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Recovering Differential Operators on the Half-Line with
Indefinite DiscontinuousWeights

Vjacheslav Yurko

Abstract. Non-self-adjoint second-order differential operators on the half-line with indefi-
nite discontinuous weights are studied. Properties of spectral characteristics are established
and inverse problems of recovering operators from their spectral characteristics are investi-
gated. For these class of nonlinear inverse problems algorithms for constructing the global
solutions are developed, and uniqueness theorems are proved.

1 Introduction

We consider the following differential equation

−y′′(x) + q(x)y(x) = λr(x)y(x), x > 0. (1.1)

Here λ is the spectral parameter, r(x) = −β2 for x < a, r(x) = α2 for x > a, and α > 0,

β > 0, a ∈ (0, π).The function q(x) is complex-valued, and (1 + x)q(x) ∈ L(0,∞).Denote by
L the non-self-adjoint boundary value problem for Eq. (1.1) with the boundary condition

U(y) := y′(0)− hy(0) = 0, (1.2)

and with the jump conditions

y(a+ 0) = a1y(a− 0), y′(a+ 0) = y′(a− 0)/a1 + a2y(a− 0), a1 ̸= 0, (1.3)

here h, a1, a2 are complex numbers, and a± := a1 ± iβ/(αa1) ̸= 0.The function r(x) changes
sign in the interior point x = a which is called the turning point. In this paper we establish
properties of spectral characteristics of L, and study inverse problems of recovering L from its
spectral characteristics. For definiteness, letRea1 > 0 orRea1 = 0, Ima1 > 0.
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Differential equations with turning points and indefinite weights arise in various areas of
mathematics as well as in applications (see [1, 2, 3] for details). In particular, they appear in
elasticity, optics, geophysics, electronics and other branches of natural sciences and engineering.
Moreover, a wide class of differential equations with Bessel-type singularities and their pertur-
bations can be reduced to differential equations with turning points and indefinite weights. It is
also known that inverse spectral problems play an important role for solving nonlinear integrable
evolution equations (KdV equation and others). Inverse problems for equations with turning
points and indefinite weights help to study the blow-up behavior of solutions for such nonlinear
equations.

Inverse spectral problems for the classical Sturm-Liouville equation−y′′+q(x)y = λy, have
been studied fairly completely (see [4] and the references therein). The presence of turning points
and indefinite weights in the differential equation produces essential qualitative modifications in
the investigations of inverse problems. Inverse problems for the Sturm-Liouville equation on the
half-line with a smooth indefinite weight were studied in [5]. Inverse problems for the boundary
value problem (1.1)-(1.3) have not been studied yet. For solving these class of inverse problems
we develop ideas of the method of spectral mappings [6]. Using this approach we obtain algo-
rithms for constructing the global solutions of these nonlinear inverse problems, and prove the
corresponding uniqueness theorems.

2 Auxiliary propositions

Letφ(x, λ) andS(x, λ)be solutions of Eq. (1.1) satisfying (1.3) and the initial conditionsφ(0, λ) =
S′(0, λ) = 1, φ′(0, λ) = h, S(0, λ) = 0. For each fixed x, the functions φ(ν)(x, λ) and
S(ν)(x, λ), ν = 0, 1, are entire in λ of order 1/2, and

⟨φ(x, λ), S(x, λ)⟩ ≡ 1, (2.1)

where ⟨y(x), z(x)⟩ := y(x)z′(x)− y′(x)z(x) is the Wronskian of y and z.

Let λ = ρ2, Imρ ≥ 0, ρ = σ + iτ, and let Π+ be the λ-plane with the two-sided cut Π0

along the arc B+ := {λ : λ ≥ 0}. Put Π := Π+ \ {0}.The sets Π+, Π0 and Π corresponds
to the sets Λ+ := {ρ : Imρ > 0}, Λ0 := {ρ : Imρ = 0}, Λ := {ρ : Imρ ≥ 0, ρ ̸= 0},
respectively.

LetE(x, ρ), x ≥ 0, Imρ ≥ 0, be the solution of Eq. (1.1) satisfying (1.3) and the condition
E(x, ρ) exp(−iαρx) → 1 as x→ ∞.
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Lemma 2.1. For each x, the functionsE(ν)(x, ρ), ν = 0, 1, are regular for ρ ∈ Λ+, are continuous
for Imρ ≥ 0, and are continuously differentiable for ρ ∈ Λ. For |ρ| → ∞, Imρ ≥ 0, ν = 0, 1,

the following asymptotical formulas hold:

E(ν)(x, ρ) = (iαρ)ν exp(iαρx)[1], x > a, (2.2)

E(ν)(x, ρ) =
(iα)(βρ)ν

2β
exp(iαρa)

