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Abstract. In the present paper, we form a sharp inequality for a doubly warped
product submanifold of a Riemannian manifold of nearly quasi-constant curvature.
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1 Introduction

In [7] B.-Y Chen and K. Yano introduced the notion of quasi-constant curvature. A Riemannian
manifold (M, g) is called a Riemannian manifold of quasi-constant curvature if its curvature
tensor R satisfies the condition

R(X,Y, Z,W ) = a[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

+b[g(X,W )A(Y )A(Z)− g(X,Z)A(Y )A(W )

+g(Y,Z)A(X)A(W )− g(Y,W )A(X)A(Z)],

where a, b are scalar functions and A is a 1-form given by

g(X,P ) = A(X),

P is a fixed unit vector field. It is straightforward to see that if b = 0, then (M, g) reduces to a
Riemannian manifold of constant curvature.

For n > 2, a non-flat Riemannian manifold (Mn, g) is said to be a quasi-Einstein manifold
if its Ricci tensor satisfies the condition

S(X,Y ) = ag(X,Y ) + bA(X)A(Y ),

where a, b are scalar functions and A is 1-form acting same as above. It can be easily verified
that every Riemannian manifold of quasi-constant curvature is a quasi-Einstein manifold.

In 2009, the notion of quasi-constant curvature was generalized to nearly quasi-constant by
A. K. Gazi and U. C. De (see [8]). It is a Riemannian manifold whose curvature tensor satisfies

R(X,Y, Z,W ) = p[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]
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+q[g(X,W )B(Y, Z)− g(X,Z)B(Y,W )

+g(Y,Z)B(X,W )− g(Y,W )B(X,Z)], (1.1)

where a, b are scalar functions and B is a non-vanishing (0, 2) type symmetric tensor.

For n > 2, a non-flat Riemannian manifold (Mn, g) is said to be a nearly quasi-Einstein
manifold if its Ricci tensor satisfy

S(X,Y ) = ag(X,Y ) + bB(X,Y ).

It can be easily verified that every Riemannian manifold of nearly quasi-constant curvature is a
nearly quasi-Einstein manifold.

We know that the outer product of two convariant vectors is a covariant (0, 2) tensor, but
not conversely true always. Hence nearly quasi-constant Riemannian manifolds act as a bigger
class of Riemannian manifolds in the sense that every Riemannian manifold of quasi-constant
curvature is nearly quasi-constant Riemannian manifold, but there are plenty of examples where
the converse is not true.

Example 1. ([8]) Let (R4, g) be a Riemannian manifold with the metric g defined as follows

ds2 = (x4)
4
5 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2.

This is a nearly quasi-constant Riemannian manifold but not a quasi-constant Riemannian man-
ifold.

In an attempt to construct Riemannian manifolds with negative sectional curvature, O’
Neill and Bishop introduced the notion of singly warped products (see [3]). The warped product
manifold model has plenty of applications in relativity. In [1], Beem, Ehrlich and Powell showed
the exact solutions to Einstein’s field equation are expressible in terms of Lorentzian warped
products. For more applications, see [2, 6].

Definition 1. Let (M1, g1) and (M2, g2) be two Riemannian manifolds, the warped product
M =M1 ×αM2 is the product manifold equipped with the metric

g = π∗1(g1) + (α ◦ π1)2π∗2(g2),

where α : M1 → (0,∞) is a smooth function on M1, πi : M1 × M2 → Mi, i = 1, 2 are
the projections and ∗ is the pullback. The Riemannian manifold (M1, g1) is called as the base,
(M2, g2) is called as fibre and α is called as the warping function of the warped product.

A very prominent example of warped product manifold is a generalized Robertson-Walker
space-time, which is a Lorentzian warped product of the form M = (a, b) ×α N , where (a, b)
is an open interval, N is a three dimensional space form and the metric on M is given by
g = −dt2 + α2gN (cf. [2, 9]).

The notion of doubly warped manifold can be considered as a natural generalization of singly
warped product manifold.

