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The flow in periciliary layer in human lungs with

Navier-Stokes-Brinkman equations

Nattapol Oangwatcharaparkan and Kanognudge Wuttanachamsri

Abstract. In the human respiratory tract, air breathed in is often contaminated

with strange particles such as dust and chemical spray, which may cause people

respiratory diseases. However, the human body has an innate immune system that

helps to trap the debris by secreting mucus to catch the foreign particles, which are

removed from the body by the movement of tiny hairs lining on the surface of the

epithelial cells in the immune system. The layer containing the tiny hairs or cilia is

called Periciliary Layer (PCL). In this research, we find the velocity of the fluid in

the PCL moved by a ciliary beating by using the Navier-Stokes-Brinkman equations.

We apply the Galerkin finite element method to determine numerical solutions. For

the steady linear case of the equation, the numerical result is in good agreement with

an exact solution. Including the time derivative and nonlinear terms, we show that

the velocity of the liquid is affected by the velocity of the solid, which follows the

physical meaning of the fluid flow. The result can be applied as a bottom boundary

condition of the mucous layer to be able to find the velocity of mucus in the human

lungs.

Keywords. Finite element method, Navier-Stokes-Brinkman equations, cilia, moving solid
phases, periciliary layer

1 Introduction

In present day air is often contaminated with debris such as dust, smoke and factory pollutions.
When we breathe in, they can cause various diseases in our respiratory system acting as an air
conveyor into the lungs. Figure 1 illustrates a portion of the respiratory tract and a platform of
the mechanical barrier.
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Figure 1: Platform of the mechanical barrier in the respiratory system.

The right of Figure 1 shows trachea, bronchial lumen and lungs and the left of Figure 1
shows cilia, mucus, goblet cells and Periciliary Layer (PCL). While people breathe through the
trachea into the lungs, there are also strange particles that get into their bodies. In the meantime,
goblet cells in the innate immune system secrete mucus to capture foreign particles. The mucus
forms a mucous layer and is removed out of the body by metachronal waving of cilia lining on
the ciliated cells. The layer containing cilia is called Periciliary Layer (PCL). The fluid in PCL
is named PCL fluid. In this research, we find the velocity of the PCL fluid.

There were several researchers who studied on this problem [4, 7, 16, 17, 20]. J.R. Cotton
and J.W. Grant [7] studied a methodology for performing a mechanical analysis of ciliary bundles
by creating a model using a beam theory and a finite element method. P.G. Jayathilake et al.
[17] had created a model to determine human pulmonary cilia motion in the PCL. They used the
immersed boundary method combined with the projection method and the ciliary forces on the
fluid were computed by a direct forcing method. P. Kurbatova et al. [16] studied mucus clearance
under normal conditions and in Cystic Fibrosis (CF) patients, who had a genetic disease caused
by dehydration of airway surface liquid. They researched on test results from medication that
helped to reduce mucus viscosity and created a model of mucociliary clearance. H. Matsui et al.
[4] studied the relationship between PCL and mucus by comparing the velocities and showed that
the PCL was transported at approximately the same rate as mucus. S.M. Sorin [20] presented a
three-dimensional simulation of the formation of metachronal waves in rows of pulmonary cilia.
The fluid domains were discretized using a finite volume method and the internal microtubule
structure of an individual cilium was modeled using large-deflection and finite-element beams.

Figure 2: Cartoon picture of cilia making an angle θ with the horizontal plane.
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In this research, we divide our problem to be two cases. First the cilia make an angle θ = 90◦

with the horizontal plane and second they make an angle θ, 40◦ ≤ θ < 90◦ with the horizontal
plane. The left and right of Figure 2 shows the cilia making an angle θ = 90◦ and θ < 90◦ with the
horizontal plane, respectively. Because the PCL consists of both PCL fluid and the solid phases,
cilia, it is considered as a porous medium. Then when the angle θ < 90◦, the PCL is composed
of two domains, the free-fluid region above the porous medium as shown on the right of Figure 2,
where ystoke is the height of the porous domain. We assume that the maximum velocity of cilia
occurs when cilia are perpendicular to the horizontal plane and then the velocity decreases and
becomes zero when the angle θ between cilia and the horizontal plane is 40◦. Figure 3 shows the
fluid flow through the PCL and the profile of the velocity of the fluid in the PCL.