(
a− exp(βρ(x− a))[1]+

(−1)νa+ exp(−βρ(x− a))[1]
)
, x < a, (2.3)

where [1] = 1 +O(ρ−1).Moreover, for real ρ ̸= 0,

⟨E(x, ρ), E(x,−ρ)⟩ ≡ −2iρ. (2.4)

Proof. Let e(x, ρ) be the Jost solution for Eq. (1.1) (see [4, Ch. 2]). Then E(x, ρ) ≡ e(x, ρ) for
x > a, hence (2.2) is valid. Consider the sectors Sj := {ρ : arg ρ ∈ [jπ/2, (j + 1)π/2]},
S0
δ := {ρ : arg ρ ∈ [π/2 − δ, π/2 + δ]}, Sj,δ := Sj \ S0

δ , j = 0, 1, 0 < δ < π/4. It is known
(see, e.g. [4, Ch.1]) that in each sector Sj there exists a fundamental system of solutions of Eq.
(1.1) {yk(x, ρ)}k=1,2 for x ∈ [0, a] such that

y
(ν)
k (x, ρ) = ((−1)k−1βρ)ν exp((−1)k−1βρx)[1], |ρ| → ∞, ρ ∈ Sj , x ∈ [0, a], ν = 0, 1.

Hence we can write

E(x, ρ) = A1(ρ)y1(x, ρ) +A2(ρ)y2(x, ρ), x ∈ [0, a], (2.5)

where Ak(ρ) do not depend on x. Using (1.3) and (2.2) we obtain for |ρ| → ∞, ρ ∈ Sj :

A1(ρ) =
iαa−
2β

exp(iαρa) exp(−βρa)[1], A2(ρ) = − iαa+
2β

exp(iαρa) exp(βρa)[1].

Substituting these relations into (2.5) we arrive at (2.3). The other assertions of the lemma follow
from the properties of e(x, ρ). Lemma 1 is proved.

Analogously one can prove that for |ρ| → ∞, Imρ ≥ 0, ν = 0, 1, the following asymptotical
formulas hold:

φ(ν)(x, λ) =
(
(βρ)ν exp(βρx)[1] + (−βρ)ν exp(−βρx)[1]

)
/2, x ∈ [0, a− 0], (2.6)

φ(ν)(x, λ) =
(
(a− exp(βρa)[1] + a+ exp(−βρa)[1])(iαρ)ν exp(iαρ(x− a))[1]+

(a+ exp(βρa)[1] + a− exp(−βρa)[1])(−iαρ)ν exp(−iαρ(x− a))[1]
)
/4, (2.7)



158 V. Yurko

x ∈ [a+ 0,∞). Consider the function

∆(ρ) := E′(0, ρ)− hE(0, ρ). (2.8)

Clearly,∆(ρ) is regular for ρ ∈ Λ+, is continuous for Imρ ≥ 0, and is continuously differentiable
for ρ ∈ Λ. It follows from (2.3) and (2.8) that

∆(ρ) = (iαρ) exp(iαρa)
(
a+ exp(βρa)[1] + a− exp(−βρa)[1]

)
/2, (2.9)

|ρ| → ∞, Imρ ≥ 0. Analogously we obtain for |ρ| → ∞, Imρ ≥ 0:

E(0, ρ) = (iα) exp(iαρa)
(
a− exp(−βρa)[1]− a+ exp(βρa)[1]

)
/(2β), (2.10)

∆1(ρ) = (iαρ) exp(iαρa)
(
(iα+ β)a+ exp(βρa)[1] + (iα− β)a− exp(−βρa)[1]

)
/4, (2.11)

here∆1(ρ) =
d
dλ∆(ρ) = 1

2ρ
d
dρ∆(ρ). It follows from (2.9) and (2.11) that for large |ρ|, the func-

tion∆(ρ) has simple zeros

ρk = i((kπ)/(βa) + θ) +O(k−1), k → ∞, θ = (2iβa)−1 ln(−a−/a+). (2.12)

Moreover,

|∆(ρ)| ≥ C|ρ| exp(β|σ|a) exp(ατa), ρ ∈ Gδ, (2.13)

whereGδ := {ρ : Imρ ≥ 0, |ρ− ρk| ≥ δ}.