Definition 2. Let (M1, g1) and (M2, g2) be two Riemannian manifolds, the doubly warped
product M =α2

M1 ×α1
M2 is the product manifold equipped with the metric

g = (α2 ◦ π2)2π∗1(g1) + (α1 ◦ π1)2π∗2(g2),
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where αi :Mi → (0,∞) is a smooth function onMi, πi :M1×M2 →Mi, i = 1, 2 are the usual
projections and ∗ is the pullback. If one of αi = 1, but not both, then we get warped product
manifold. If both αi = 1, we get a Riemannian product manifold. If neither of αi is constant, we
get a non-trivial doubly product manifold (see [12]).

The structure of the paper is as following. In section 2, we compile the basic definitions and
all the prerequisites needed afterwards. In section 3, we prove our main result.

2 Preliminaries

Let M be an n-dimensional Riemannian submanifold of a Riemannian m-dimensional manifold
N and let ∇ and ∇̂ be the Levi-Civita connection of M, N , respectively. Then the Gauss and
Weingarten formula are given respectively by

∇̂XY = ∇XY + h(X,Y )

∇̂Xξ = −AξX +∇⊥Xξ

for all X,Y ∈ Γ(TM) and ξ ∈ Γ(T⊥M), where ∇⊥ is the normal connection, A is the shape
operator and h is the second fundamental form and are related by the relation

g(h(X,Y ), ξ) = g(AξX,Y ).

The Gauss equation is given by

R̂(X,Y, Z,W ) = R(X,Y, Z,W )− g(h(X,W ), h(Y, Z) + g(h(X,Z), h(Y,W )) (2.1)

for all X,Y, Z,W ∈ Γ(TM), where R̂ is the curvature tensor of N and R is the induced curvature
tensor on M.

Let {e1, e2, · · · , en}, {en+1, · · · , em} be orthonormal basis of the tangent space Tp(M) and
T⊥p (M), respectively. Then the mean curvature field is given by

H =
1

n

n∑
i=1

h(ei, ei) =
1

n

m∑
r=n+1

(
n∑
i=1

hrii

)
er, h

r
ij = g(h(ei, ej), er),

1 ≤ i, j ≤ n, n+ 1 ≤ r ≤ m.

Suppose α is a differentiable function on M, then the Laplacian ∆α is defined as

∆α =

n∑
i=1

[(∇eiei)α− eieiα] .

Let π ⊂ TpM be a 2-plane section and K(π) be the sectional curvature of M. Then for an
orthonomal basis {e1, · · · , en} of the tangent space, the scalar curvature is defined as

τ =
∑

1≤i<j≤n

K(ei ∧ ej).

Now for a doubly warped product manifold, assuming D1,D2 the distributions obtained from
the vectors tangent to leaves and fibres, respectively. Let s : α2M1×α1M2 → N be an isometric
immersion, then we have

Hi =
1

ni
tr(hi),
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the partial mean curvature, where tr(hi) is the trace of h restricted toMi and ni =dimMi. The
doubly warped product manifold is called as mixed totally geodesic if h(X,Y ) = 0 for any X,Y
tangent to D1,D2, respectively.

For a warped product submanifold of a Riemannian manifold of constant sectional curvature,
B.-Y Chen proved the following:

Theorem 2.1. [5] Let M =M1 ×αM2 be an n-dimensional warped product submanifold of a
Riemannian manifold N (c). Then, we have

∆α

α
≤ n2

4n2
‖H‖2 + n1c,

where ni = dimMi, n = n1 + n2. The equality holds if and only if M is a mixed totally geodesic
and n1H1 = n2H2, Hi is the partial mean curvature vectors, i = 1, 2.

Later in [10], A. Olteanu obtained a sharp inequality for a doubly warped product subman-
ifold of an arbitrary Riemannian manifold. In [12], using the quasi-constant curvature tensor,
S. Sular obtained a sharp inequality for a doubly warped product submanifold of a Riemannian
manifold. Motivated by the above studies, we discuss a sharp inequality for a doubly warped
product submanifold of a Riemannian manifold of nearly quasi-constant curvature.

We shall use the following Chen’s lemma while proving our main result.

Lemma 2.1. [4] For m ≥ 2 and b1, b2, · · · , bm, µ be reals, such that m∑
j=1

bi

2

= (m− 1)

 m∑
j=1

b2i + µ

 . (2.2)

Then 2b1b2 ≥ µ, with equality if and only if b1 + b2 = b3 = · · · = bm.