Figure 3: Fluid flow through the PCL and the velocity profile of the PCL fluid.

To study the velocity of the PCL fluid, there were numerous literatures that had used the
Navier-Stokes-Brinkman equations or Stokes-Brinkman equations. B. Verleye et al. [1] presented
a mathematical model of the permeability of textile by using Navier-Stokes-Brinkman Equations
and employed the finite difference method to find the numerical solutions. L. Guta and S. Sundar
[13] presented the wave-porous structure interaction by using the Navier-Stokes-Brinkman system
and applied the Finite Volume Method (FVM) to calculate the numerical results. O. Iliev et al.
[15] presented a numerical subgrid resolution approach for solving the Stokes-Brinkman system
of equations for various scientific and industrial problems. B.K. Jha and M.L. Kaurangini [2]
presented new approximate analytical solutions of nonlinear Brinkman-Forchheimer externded
Darcy model for steady flow in parallel-plates channels filled with porous materials. The system
of equations were often solved by using finite element methods [8, 10]. K. Chamsri [10] discretized
n dimensional Stokes-Brinkman equations by using a mixed finite element method. K. Chamsri [8]
studied the slow flow of a porous medium and adjacent free-fluid region with the Stokes-Brinkman
equations. She applied a finite element method to the equations and proved the well-posedness
of the discretized equations. X. Xie et al. [22] presented three different methods for solving
Darcy-Stokes problem by constructing uniformly stable finite element approximations in two and
three dimensions. N. Gatica [3] et al. employed two-dimensional nonlinear Brinkman model with
mixed boundary conditions by using a mixed finite element method. P. Kaloni and J. Guo [18]
studied the problem of steady nonlinear double-diffusive convection through a porous medium by
using Brinkman–Forchheimer model. However, most of the researches mentioned above have not
included the solid velocity in their models, where they assume that fluid flows by the pressure
gradient. Moreover, although K. Chamsri [8, 10] included the solid velocity in her model but
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she had studied only steady linear equations. In this work, we apply one-dimensional Navier-
Stokes-Brinkman equations to our problem in the porous medium domain. We use the classical
linearization method for the nonlinear terms and compute the PCL velocity in the two different
domains for different angles θ depending on time t, which is more realistic creative problem.

The mathematical model is provided in Section 2. The nonlinear term linearized by using
a classical linearization method and model discretization are presented in Section 3. An exact
solution is provided in Section 4. Numerical solutions are shown in Section 5, and the conclusion
is drawn in Section 6.

2 Mathematical Model

In this section, we present our governing equations used in this problem, which are derived by
using the Hybrid Mixture Theory (HMT) [14] that helps to transfer a microscale equation to a
macroscale equation. Because we consider the cooperative beating of cilia rather than a single
cilium, we begin with the momentum equation in the macroscopic scale [9].

ρ
∂vl

∂t
+▽ · (ρvlvl) + µk−1(ϵlvl − ϵlvs) +▽p− µ(△vl +▽(▽ · vl)) = ρg, (2.1)

where ρ is the fluid density; ϵl is the porosity which is a constant in this work; vl is the velocity
of the PCL fluid; p is pressure; k−1 is the inverse of the permeability tensor; µ is a dynamic
viscosity; g is the gravity and vs is the velocity of the solid phases (cilia) and the continuity
equation [21] is

▽ · (ϵlvl) = f, (2.2)

where f = ϵ·l

(1−ϵl)
+ ▽ · ϵlvs and ϵ·l is the material time derivative of the porosity with respect

to the solid phase, ϵ·l = −|vs|
ξ

∂ϵl

∂θ , where we use the data from [11] to calculate ∂ϵl

∂θ and ξ is

the position along cilia. Multiplying ϵl both sides of Eq.(2.1), letting v = ϵlvl and substituting
Eq.(2.2) into Eq.(2.1), we have