3 Inverse problem from theWeyl function

Consider the function

Φ(x, λ) := E(x, ρ)/∆(ρ), (3.1)

and put M(λ) := Φ(0, λ). The function M(λ) will be called the Weyl function. By virtue of
(3.1),

M(λ) = E(0, ρ)/∆(ρ). (3.2)

It is easy to check that

Φ(x, λ) = S(x, λ) +M(λ)φ(x, λ). (3.3)
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According to (2.1) and (3.3), we have

⟨φ(x, λ),Φ(x, λ)⟩ ≡ 1. (3.4)

Denote B := {λ = ρ2 : ρ ∈ Λ, ∆(ρ) = 0}, B′ := {λ = ρ2 : ρ ∈ Λ+, ∆(ρ) = 0},
B′′ := {λ = ρ2 : ρ ∈ Λ0, ρ ̸= 0, ∆(ρ) = 0}.ThenB = B′ ∪B′′. Clearly,B′ is a countable set,
andB′′ is a bounded set. The functionM(λ) is regular inΠ+\B′, and continuously differentiable
in Π \ B. The set of singularities ofM(λ) (which is called the spectrum of L and is denoted by
s(L)) coincides with the set B0 := B+ ∪ B.The values of λ, for which Eq. (1.1) has non-trivial
solutions satisfying (1.2), (1.3) and the condition y(∞) = 0 are called eigenvalues ofL. By virtue
of (2.9), (2.10) and (3.2), we get

M(λ) = (−1)j+1(βρ)−1[1], |ρ| → ∞, ρ ∈ Sj,δ. (3.5)

Theorem 3.1. There are no eigenvalues for λ > 0. The set B′ coincides with the set of non-zero
eigenvalues. If λ0 = ρ20 > 0 and∆(ρ0) = 0, then∆(−ρ0) ̸= 0.

Proof. Letλ0 = ρ20 > 0be an eigenvaluewith an eigenfunction y0(x).Then y0(x) = A+E(x, ρ0)+

A−E(x,−ρ0). As x→ ∞ one has y0(x) ∼ 0, E(x,±ρ0) ∼ exp(±iαρ0x).Hence A+ = A− =

0. If λ0 = ρ20 > 0 and∆(ρ0) = 0, then it follows from (2.8) and (2.4) thatE(0, ρ0)∆(−ρ0) ̸= 0,

and consequently,∆(−ρ0) ̸= 0.

If λ0 = ρ20 ∈ B′, then U(E(x, ρ0)) = ∆(ρ0) = 0, i.e. E(x, ρ0) is an eigenfunction, and
λ0 = ρ20 is an eigenvalue. Conversely, let λ0 = ρ20, Imρ0 > 0 be an eigenvalue with an eigen-
function y0(x).Then d0 := y0(0) ̸= 0, y′0(0) = d0h, and consequently, y0(x) ≡ d0φ(x, λ0).On
the other hand, y0(x) = dE(x, ρ0), d ̸= 0.Therefore,∆(ρ0) = U(E(x, ρ0)) = 0, i.e. λ0 ∈ B′.

Without loss of generality we will assume below that α = 1. In this section we consider the
following inverse problem.

Inverse problem 1. Given the Weyl functionM(λ), construct L.

Let us prove the uniqueness theorem for this inverse problem. For this purpose, together
with L we consider a boundary value problem L̃ of the same form but with q̃(x), ã, β̃, h̃, ã1, ã2
instead of q(x), a, β, h, a1, a2. We agree that if a certain symbol χ denotes an object related to L,
then χ̃ will denote an analogous object related to L̃, and χ̂ := χ− χ̃.

Theorem 3.2. IfM(λ) = M̃(λ), then L = L̃, i.e. q(x) = q̃(x) a.e., a = ã, β = β̃, h = H̃,

a1 = ã1, a2 = ã2.Thus, the specification of the Weyl functionM(λ) uniquely determines L.
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Proof. Using (3.5) we calculate

β = −( lim
|ρ|→∞

ρM(λ))−1, arg ρ ∈ [0, π/4]. (3.6)

Since M(λ) = M̃(λ), it follows that β = β̃. Furthermore, ρk = ρ̃k, and by virtue of (2.12),
a = ã and a1 = ã1. Consider the functions

T1(x, λ) = φ(x, λ)Φ̃′(x, λ)− Φ(x, λ)φ̃′(x, λ),

T2(x, λ) = Φ(x, λ)φ̃(x, λ)− φ(x, λ)Φ̃(x, λ).
(3.7)

Using (3.4) and (3.7) we calculate

φ(x, λ) = T1(x, λ)φ̃(x, λ) + T2(x, λ)φ̃
′(x, λ),

Φ(x, λ) = T1(x, λ)Φ̃(x, λ) + T2(x, λ)Φ̃
′(x, λ),

(3.8)

T1(x, λ)− 1 = φ(x, λ)
(
Φ̃′(x, λ)− Φ′(x, λ)

)
− Φ(x, λ)

(
φ̃′(x, λ)− φ′(x, λ)

)
. (3.9)

Taking (3.7), (3.9), (2.13)-(3.1), (2.2)-(2.3) and (2.6)-(2.7) into account, we obtain for ρ ∈ Gδ∩G̃δ :

|T1(x, λ)− 1| ≤ C/|ρ|, |T2(x, λ)| ≤ C/|ρ|. (3.10)

SinceM(λ) = M̃(λ), it follows from (3.3) and (3.7) that for each fixed x, the functions Tk(x, λ),
k = 1, 2, are entire in λ of order 1/2.Together with (3.10) this yields T1(x, λ) ≡ 1, T2(x, λ) ≡ 0.

