following analysis of [34] for the Nyquist criterion, range of delay can be estimated
for which E∗ will remain locally asymptotically stable.

Let us consider system (4.26) and the space of all real valued continuous functions (defined
on [−τ,∞), τ = max(τ1, τ2)) satisfying the initial conditions ξ(t) = 0, η(t) = 0, ρ(t) = 0 for
t < 0, ξ(0+) = k1 ̸= 0, η(0+) = k2 ̸= 0, ρ(0+) = k3 ̸= 0. Let U(S), V (S), andW (S) denote
the Laplace transforms of ξ(t), η(t), and ρ(t) respectively. Then taking the Laplace transform of
(4.26), we get

SU(S) = −(s+ b+ cz∗)U(S)− cx∗ exp(−τ1S)W (S) + k1,

SV (S) = sU(S)− (b+ dz∗)V (S)− dy∗ exp(−τ2S)W (S) + k2,

SW (S) = fF
′
(x∗ + y∗)(U(S) + V (S))− gW (S) + k3. (4.36)

Eliminating V andW from (4.36) and using (4.28), we obtain

U(S)[S3 + a1S
2+a2S + a3 + (b1S + b2) exp(−τ2S) + (c1S + c2) exp(−τ1S)]

= −k3[cx∗(S + b+ dz∗)] exp(−τ1S)− k2cx
∗fF

′
exp(−τ1S)

+ k1fF
′
exp(−τ2S) + k1[S

2 + S(g + b+ dz∗) + g(b+ dz∗)]. (4.37)

If U(S) has poles with positive real parts, then the inverse Laplace transform of U(S) will have
terms which exponentially increase with time. In order forE∗ to be locally asymptotically stable,
it is necessary and sufficient that all poles of U(S) have negative real parts. Using the Nyquist-
plot technique (see [21, 34] for details), it can be seen that the conditions for the local asymptotic
stability of E∗ are given as

(i) ImH(iv0) > 0,

(ii) ReH(iv0) = 0, (4.38)

where

H(S) = S3 + a1S
2 + a2S + a3 + (b1S + b2) exp(−τ2S) + (c1S + c2) exp(−τ1S), (4.39)
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and v0 is the smallest positive root of the equation (4.38(ii)).

The Nyquist criteria in our case reduces to the following statement:
If v0 is a solution of the equation (4.33) with u = 0, i.e., v0 satisfies

−a1v20 + a3 + b2 cos(v0τ2) + b1v0 sin(v0τ2) + c2 cos(v0τ1) + c1v0 sin(v0τ1) = 0, (4.40)

then the inequality
ϕ(τ1, τ2, v0) > ψ(τ1, τ2, v0), (4.41)

with
ϕ(τ1, τ2, v0) = −v30 + a2v0 + b1v0 cos(v0τ2) + c1v0 cos(v0τ1) (4.42)

and
ψ(τ1, τ2, v0) = b2 sin(v0τ2) + c2 sin(v0τ1) (4.43)

must hold.

By symmetry it follows that if v0 satisfies (4.40) then so does −v0. Hence without loss of
generality v0 can be assumed such that v0 > 0. Noting from (4.40) the following

a1v
2
0 = a3 + b2 cos(v0τ2) + b1v0 sin(v0τ2) + c2 cos(v0τ1) + c1v0 sin(v0τ1)

≤ a3 + b2 + b1v0 + c2 + c1v0, (4.44)

and denoting v+ the positive root of a1v2 − (b1 + c1)v − (a3 + b2 + c2) = 0,
such that

v+ =
(b1 + c1) +

√
(b1 + c1)2 + 4a1(a3 + b2 + c2)

2a1
, (4.45)

it follows that v0 ≤ v+. Thus v+ is the upper bound of v0.

Now if ϕ̃(τ1, τ2) and ψ̃(τ1, τ2) can be found such that

ϕ(τ1, τ2, v0)

τv0
≥ ϕ̃(τ1, τ2) > ψ̃(τ1, τ2) ≥

ψ(τ1, τ2, v0)

τv0
(4.46)

for τ < τ∗ and 0 < v0 ≤ v+, then Nyquist criteria (i.e., (4.40) and (4.41)) holds for those values
of τ1 and τ2. The upper bound τ∗ for delay τ is estimated in the following:
From (4.43),

ψ(τ1, τ2, v0)

τv0
≤ b2 + c2, (4.47)

hence we choose ψ̃(τ1, τ2) = b2 + c2.
From (4.42),

ϕ(τ1, τ2, v0)

τv0
=

−v20 + a2 + b1 cos(v0τ2) + c1 cos(v0τ1)
τ
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≥
−v2+ + a2 + b1 cos(v0τ2) + c1 cos(v0τ1)

τ

≥
−v2+ + a2 − b1 − c1

τ
= ϕ̃(τ1, τ2) (say). (4.48)

Supposing a2 > v2+ + b1 + c1 and τ <
−v2+ + a2 − b1 − c1

b2 + c2
, it follows from (4.48) that

ϕ(τ1, τ2, v0)

τv0
≥ ϕ̃(τ1, τ2) > b2 + c2 = ψ̃(τ1, τ2). (4.49)

Thus the Nyquist criterion is satisfied when a2>v2+ + b1 + c1 and τ <
−v2+ + a2 − b1 − c1

b2 + c2
.