ρ
∂v

∂t
+▽ · (ρv

ϵl
v) + ϵlµk−1v − µ(ϵl)2k−1vs + ϵl ▽ p− µ△ v − µ▽ f = ρϵlg. (2.3)

Since the variables used in this study are the average quantities in the macroscopic scale, for
one-dimensional domain we project the governing equation, Eq.(2.3), on the y-axis. Therefore,
the pressure gradient is zero in the y-direction. Consequently, the pressure gradient dp

dx is a
constant. The velocity and other variables are y-dependent except for the pressure as illustrated
in Figure 3. Therefore, for one-dimensional domain, Eq.(2.3) can be rewritten as

ρ
∂v

∂t
+

2ρ

ϵl
v
∂v

∂y
+ ϵlµk−1v − µ(ϵl)2k−1vs + ϵl

dp

dx
− µ

∂2v

∂y2
− µ

∂f

∂y
= ρϵlg, (2.4)

where v and k are the velocity and permeability in the x-direction, respectively. The boundary
conditions used in this work are

v(0) = 0

v′(L) = 0,
(2.5)

where we suppose that the base of cilia does not move and the maximum velocity is occurred at
the tips of cilia, where 0 < y < L , and L is the length of our numerical domain. The velocity of
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the solid phases can be extracted from the experimental data in [19], which is presented in [12]
as polynomials of degree 8 depending on the position along cilia ξ,

vs = c8ξ
8 + c7ξ

7 + c6ξ
6 + c5ξ

5 + c4ξ
4 + c3ξ

3 + c2ξ
2 + c1ξ, (2.6)

where ξ = y
sin θ ; the variable θ is the angle between the cilia and the horizontal plane; the

coefficients ci, i = 1, 2, ..., 8 are constants. Then Eq.(2.4) becomes

ρ
∂v

∂t
+

2ρ

ϵl
v
∂v

∂y
+ ϵlµk−1v − µ

∂2v

∂y2
= µ(ϵl)2k−1c8(

y

sin θ
)8 + µ(ϵl)2k−1c7(

y

sin θ
)7

+ ...+ µ(ϵl)2k−1c2(
y

sin θ
)2 + µ(ϵl)2k−1c1(

y

sin θ
)− ϵl

dp

dx
+ µ

∂f

∂y
+ ρϵlg, 0 < y < L.

(2.7)

Now we have a one-dimensional governing equation, which is discretized in the next section and
the numerical results in the porous medium are presented in Section 5.

3 Model Discretization

In this section, we discretize Eq.(2.7) by using the Galerkin finite element method. Before dis-
cretizing the model, we first linearize the nonlinear term, 2ρ

ϵl
v ∂v
∂y , with the classical linearization

method [5]. That is

v
∂v

∂y
≈ (v∗)

∂v

∂y
, (3.1)

where v∗ is an approximation of v. In this work we assume that

v∗ = y.

Therefore Eq.(2.7) can be rewritten as

ρ
∂v

∂t
+

2ρ

ϵl
y
∂v

∂y
+ ϵlµk−1v − µ

∂2v

∂y2
= µ(ϵl)2k−1c8(

y

sin θ
)8 + µ(ϵl)2k−1c7(

y

sin θ
)7

+ ...+ µ(ϵl)2k−1c2(
y

sin θ
)2 + µ(ϵl)2k−1c1(

y

sin θ
)− ϵl

dp

dx
+ µ

∂f

∂y
+ ρϵlg.

(3.2)

The weak formulation of the model after the domain is discretized to be n elements is
n∑

i=1

∫ yi+1

yi

(wρ
∂v

∂t
)dy +

n∑
i=1

∫ yi+1

yi

(
2wρ

ϵl
y
∂v

∂y
+ wϵlµk−1v + µ

∂w

∂y

∂v

∂y
)dy

=

n∑
i=1

∫ yi+1

yi

w(µ(ϵl)2k−1c8(
y

sin θ
)8 + µ(ϵl)2k−1c7(

y

sin θ
)7 + ...