By virtue of (3.8), one has φ(x, λ) ≡ φ̃(x, λ), Φ(x, λ) ≡ Φ̃(x, λ), and consequently, L = L̃.
Theorem 3.2 is proved.

4 Inverse problem from the spectral data

In this section, for brevity, we confine ourselves to the case of a simple spectrum in the following
sense: we will say thatL has a simple spectrum if all zeros of∆(ρ) are simple, have no limit points,
and ρM(λ) = O(1) as ρ→ 0.

Suppose that the spectrum of L is simple. Then B = {ρ2k}k∈ω , where ω = ω0 ∪ ω0, B′′ =

{ρ2k}k∈ω0 , B′ = {ρ2k}k∈ω0 , ω0 is a finite set of indices, ω0 is a countable set of indices (ω0 =

{k; k > k0} for some k0), and (2.12) holds k ∈ ω0. Let

Mk =
E(0, ρk)

∆1(ρk)
̸= 0, ρk ∈ B; αk =

{
Mk, ρk ∈ B′,

Mk/2, ρk ∈ B′′,
(4.1)

V (λ) :=
1

2πi

(
M−(λ)−M+(λ)

)
, λ > 0; M±(λ) := lim

z→0, Re z>0
M(λ± iz). (4.2)
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Then

lim
λ→λk, λ∈Π

(λ− λk)M(λ) =Mk. (4.3)

Using (2.10)-(2.12) and (4.1) we calculate

αk = −2[1]/(aβ2), k → ∞. (4.4)

According to (3.2) and (4.2), one has

V (λ) =
1

2πi

(E(0,−ρ)
∆(−ρ)

− E(0, ρ)

∆(ρ)

)
, ρ > 0.

Taking (2.4) into account, we infer

V (λ) =
ρ

π∆(ρ)∆(−ρ)
, ρ > 0. (4.5)

The data S := ({V (λ)}λ>0, {λk, αk}k∈ω) are called the spectral data of L. It follows from the
above arguments that the following properties hold:
1) ρk ̸= ρs for k ̸= s; if ρk ∈ B′′, then−ρk /∈ B′′.

2) αk ̸= 0, and (2.12) and (4.4) hold.
3) ρV (λ) = O(1) as λ→ 0; ρV (λ) = O(exp(−2βρa)) as ρ > 0, ρ→ ∞.

4) V (λ) is continuously differentiable forB+ \B′′.
5) For λk ∈ B′′ there exist finite limits Vk := limλ→λk

(λ− λk)V (λ), and

Vk = iαkπ
−1sign ρk . (4.6)

Relation (4.6) is a connection between V (λ), which describes the continuous spectrum, and
{λk, αk}, λk ∈ B′′, related to the discrete spectrum. LetΩδ := B+ \ (∪λk∈B′′ [λk − δ, λk + δ]).

Theorem 4.1. The specification of the spectral data S uniquely determines the Weyl functionM(λ)

via the formula:

M(λ) =
∑
λk∈B

αk

λ− λk
+

∫ ∞

0

V (µ)

λ− µ
dµ, λ /∈ s(L), (4.7)

where the integral is understood in the principal value sense:
∫∞
0 := limδ→0

∫
Ωδ
.

Proof. Take rN = ((N + χ)π(βa)−1)2 > 0 such that the circles RN := {λ : |λ| = rN} lie in
Gδ for sufficiently small δ > 0, and consider the contour integral

IN (λ) :=
1

2πi

∫
RN

M(µ)

λ− µ
dµ, λ ∈ intRN (4.8)
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with counterclockwise circuit. It follows from (3.2), (2.10) and (2.13) that |M(λ)| ≤ C|ρ|−1, λ ∈
Gδ, and consequently, lim

N→∞
IN (λ) = 0. For each λk ∈ B′′ on the upper (lower) side of the cut

Π0 we take a semicircle κδ(λk) := {λ : |λ − λk| = δ, Imλ > 0 (Imλ < 0)}, and choose
δ > 0 such that the sets intκδ(λk) do not intersect each other, and do not contain points of B′.

LetΠδ be the two-sided cutΠ0 without the δ- neighbourhoods of the points ofB′′, and let Γδ :=

Πδ∪(∪λk∈B′′ κδ(λk)) be the contourwith counterclockwise circuit. DenoteΓδ,N := Γδ∩intRN .
Contracting the contourRN in (4.8) to the real axis and using the residue theorem, we get

IN (λ) =
1

2πi

∫
Γδ,N

M(µ)

λ− µ
dµ+

∑
λk∈B′, |λk|<rN

αk

λ− λk
−M(λ).