This establishes part (i) of the theorem.

Next we consider the case when a2 ≤ v2+ + b1 + c1. Let us choose η > 0 and a2 such that

(i) v2+ − b1 − c1 < a2 < v2+ + b1 + c1, (ii) − v2+ + a2 + b1 + c1 − η > 0, (4.50)

and let

cos τv+ =
η + v2+ − a2
b1 + c1

, (4.51)

then using (4.48), it follows that

ϕ(τ1, τ2, v0)

τv0
≥

−v2+ + a2 + b1 cos(v0τ2) + c1 cos(v0τ1)
τ

≥
−v2+ + a2 + b1 cos(τv+) + c1 cos(τv+)

τ

=
η

τ
= ϕ̃(τ1, τ2) (say), (4.52)

after invoking (4.50) and (4.51). Now if τ <
η

b2 + c2
then the Nyquist criterion is satisfied. This

establishes part (ii) of the theorem and this completes the proof of the Theorem (4.2).

5 Numerical simulations

With a purpose to justify the stability results of this paper and to compare them with the results of
Bottani and Grammaticos model (2.1), we present in the following some numerical simulations.
All simulations are done using MATLAB with the fixed set of parameter values: a = 1, b =

0.0001, c = 0.001, d = 0.0001, h = 0 or 0.1, f = 1, andK = 28, same as considered in [25].
Mdm2 degradation in the absence of stress with s = 0 is considered to be g1 = 0.00016. In the
presence of stress mainly due to DNA damage with s = 1, it is taken to be g2 = 10g1.

Graphs of Figure 1 and Figure 2 correspond to the results of Theorem 4.1 when the system is
not stressed (s = 0). Figure 3 and Figure 4 represent results of Theorem 4.2 when the system is
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stressed (s = 1). In all Figures, Bottani andGrammaticosmodel (2.1) has been abbreviated as BG
model. h = 0 in these Figures means Mdm2 has no basal growth and h ̸= 0 (taken here h = 0.1)
represents it has basal growth. Figure 1 contains comparative graphs corresponding to result of
Theorem 4.1 (i) for densities of plain P53 and Mdm2 our model (2.5) versus BG model (2.1) for
s = 0, h = 0.1, g1 = 0.00016, and values of other parameters fixed as given above. The equilib-
riumE0 for eachmodel is (x0, y0, z0) = (1.5996, 0, 625.0666). Since ag1−c(x0)2fF

′
(x0) ≥ 0,

it implies thatE0 is locally asymptotically stable for all τ1 > 0. Figure 1 shows that plain P53 and
Mdm2 densities approach toE0 for τ1 = 4800, a value of delay considered in BGmodel. Figure 2
has been drawn with parameter values same as in Figure 1 except that h = 0 and its graphs corre-
spond to the result ofTheorem 4.1(ii) with τ1,0 = 2159.7. Figure 2(a) shows approach of densities
of plain P53 and Mdm2 to E0 when τ1 = 2158 < τ1,0. Graphs of Figure 2(b) correspond to an
unstable case when τ1 = 4800 > τ1,0.

Figure 3 (a) has been plotted for s = 1, h = 0.1 and g = g2 = 0.0016 keeping all other
parameters fixed as earlier. The graphs of this figure correspond to the result of Theorem 4.2 (i).
For this set of parameter values the positive equilibrium E∗ = (0.7628, 24.4661, 310.7900) and
threshold τ∗1 = 281.860. Graphs of this figure show densities of plain P53, active P53 and Mdm2
approaching toE∗ when τ1 = τ2 = 280 < τ < τ∗1 . Graphs of Figure 3(b) represent the unstable
case when τ1 = τ2 = 4800 > τ∗1 , a delay considered in BG model (2.1) for comparison purpose.
Figure 4 also corresponds to the result of Theorem 4.2 (i) with same set of parameter values as in
Figure 3 except for h = 0 i.e. without basal growth of Mdm2. The equilibrium E∗ in this case is
(0.7735,26.347,292.601) with threshold τ∗1 = 257.786. Figure 4 (a) corresponds to the case when
τ1 = τ2 = 256 < τ∗1 in that all the proteins plain P53, active P53 andMdm2 approachE∗. Figure
4 (b) corresponds to the case when E∗ is unstable with τ1 = τ2 = 4800 > τ∗1 .