+ µ(ϵl)2k−1c2(
y

sin θ
)2 + µ(ϵl)2k−1c1(

y

sin θ
)− ϵl

dp

dx
+ ρϵlg)dy

− µ

n∑
i=1

∫ yi+1

yi

f
∂w

∂y
dy + µ[wf ]L0 + µ[w

∂v

∂y
]L0 ),

(3.3)

where w ∈ H1
0 (Ω) is a weight function, Ω = [0, L] is our domain and yi = 1, 2, ..., n, are nodes in

Ω. We discretize the velocity v by using the linear shape functions,

H1 =
yi+1 − y

hi
,

H2 =
y − yi
hi

.
(3.4)
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Then the velocity in each element is

v(y, t) = H1(y)vi(t) +H2(y)vi+1(t), (3.5)

where vi(t) = v(yi, t) and vi+1(t) = v(yi+1, t) and

hi = yi+1 − yi. (3.6)

The Equation (3.3), without the summation, can be rewritten as

[Me] [v̇e] + [Ke][v] = [fe] , (3.7)

where v̇e is the derivative of the velocity in an element domain with respect to time,

[Me][v̇e] =

∫ yi+1

yi

([
H1

H2

]
ρ
∂v

∂t

)
dy = ρ

hi

6

[
2 1
1 2

] [
v̇i

v̇i+1

]
, (3.8)

[Ke] =

(
ρ

3ϵl
1

h2
i

[
−
(
y3i+1 − 3yi+1y

2
i + 2y3i

) (
y3i+1 − 3yi+1y

2
i + 2y3i

)
−
(
2y3i+1 − 3y2i+1yi + y3i

) (
2y3i+1 − 3y2i+1yi + y3i

)]
+

ϵlµk−1

6
hi

[
2 1
1 2

]
+

µ

hi

[
1 −1
−1 1

])[
vi

vi+1

] , (3.9)

and

[fe] =

∫ yi+1

yi

[
H1

H2

]
(µ(ϵl)2k−1c8(

y

sin θ
)8 + µ(ϵl)2k−1c7(

y

sin θ
)7 + ...

+ µ(ϵl)2k−1c2(
y

sin θ
)2 + µ(ϵl)2k−1c1(

y

sin θ
)− ϵl

dp

dx
+ ρϵlg)dy

− µ

n∑
i=1

∫ yi+1

yi

[
H ′

1

H ′
2

]
fdy + µ

[
f

[
H1

H2

]]L
0

+ µ

[
∂v

∂y

[
H1

H2

]]L
0

.

(3.10)

Assembling the element matrices, we have

[M ][v̇] + [K][v] = [F ], (3.11)

where [M ], [K] and [F ] are the assembly matrices of [Me], [Ke] and [Fe], respectively.
For the time derivative term in Eq.(3.11) we use backward difference method. Then Eq.(3.11)

can be written as
[M ][v̇]t+△t + [K][v]t+△t = [F ]t+△t, (3.12)

where △t is a time difference and

[v̇]t+△t =
vt+△t − vt

△t
. (3.13)

Substituting Eq.(3.13) into Eq.(3.12), we have

[M ][
vt+△t − vt

△t
] + [K][v]t+△t = [F ]t+△t, (3.14)

[M ][vt+△t − vt] +△t[K][v]t+△t = △t[F ]t+△t, (3.15)

([M ] +△t[K])[v]t+△t = △t[F ]t+△t + [M ][v]t. (3.16)

Next, we solve the discretized equation and compare our results with an exact solution provided
in the next section.
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4 Exact Solution

To verify our numerical solution, in this section, we provide an exact solution by considering only
the steady and linear terms of the governing equation without the velocity of the solid phases,

dp

dx
= −µk−1v +

µ

ϵl
d2v

dy2
, (4.1)

with the boundary conditions

v(1) = 1,

dv

dy

∣∣∣∣
y=y−

stoke

=
dv

dy

∣∣∣∣
y=y+

stoke

,
(4.2)

where we use L = 1. The exact solution of Eqs.(4.1)-(4.3) is obtained from [6], which is

v(y) =
1

1 +

(
1−ystoke√

k

)
1 +

(
y−ystoke√

k

)
, y > ystoke

e
y−ystoke√

k , y < ystoke.