This yields asN → ∞:

M(λ) =
∑

λk∈B′

αk

λ− λk
+

1

2πi

∫
Γδ

M(µ)

λ− µ
dµ. (4.9)

Using (4.1) and (4.3) we obtain for each λk ∈ B′′:

lim
δ→0

1

2πi

∫
κδ(λk)

M(µ)

λ− µ
dµ =

αk

λ− λk
.

By virtue of (4.2),
1

2πi

∫
Γδ

M(µ)

λ− µ
dµ =

∫
Ωδ

V (µ)

λ− µ
dµ.

Hence, from (4.9) as δ → 0, we arrive at (4.7). Theorem 4.1 is proved.

In this section we study the following inverse problem

Inverse problem 2. Given the spectral data S, construct L.

Let us formulate the uniqueness theorem for this inverse problem.

Theorem 4.2. If S = S̃, then L = L̃, i.e. q(x) = q̃(x) a.e., a = ã, β = β̃, h = H̃, a1 = ã1,

a2 = ã2.Thus, the specification of the spectral data S uniquely determines L.

Theorem 4.2 follows from Theorems 3.2 and 4.1. Indeed, let S = S̃. By virtue of Theorem
4.1, this yieldsM(λ) ≡ M̃(λ). UsingTheorem 3.2 we conclude that L = L̃.

Let us now give a constructive procedure for the solution of the inverse problem. For brevity,
let a2 be known. In order to construct the solution of the inverse problem we will use ideas of the
method of spectral mappings [6]. The central role for solving the inverse problem will be played
by the so-calledmain equation of the inverse problem which connects the spectral characteristics
with the corresponding solutions of the differential equation. We give a derivation of the main
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equation, which is a linear equation in a suitable Banach space. It is important that the nonlinear
inverse problem is reduced to the solution of the linear main equation. We prove the unique
solvability of the main equation. Using the solution of the main equation we can construct all
parameters of L.

Let the spectral data S be given. Using (4.7) we construct theWeyl functionM(λ).Then we
calculate the number β via (3.6), and the numbers a, a1 using (2.12). Furthermore, we choose a
model boundary value problem L̃ such that ã = a, β̃ = β, ã1 = a1, and arbitrary in the rest (for
example, one can take q̃(x) ≡ 0 and h̃ = 0). Let S̃ = ({Ṽ (λ)}λ>0, {λ̃k, α̃k}k∈ω̃), λ̃k = ρ̃2k be
the spectral data of L̃. Denote λk0 = λk, λk1 = λ̃k, αk0 = αk, αk1 = α̃k,

R(x, λ, µ) :=
⟨φ(x, λ), φ(x, µ)⟩

λ− µ
=

∫ x

0
r(t)φ(t, λ)φ(t, µ) dt,

Qλ,µ(x) = R(x, λ, µ)V̂ (µ), Qni,µ(x) = R(x, λni, µ)V̂ (µ), µ > 0

Qλ,kj(x) = R(x, λ, λkj)αkj , Qni,kj(x) = R(x, λni, λkj)αkj , φkj(x) = φ(x, λkj).

Similarly we define R̃, Q̃λ,µ, Q̃λ,kj , Q̃ni,µ, Q̃ni,kj , φ̃kj but with φ̃ instead of φ. If ω0 ̸= ω̃0, then
we define the corresponding functions identically zero (for example, if n ∈ ω0 \ ω̃0, then φn1 =

Qn1,µ = Qn1,kj = Qλ,n1 = 0). Denote ξk = |ρk − ρ̃k| + |αk − α̃k|, χk = 1/ξk if ξk ̸= 0,

and χk = 0 if ξk = 0. Let ω′ := ω ∪ ω̃, and let ω1 be the set of indices v = (k, j), where
k ∈ ω′, j = 0, 1. For x < a, λ = ρ2, µ = θ2, ρ > 0, θ > 0, n, k ∈ ω′, i, j = 0, 1, we put

ψλ(x) = φ(x, λ) exp(−βρx), ψk0(x) = (φk0(x)− φk1(x))χk, ψk1(x) = φk1(x),

Dλ,µ(x) = Qλ,µ(x) exp(β(θ − ρ)x), Dλ,k0(x) = Qλ,k0(x) exp(−βρx)ξk,

Dλ,k1(x) = (Qλ,k0(x)−Qλ,k1(x)) exp(−βρx),

Dn0,µ(x) = (Qn0,µ(x)−Qn1,µ(x))χn exp(βθx), Dn1,µ(x) = Qn1,µ(x) exp(βθx),

Dn0,k0(x) = (Qn0,k0(x)−Qn1,k0(x))χnξk , Dn1,k0(x) = Qn1,k0(x)ξk,

Dn1,k1(x) = (Qn1,k0(x)−Qn1,k1(x)),

Dn0,k1(x) = (Qn0,k0(x)−Qn1,k0(x)−Qn0,k1(x) +Qn1,k1(x))χn .