3 Doubly warped product submanifolds

In this section, we derive a sharp relationship between a doubly warped product submanifold
M = α2

M1 ×α1
M2, its warping functions and the squared mean curvature.

Theorem 3.1. Let M = α2M1×α1M2 be an n-dimensional doubly warped product submanifold
of an m-dimensional Riemannian manifold N . Then we have

n2
∆1α1

α1
+ n1

∆2α2

α2
≤ n2

4
‖H‖2 + n1n2p− q(n− 1)tr(B), (3.1)

where n1 + n2 = n, ni = dimMi and ∆i is the Laplacian of Mi. The equality in (3.13) holds if
and only if M is totally geodesic with tr(h1) = tr(h2).

Proof. Let M be a doubly warped product submanifold of a Riemannian manifold N of nearly
quasi-constant curvature. Then, we have

∇XY = ∇M1

X − α2
2

α2
1

g1(X,Y )∇M2(lnα2)

∇XZ = Z(lnα2)X +X(lnα1)Z
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for any X,Y ∈ Γ(TM1), Z ∈ Γ(TM2), where ∇Mi is the Levi-Civita connection of the Rieman-
nian metric gi, i = 1, 2.

The sectional curvature of the {X,Y } plane is given by

K(X ∧ Y ) =
1

α1
[(∇M1

X X)α1 −X2α1] +
1

α2
[(∇M1

Y Y )α2 − Y 2α2].

Fix an orthonormal basis {e1 · · · , en1
en1+1, · · · , en}, such that first n1 tuples acts as basis

of TpM1 and the remaining of TpM2 and en1+1 ‖ H, we get

n2
∆1α1

α1
+ n1

∆2α2

α2
=

∑
1≤s1≤n1<s2≤n

K(es1 ∧ es2) (3.2)

for each s2 ∈ {n1 + 1, · · · , n}.
Using Gauss equation for X = W = ei and Y = Z = ej , i 6= j, we have

2τ = n2‖H‖2 − ‖h‖2 + 2q(n− 1)tr(B) + (n2 − n)p, (3.3)

where

‖h‖2 =

n∑
i,j=1

g(h(ei, ej), (h(ei, ej))

is the squared norm of the second fundamental form h and τ is the scalar curvture.

We fix

ε = 2τ − n2

2
‖H‖2 − (n2 − n)p− 2q(n− 1)tr(B). (3.4)

Then, from (3.3) and (3.4), we get

n2‖H‖2 = 2(‖h‖2 + ε). (3.5)

For a suitable local orthonormal frame, the above relation can be written as(
n∑
i=1

hn+1
ii

)2

= 2

ε+

n∑
i=1

(hn+1
ii )2 +

∑
i 6=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2

 .
Put b1 = hn+1

11 , b2 =
∑n1

i=2 h
n+1
ii and b3 =

∑n
t=n1+1 h

n+1
tt , the previous equation is equivalent to(

3∑
i=1

bi

)2

= 2

[
ε+

3∑
i=1

b2i +
∑

1≤i 6=j≤n

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2

−
∑

2≤j 6=k≤n1

hn+1
jj hn+1

kk −
∑

n+1≤s6=t≤n

hn+1
ss hn+1

tt

]
. (3.6)

For b1, b2, b3, we see that, (3.6) satisfy lemma 2.1, implying(
3∑
i=1

bi

)2

= 2

(
3∑
i=1

b2i + µ

)
,
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where

µ = ε+
∑

1≤i 6=j≤n

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hrij)
2

−
∑

2≤j 6=k≤n1

hn+1
jj hn+1

kk −
∑

n+1≤s6=t≤n

hn+1
ss hn+1

tt .