From these simulations, following observations may be highlighted:

• Time delays in the reproduction process in Mdm2 considered in earlier studies and the
time delays in the degradation process in plain P53 and active P53 considered in this study
although seem to retain basic nature of dynamics of P53-Mdm2 loop (i.e proteins P53 and
Mdm2 either approach to stable state or display oscillatory behavior) but with a big dif-
ference in the early stages of the dynamics both in absence and presence of stress. This
difference in early stages in our model is in terms of slow oscillatory behavior with much
lower peaks than in BG model with the oscillatory dynamics catching up with BG model
in later stages. This difference can be noted in all figures except Figure 1 when the system
is not stressed (s = 0), Mdm2 has basal growth and the degradation rate (g1) of Mdm2 is
greater than a definite threshold value.
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• Comparing Figures 3 and 4 for large times, it can be noted that our model and BG model
has almost similar dynamics both in stability and oscillatory behavior but with a difference
in the behavior of active P53. It attains higher peaks when Mdm2 has no basal growth
(h = 0) than when Mdm2 has basal growth (h = 0.1). Under stressed condition with
DNA damage (Figures 3 and 4), it can be noted that switch in the nature of dynamics from
stability to oscillations is delayed if Mdm2 has basal growth.

• Mdm2 dynamics in early stages in BG model and in our study under stressed condition of
DNA damage seems to be evolving in opposite direction with peaks of oscillations in our
study being lower than BG model irrespective of whether Mdm2 has basal growth or not
(Figures 3 and 4). Furthermore, the oscillatory dynamics of Mdm2 in our study and BG
model seems to be evolving in different phases.
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Figure 1: Comparative plots for plain P53 and Mdm2 our model (2.5) (red continuous line) versus BG
model (2.1) (blue broken line). These graphs correspond to the results of Theorem 4.1(i). Section 5 has
details of parameter values used in this figure with s = 0, h = 0.1, τ1 = 4800.



P53-Mdm2 Loop Stability and Oscillatory Dynamics 527

0 1 2 3 4 5

x 10
4

9.6

9.8

10

10.2

10.4

10.6

P
la

in
 P

5
3

(a)

0 1 2 3 4 5

x 10
4

94

96

98

100

102

104

Time ’t’ in sec.

M
d

m
2

0 2 4 6 8 10 12

x 10
4

50

100

150

200

250

0 2 4 6 8 10 12

x 10
4

4

6

8

10

12

14

16

(b)

Figure 2: Comparative plots for plain P53 and Mdm2 our model (2.5) (red continuous line) versus BG
model (2.1) (blue broken line). These graphs correspond to the results of Theorem 4.1(ii). Section 5 has
details of parameter values used in this figure with (a) plotted for s = 0, h = 0, τ1 = 2158 and
(b) for s = 0, h = 0, τ1 = 4800.
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Figure 3: Comparative plots for plain P53, active P53 and Mdm2 our model (2.5) (red continuous line)
versus BGmodel (2.1) (blue broken line). These graphs correspond to the results ofTheorem 4.2(i). Param-
eter values used in this figure are given in section 5 with (a) plotted for s = 1, h = 0.1, τ1 = 280, τ2 = 280
and (b) for s = 1, h = 0.1, τ1 = 4800, τ2 = 4800.
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Figure 4: Comparative plots for plain P53, active P53 and Mdm2 our model (2.5) (red continuous line)
versus BGmodel (2.1) (blue broken line). These graphs correspond to the results ofTheorem4.2 (i). Param-
eter values used in this figure are given in section 5 with (a) plotted for s = 1, h = 0, τ1 = 256, τ2 = 256
and (b) for s = 1, h = 0, τ1 = 4800, τ2 = 4800.
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6 Conclusion

In this paper, the stability behavior of P53-Mdm2 negative feedback loop is studied under two
situations: (i) when the system is stressed (represented by binary parameter s = 1) and (ii) when
it is not (s = 0). The system is supposed to be in stressed condition due to DNA damage. In most
of earlier studies, P53 induced transcriptional delay in the production of Mdm2 has been consid-
ered. This paper analyses the Mdm2 induced delay effect in the degradation of P53 and presents
its comparative study with Bottani and Grammaticos model (2.1) in both cases s = 0 and s = 1.
When s = 0, it is observed that the natural degradation rate g1 of Mdm2 plays an important role
in the dynamical behavior of the system. It is found that for values of g1 greater than a definite
threshold the model system is stable and all its solutions tend to the equilibrium E0. However,
lower values of g1 may produce oscillations in plain P53 andMdm2 proteins if theMdm2 induced
delay τ1 in degradation of plain P53 is greater than the threshold τ1,0 and large (Theorem 4.1).
In case, when the system is stressed (s = 1), our analysis uses Nyquist criterion to determine
thresholds τ∗1 and τ∗2 under different conditions on model parameters such that delays τ1 and τ2
satisfying either max(τ1, τ2)=τ < τ∗1 or τ < τ∗2 guarantee stability of the system. The oscilla-
tory behavior in plain P53, active P53 and Mdm2 proteins if any, may be observed beyond these
thresholds (Theorem 4.2). Since the comparative study of this paper with Bottani and Grammati-
cos model through numerical simulations for specific set of parameter values shows difference
in the dynamics of plain P53, active P53 and Mdm2 proteins specially in the early stages or in
terms of peaks of oscillations, we suggest that more laboratory experiments may be undertaken
to corroborate the results of this paper especially during the initial and the advanced stages of
cancers.
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