Similarlywe define ψ̃λ, ψ̃kj , D̃λ,µ, D̃λ,kj , D̃ni,µ, D̃ni,kj . It follows from (2.6)-(2.7), (2.9), (2.12),
(4.4)-(4.5) and Schwarz’s lemma that for x < a, λ = ρ2, µ = θ2, ρ > 0, θ > 0, n, k ∈
ω′, i, j = 0, 1, the following estimates hold for large ρ, θ, n, k:

ξk = O(k−1), ψkj(x) = O(1),
∂j

∂λj
ψλ(x) = O(1), (4.10)
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Dλ,µ(x), Dni,µ(x) = O
(exp(−2βθ(a− x))

θ2

)
,

Dλ,kj(x) = O
(ξk
k

)
,

Dni,kj(x) = O
( ξk
(|n− k|+ 1)

)
.


(4.11)

The same estimates are valid for ψ̃λ, ψ̃kj , D̃λ,µ, D̃ni,µ, D̃λ,kj , D̃ni,kj .

Theorem 4.3. For each fixed x < a, the following relations hold:

ψ̃λ(x) = ψλ(x) +

∫ ∞

0
D̃λ,µ(x)ψµ(x) dµ+∑

(k,j)∈ω1

D̃λ,kj(x)ψkj(x), λ = ρ2, ρ > 0,

ψ̃ni(x) = ψni(x) +

∫ ∞

0
D̃ni,µ(x)ψµ(x) dµ+∑

(k,j)∈ω1

D̃ni,kj(x)ψkj(x), (n, i) ∈ ω1.


(4.12)

Proof. Take δ0 > 0 such that |Reρk| < δ0, |Re ρ̃k| < δ0 for all ρ2k ∈ B, ρ̃2k ∈ B̃. Let γ = γ+∪γ−
be the contour in the λ- plane, where γ+ := {λ = u+ iv : v = ±2δ20 , u ≥ 0} and γ− := {λ =

u+iv : u = δ20−v2/(4δ20), u ≤ 0} is the image of the setP := {ρ = σ+iτ : σ = ±δ0, τ ≥ δ0}
under the map ρ → λ. Denote by γN := (γ ∩ intRN ) ∪ (RN ∩ int γ) the closed contour (with
counterclockwise circuit), and denote by γ0N := (γ ∩ intRN ) ∪ (RN \ int γ) the closed contour
(with clockwise circuit). Let

Ω′
δ := B+ \

(( ∪
λk∈B′′

[λk − δ, λk + δ]
)∪( ∪

λ̃k∈B̃′′

[λ̃k − δ, λ̃k + δ]
))
.

Consider the integral

εN,k(x, λ) :=
1

2πi

∫
RN

Tk(x, µ)− δ1k
λ− µ

dµ,

where δ1k is the Kronecker delta, and Tk(x, λ) are defined by (3.7). By virtue of (3.10),

lim
N→∞

εN,k(x, λ) = 0. (4.13)

By Cauchy’s integral formula,

Tk(x, λ)− δ1k =
1

2πi

∫
γ0
N

Tk(x, µ)− δ1k
λ− µ

dµ, λ ∈ int γ0N ,
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and consequently,

Tk(x, λ)− δ1k =
1

2πi

∫
γN

Tk(x, µ)

λ− µ
dµ− εN,k(x, λ).

Substituting into (3.8) we obtain

φ(x, λ) = φ̃(x, λ) +
1

2πi

∫
γN

φ̃(x, λ)T1(x, µ) + φ̃′(x, λ)T2(x, µ)

λ− µ
dµ− εN (x, λ),

where εN (x, λ) = φ̃(x, λ)εN,1(x, λ) + φ̃′(x, λ)εN,2(x, λ). By virtue of (4.13),

lim
N→∞

εN (x, λ) = 0. (4.14)

Taking (3.7) into account we infer

φ(x, λ) = φ̃(x, λ) +
1

2πi

∫
γN

(
φ̃(x, λ)(φ(x, µΦ̃′(x, µ)− Φ(x, µ)φ̃′(x, µ))

+φ̃′(x, λ)(Φ(x, µ)φ̃(x, µ)− φ(x, µ)Φ̃(x, µ)
) dµ

λ− µ
− εN (x, λ).