Then, we obtain 2b1b2 ≥ µ, with equality if and only if b1 + b2 = b3, or∑
1≤j<k≤n1

hn+1
jj hn+1

kk +
∑

n+1≤s<t≤n

hn+1
ss hn+1

tt

≥ ε

2
+

∑
1≤α<β≤n

(hn+1
αβ )2 +

1

2

m∑
r=n+2

n∑
α,β=1

(hrαβ)2. (3.7)

The equality holds if and only if

n1∑
i=1

hn+1
ii =

n∑
t=n1+1

hn+1
tt . (3.8)

Using Gauss equation again, we have

n2
∆1α1

α1
+ n1

∆2α2

α2
= τ −

∑
1≤j<k≤n1

K(ej ∧ ek)−
∑

n1+1≤s<t≤n

K(es ∧ et)

= τ − 1

2
n1p(n1 − 1)−

m∑
r=n+1

∑
1≤j<k≤n1

(hrjjh
r
kk − (hrjk)2)

−q(n1 − 1)tr(B)− 1

2
n2p(n2 − 1) (3.9)

−
m∑

r=n+1

∑
n1+1≤s<t≤n1

(hrssh
r
tt − (hrst)

2)− q(n2 − 1)tr(B).

Using (3.2), (3.7) and (3.9), we get

n2
∆1α1

α1
+ n1

∆2α2

α2
≤ τ − 1

2
np(n− 1) + n1n2p−

ε

2
− 1

2

m∑
r=n+2

n∑
α,β

(hrαβ)2

+

m∑
r=n+2

∑
1≤j<k≤n1

((hrjk)2 − hrjjhrkk) +

m∑
r=n+2

∑
n1+1≤s<t≤n1

((hrst)
2 − hrsshrtt)

−q(n1 − 1)tr(B)− q(n2 − 1)tr(B).

= τ − 1

2
np(n− 1) + n1n2p−

ε

2
−

m∑
r=n+1

n1∑
j=1

n∑
t=n1+1

(hrjt)
2

−1

2

m∑
r=n+2

 n1∑
j=1

hrjj

2

− 1

2

m∑
r=n+2

(
n∑

t=n1+1

hrtt

)2

−q(n1 − 1)tr(B)− q(n2 − 1)tr(B)

≤ τ − 1

2
np(n− 1) + n1n2p−

ε

2
− q(n1 − 1)tr(B)− q(n2 − 1)tr(B)
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=
n2

4
‖H‖2 + n1n2p− q(n− 1)tr(B).

This proves our claim.

It is straightforward to check that the equality holds in (3.13), if and only if

hrjl = 0, n+ 1 ≤ r ≤ m (3.10)

and
n1∑
i=1

hrii =

n∑
l=n1+1

hrll = 0, (3.11)

where 1 ≤ j ≤ n1, n1 + 1 ≤ l ≤ n and n+ 2 ≤ r ≤ m.
From (3.10) vanishing of the second fundamental form of α2

M1×α1
M2 in N implies h(D1,D2) =

{0}, or we can say that the immersion s is totally geodesic. Again from (3.8) and (3.11), we see
that

n1∑
s1=1

h(es1 , es2) =

n∑
s2=n1+1

h(es2 , ss2),

implying tr(h1) = tr(h2).

Conversely assumingN is the required Riemannian manifold, such thatM is totally geodesic
with tr(h1) = tr(h2), then the equality in (3.13) follows easily.

Corollary 3.2. Let M = α2M1 ×α1 M2 be a compact, orientable n-dimensional doubly warped
product submanifold of an m-dimensional Riemannian manifold N . Then we have

‖H‖2 ≥ 4

n2
[q(n− 1)tr(B)− n1n2p]. (3.12)

Proof. Suppose M be a compact orientable Riemannian manifold without boundary satisfying
(3.13), then we have

n2
∆1α1

α1
+ n1

∆2α2

α2
≤ n2

4
‖H‖2 + n1n2p− q(n− 1)tr(B).

Therefore, from the definition of volume element∫
M

∆iαidV = 0, i = 1, 2.

Thus, we get

0 ≤
∫
M

(
n2

4
‖H‖2 + n1n2p− q(n− 1)tr(B)

)
dV = 0.

Corollary 3.3. LetM = α2M1×α1M2 be an n-dimensional doubly warped product submanifold
of an m-dimensional Riemannian manifold N satisfying

n2
∆1α1

α1
+ n1

∆2α2

α2
> n1n2p− q(n− 1)tr(B), (3.13)

then M is non-minimal.
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