(4.3)

We then compare the exact solution with our numerical solutions in the next section.

5 Numerical Results

In this section, we provide our numerical results of the governing equation, Eq.(2.7). Since our
model depends on the angle θ, in this study, we find the solutions when θ = 50◦, 60◦, 70◦, 80◦

and 90◦ and assume that the forward stroke of cilia stops at θ = 40◦ [19]. The coefficients of
the polynomials of degree 8, the velocities of cilia, for each angle θ are provided in Table 1 [12].
The solid velocities are drawn in Figure 4 where ξ used in this study is a dimensionless quantity,
which is the distance along cilia divided by the cilia length. That is 0 ≤ ξ ≤ 1 with the unit of ξ
is equal to 1. Notice that the maximum velocity of cilia is assumed to occur at θ = 90◦ at the tips
of cilia. The other values in the Navier-Stokes-Brinkman equations are g = 9.8 × 106(µm/s2),
ρ = 9.922 × 10−13(g/µm3), µ = 3 × 10−6(g/(µm)(s)), dp

dx = −1 × 10−9(g/(µm2)(s2)), ϵl =
0.5223θ5− 3.0283θ4+7.0630θ3− 8.4987θ2+5.5056θ− 0.8627 and k−1 is shown in Table 2, where
the values of ϵl and k−1 are obtained from [12] and [11], respectively. The unit of ϵl is equal to
1, [ϵl] = 1, and the unit of k−1 is 1

µm2 .
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Table 1: The eighth-order polynomial functions: vs = c8ξ
8 + c7ξ

7 + c6ξ
6 + c5ξ

5 + c4ξ
4 +

c3ξ
3 + c2ξ

2 + c1ξ for the angels θ = 50◦, 60◦, 70◦, 80◦ and 90◦.
Coefficient degree

105× 50◦ 60◦ 70◦ 80◦ 90◦

c8 0.2498 0.4043 -0.4987 -0.3648 -0.5386

c7 -1.0781 -1.6788 2.1268 1.5687 2.2148

c6 1.9290 2.8656 -3.7102 -2.7659 -3.7309

c5 -1.8459 -2.5945 3.4021 2.5751 3.3198

c4 1.0133 1.3380 -1.7529 -1.3584 -1.6788

c3 -0.3157 -0.3896 0.5012 0.4022 0.4803

c2 0.0504 0.0585 -0.0717 -0.0593 -0.0694

c1 -0.0023 -0.0024 0.0049 0.0044 0.0050

Table 2: The inverse of the permeability tensor, k−1, for the angles θ = 50◦, 60◦, 70◦, 80◦

and 90◦.

angle θ
The inverse of the permeability tensor, k−1,

[k−1] = 1/(µm)2

50◦ 1/0.0019

60◦ 1/0.0020

70◦ 1/0.0022

80◦ 1/0.0023

90◦ 1/0.0024

Figure 4: The velocities of cilia when the angles θ = 50◦, 60◦, 70◦, 80◦ and 90◦. (For

interpretation of the references to color in this figure legend, the reader is referred to the free web

version of this article.)

We first verify our numerical solution by comparing the result with the exact solution as
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shown in Figure 5. The velocities are calculated at the angle θ = 90◦ with the boundary conditions
Eq.(4.2). The numerical results are provided with 10, 20, 40 and 100 number of elements. Notice
that the numerical solutions converge to the exact solution when the number of elements increases.
The l2−norm errors of the numerical solutions for each number of elements are illustrated in Table
3. It shows that the more number of elements we have, the less error we obtain.