By virtue of (3.3), this yields

φ̃(x, λ) = φ(x, λ) +
1

2πi

∫
γN

R̃(x, λ, µ)M̂(µ)φ(x, µ) dµ+ εN (x, λ), (4.15)

since the terms with S(x, µ) vanish by Cauchy’s theorem.

Let Π′
δ be the two-sided cut Π0 without the δ- neighbourhoods of the points of B′′ ∪ B̃′′,

and let
Γ′
δ := Π′

δ

∪( ∪
λk∈B′′

κδ(λk)
)∪( ∪

λ̃k∈B̃′′

κδ(λ̃k)
)

be the contour with counterclockwise circuit. Denote Γ′
δ,N := Γ′

δ ∩ intRN . Contracting the
contour γN in (4.15) to the real line and using the residue theorem, we calculate

φ̃(x, λ) = φ(x, λ) +
1

2πi

∫
Γ′
δ,N

R̃(x, λ, µ)M̂(µ)φ(x, µ) dµ

+
∑

λk∈B′, |λk|<rN

R̃(x, λ, λk0)αk0φk0(x)−
∑

λ̃k∈B̃′, |λ̃k|<rN

R̃(x, λ, λk1)αk1φk1(x) + εN (x, λ).

Together with (4.14) this yields asN → ∞:

φ̃(x, λ) = φ(x, λ) +
1

2πi

∫
Γ′
δ

R̃(x, λ, µ)M̂(µ)φ(x, µ) dµ+
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∑
k∈ω0∪ω̃0

(
Q̃λ,k0(x)φk0(x)− Q̃λ,k1(x)φk1(x)

)
. (4.16)

Since

lim
δ→0

1

2πi

∫
κδ(λki)

R̃(x, λ, µ)M̂(µ)φ(x, µ) dµ = (−1)iR̃(x, λ, λki)αkiφki(x), λk0 ∈ B′′, λk1 ∈ B̃′′,

lim
δ→0

∫
Π′

δ

R̃(x, λ, µ)M̂(µ)φ(x, µ) dµ = lim
δ→0

∫
Ω′

δ

Q̃λ,µ(x)φ(x, µ) dµ =

∫ ∞

0
Q̃λ,µ(x)φ(x, µ) dµ,

it follows from (4.16) that for each x < a, λ ∈ C :

φ̃(x, λ) = φ(x, λ)+

∫ ∞

0
Q̃λ,µ(x)φ(x, µ) dµ+∑

k∈ω′

(Q̃λ,k0(x)φk0(x)− Q̃λ,k1(x)φk1(x)), (4.17)

where the integral is understood in the principal value sense:
∫∞
0 := limδ→0

∫
Ω′

δ
. Taking our

notations into account we conclude that (4.12) follows from (4.17). Theorem 4.3 is proved.

One can prove similarly that

Dλ,µ(x)− D̃λ,µ(x) +

∫ ∞

0
D̃λ,ξ(x)Dξ,µ(x) dξ+

+
∑

(s,l)∈ω1

D̃λ,sl(x)Dsl,µ(x) = 0, λ, µ ∈ s(L) ∪ s(L̃). (4.18)

Let m be the Banach space of bounded sequences α = [αv]v∈ω1 with the norm ∥α∥m =

supv∈ω1
|αv|. Consider the vectors

ψ(x) = [ψv(x)]v∈ω1 =

[
ψk0(x)

ψk1(x)

]
k∈ω′

, ψ̃(x) = [ψ̃v(x)]v∈ω1 =

[
ψ̃k0(x)

ψ̃k1(x)

]
k∈ω′

.

It follows from (4.10) that ψ(x), ψ̃(x) ∈ m for each x < a. Let G := C1[0,∞) be the Banach
space of continuously differentiable functions f(λ) on the half-line λ ≥ 0, such that f(λ) and
∂
∂λf(λ) are bounded, with the norm ∥f∥G = maxj=0,1 supλ≥0 | ∂j

∂λj f(λ)|. It follows from (4.10)
that ψλ(x), ψ̃λ(x) ∈ G for each x < a. Consider the Banach space B of vectors

F =

[
f

α

]
, f ∈ G, α = [αv]v∈ω1 ∈ m,

with the norm ∥F∥B = max(∥f∥G, ∥α∥m). Let

Ψ(x) =

[
ψλ(x)

ψ(x)

]
, Ψ̃(x) =

[
ψ̃λ(x)

ψ̃(x)

]
,
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Clearly,Ψ(x), Ψ̃(x) ∈ B for each fixed x < a. For each fixed x < awe define the operator D̃(x) :

B → B by the formulas

F̃ = D̃(x)F, F =

[
f

α

]
∈ B, F̃ =

[
f̃

α̃

]
∈ B,

f̃(λ) =

∫ ∞

0
D̃λ,µ(x)f(µ) dµ+

∑
v∈ω1

D̃λ,v(x)αv , λ, µ ≥ 0,

α̃u =

∫ ∞

0
D̃u,µ(x)f(µ) dµ+

∑
v∈ω1

D̃u,v(x)αv , u = (n, i), v = (k, j); n, k ∈ ω′, i, j = 0, 1.

Similarly we define the operatorD(x). Using (4.11), by the well-known arguments (see, e.g. [7])
one can prove that for each fixed x < a, the operatorsD(x) and D̃(x) are linear bounded oper-
ators acting from B to B.

Theorem 4.4. For each x < a, the vectorΨ(x) ∈ B is the solution of the equation

Ψ̃(x) = (I + D̃(x))Ψ(x) (4.19)

in the Banach space B (I is the identity operator). The operator I + D̃(x) has a bounded inverse
operator, i.e. Eq. (4.19) is uniquely solvable.

Proof. Relation (4.19) is equivalent to (4.12). Similarly, (4.18) takes the form D(x) − D̃(x) +

D̃(x)D(x) = 0 or

(I + D̃(x))(I −D(x)) = I.

Interchanging places for L and L̃, we obtain in the same way

Ψ(x) = (I −D(x))Ψ̃(x), (I −D(x))(I + D̃(x)) = I.

Hence the operator (I + D̃(x))−1 exists, and it is a linear bounded operator. Theorem 4.4 is
proved.

Equation (4.19) is called the main equation of the inverse problem. Solving (4.19) we find the
vector Ψ(x), and consequently, calculate the function φ(x, λ) for x ∈ [0, a − 0] and λ ∈ s(L).
Since φ(x, λ) is the solution of Eq. (1.1) and satisfies (1.2), we can construct the potential q(x)
a.e. on (0, a), and the coefficient h.Thus, the inverse problem has been solved for the interval
x ∈ (0, a). In order to construct the potential q(x) for x > a, we can act in the following way.
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Since we have constructed q(x) for x < a and h, it follows that the solutions φ(x, λ) and
S(x, λ) are known for all x ∈ [0, a − 0] and λ ∈ C. Using the jump conditions (1.3) we find
φ(ν)(a+ 0, λ) and S(ν)(a+ 0, λ), ν = 0, 1. Denote

Φa(x, λ) := Φ(x, λ)/Φ′(a+ 0, λ), x ∈ (a+ 0,∞), Ma(λ) = Φa(a+ 0, λ).

Taking (3.3) into account we calculate

Ma(λ) =
S(a+ 0, λ) +M(λ)φ(a+ 0, λ)

S′(a+ 0, λ) +M(λ)φ′(a+ 0, λ)
. (4.20)

Thus, the functionMa(λ) is known for allλ ∈ C.The functionMa(λ) is theWeyl function for the
classical Sturm-Liouville operator ℓy := −y′′ + q(x)y on the interval (a,∞) with the boundary
condition y′(a) = 0. It is known (see, e.g. [4, Ch.2]) that the specification ofMa(λ) uniquely
determines the potential q(x) a.e. on (a,∞).Moreover, using the method of spectral mappings
[6] we can construct the potential q(x) a.e. on (a,∞).Thus, the solution of the inverse problem
can be found by the following algorithm.

Algorithm 1. Let the spectral data S be given.
1) CalculateM(λ) via (4.7).
2) Find β by (3.6).
3) Calculate a and a1 using (2.12).
4) Choose a model boundary value problem L̃ such that a = ã, β = β̃, a1 = ã1 and arbitrary in
the rest (for example, one can take q̃(x) ≡ 0 and h = 0).
5) Construct Ψ̃(x) and D̃(x) for x ∈ (0, a).

6) FindΨ(x), x ∈ (0, a) by solving the main equation (4.19).
7) Calculate φ(x, λ) for x ∈ (0, a), λ ∈ s(L).
8) Construct q(x) for x ∈ (0, a) and h.
9) Find φ(x, λ) and S(x, λ) for all x ∈ [0, a− 0] and λ ∈ C.
10) Calculate φ(ν)(a+ 0, λ) and S(ν)(a+ 0, λ), ν = 0, 1, using (1.3).
11) FindMa(λ) via (4.20).
12) Construct q(x) for x > a from the givenMa(λ) by the method of spectral mappings [6].

The solution of Inverse problem 1 can be found by the following algorithm.

Algorithm 2. Let the Weyl functionM(λ) be given.
1) Calculate V (λ), λ ≥ 0 via (4.2).
2) Find λk ∈ B′ and αk as poles and residues ofM(λ).

3) Calculate λk ∈ B′′ and αk using (4.6).
4) Find β by (3.6).
5) Calculate a and a1 using (2.12).
6) Construct q(x) and h by steps 4-12 of Algorithm 1.
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