Table 3: The l2-norm errors of the numerical solutions.
number of elements 10 elements 20 elements 40 elements 100 elements

l2-norm errors 0.0860 0.0302 0.0102 0.0025

Figure 5: The exact solution and our numerical solutions with 10, 20, 40 and 100 number
of elements. (For interpretation of the references to color in this figure legend, the reader is

referred to the free web version of this article.)

Next, we calculate the velocities of the PCL fluid for the angles θ = 50◦, 60◦, 70◦, 80◦ and
90◦ with the boundary conditions v(0) = 0 and v′(L) = 0. In this work, we use dimensionless
length. So we let L = 1. Since the PCL velocity obtained from Eq.(3.16) is v = ϵlvl, which is
called Darcy velocity, we present both vl and v in Figures 6 and 7, respectively. From left to
right and from top to bottom, Figures 6 and 7 show the velocities of the PCL fluid from the
angles 50◦ to 90◦ respectively. Since our governing equation depends on time, we let △t = 0.1
and assume that the cilia perpendicular to the horizontal plane when t = 0. Then the cilia bend
down from angle θ = 90◦ to the angle θ = 50◦ and stop beating at θ = 40◦. We assume that
the time difference for each angle is △t = 0.1. Therefore, when t = 0.4 the cilia make angle
θ = 50◦ with the horizontal plane. In Figure 6, we compare the velocity of PCL fluid with the
velocity of cilia. Notice that the velocity, vl and the velocity of cilia of each angle θ are almost
identical. The l2-norm errors of the graphs are shown in Table 4, where the values are between
0.2 and 0.5. Figure 7 shows the Darcy velocities of the PCL fluid and the velocities of the cilia
when the angles θ = 50◦, 60◦, 70◦, 80◦ and 90◦. The Darcy velocity is less than the velocity of
cilia for each angle θ, which follows the physical meaning the velocity of the solid phase should
be greater than the velocity of the fluid phase. The Darcy velocities of the PCL fluid of all angles
are plotted together in Figure 8. The maximum velocity occurs at θ = 90◦ and the velocity
decreases when the angle decreases. To be useful in practice, the velocities are approximated
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by using the polynomials of degree 12. From left to right, the graphs illustrate the velocities
of the angles θ = 50◦, 60◦, 70◦, 80◦ and 90◦, respectively. The coefficients of each polynomials
are provided in Table 5, where ξ is the position along cilia. The l2-norm errors of the Darcy
velocities of the PCL fluid and their polynomial approximations of degree 12 are shown in Table
6, which are about 0.001. It shows that the velocities and the polynomial approximations are
almost indistinguishable. Notice that the maximum Darcy velocity of the PCL fluid is about
82% of the maximum velocity of cilia.

Figure 6: The velocities of the PCL fluid and cilia when the angles θ = 50◦, 60◦, 70◦, 80◦

and 90◦. (For interpretation of the references to color in this figure legend, the reader is referred

to the free web version of this article.)

Table 4: The l2-norm errors of the velocities of the PCL fluid and the velocities of cilia.
angle θ l2-norm error

50◦ 0.2503

60◦ 0.2872

70◦ 0.2984

80◦ 0.3414

90◦ 0.4770



The flow in periciliary layer in human lungs 117

Figure 7: The Darcy velocities of the PCL fluid and the velocities of cilia when the
angles θ = 50◦, 60◦, 70◦, 80◦ and 90◦. (For interpretation of the references to color in this

figure legend, the reader is referred to the free web version of this article.)

Figure 8: The Darcy velocities of the PCL fluid and the polynomial approximations of
the Darcy velocities when θ = 50◦, 60◦, 70◦, 80◦ and 90◦. (For interpretation of the references

to color in this figure legend, the reader is referred to the free web version of this article.)
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Table 5: The twelfth-order polynomial functions: v = c12ξ
12 + c11ξ

11 + c10ξ
10 + c9ξ

9 +
c8ξ

8 + c7ξ
7 + c6ξ

6 + c5ξ
5 + c4ξ

4 + c3ξ
3 + c2ξ

2 + c1ξ for the angels θ = 50◦, 60◦, 70◦, 80◦

and 90◦.
Coefficient degree

105× 50◦ 60◦ 70◦ 80◦ 90◦

c12 0.0108 0.0155 -0.0118 -0.0081 -0.0116

c11 -0.0669 -0.0950 0.0771 0.0539 0.0738

c10 0.1868 0.2621 -0.2266 -0.1615 -0.2126

c9 -0.3109 -0.4314 0.3961 0.2870 0.3653

c8 0.5114 0.7588 -0.8242 -0.6089 -0.8210

c7 -0.9908 -1.5541 1.9310 1.4447 1.9945

c6 1.4452 2.2355 -2.9371 -2.2221 -2.9894

c5 -1.3010 -1.9231 2.5858 1.9862 2.5686

c4 0.6984 0.9732 -1.3123 -1.0318 -1.2817

c3 -0.2155 -0.2810 0.3727 0.3034 0.3645

c2 0.0343 0.0420 -0.0531 -0.0446 -0.0525

c1 -0.0016 -0.0017 0.0036 0.0033 0.0038

Table 6: The l2-norm errors of the Darcy velocities of the PCL fluid and the twelfth-order
polynomial approximations of each angle θ.

angle θ l2-norm error (×10−3)

50◦ 0.1205

60◦ 0.1426

70◦ 0.1738

80◦ 0.1020

90◦ 0.0824

6 Conclusion

We consider the fluid flow in the periciliary layer (PCL) in the human respiratory system. The
PCL consists of two domains: the porous medium and the free-fluid domain above the porous
layer. However, when cilia make an angle θ = 90◦ with the horizontal plane, the PCL domain
contains only the porous medium. In the porous medium domain we use unsteady nonlinear
Brinkman equation and in the free-fluid domain we use Navier-Stokes equation. Without the
time derivative and nonlinear terms, we compare our numerical results with the exact solution
with a good agreement. The numerical solutions converge to the exact solution when the number
of elements increases, see Table 3. With the nonlinear term, it is solved by the classical lineariza-
tion method and then we use the Galerkin finite element method to find the numerical solutions.
For the time derivative term, we use the Backward Difference method. The numerical solutions
of the Navier-Stokes-Brinkman equations are computed for different angles θ = 50◦, 60◦, 70◦, 80◦

and 90◦ when △t = 0.1. The Darcy velocity v and the velocity vl are compared with the velocity
of cilia. As expected, they follow the physical meaning. That is the velocity vl is almost iden-
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tical to the velocity of cilia, see Table 4, and the Darcy velocity is about 23% slower than the
velocity of cilia (see Figure 7). For useful convenience in practice, the Darcy velocities are approx-
imated by using the polynomials of degree 12, where the coefficients are provided in Table 5. The
l2-norm errors of the approximation are shown in Table 6, which are about 0.001 for each angle θ.

Acknowledgments

This work is supported by the School of Science, King Mongkut’s Institute of Technology Lad-
krabang, Thailand.

References

[1] B. Verleye, M. Klitz, R. Croce, M. Griebel, S. V. Lomov, D. Roose, and I. Verpoest,
Predicting the Termeability of Textile Reinforcements Via a Hybrid Navier-Stokes/Brinkman
Solver, Proceedings of the 8th international conference on flow processes in composite
materials, (2006), 65–72.

[2] B. K. Jha and M. L. Kaurangini, Approximate Analytical Solutions for the Nonlinear
Brinkman-Forchheimer- Extended Darcy FlowModel, Applied Mathematics, 2 (2011), 1432–
1436.

[3] G.N. Gatica, L.F. Gatica and F.A. Sequeira, Analysis of an Augmented Pseudostress-Based
Mixed Formulation for a Nonlinear Brinkman Model of Porous Media Flow, Computer
Methods in Applied Mechanics and Engineering, 289 (2015), 104–130.

[4] H. Matsui, S. H. Randell, S. W. Peretti, C. W. Davis and R. C. Boucher, Coordinated
Clearance of Periciliary Liquid and Mucus from Airway Surfaces, The Journal of clinical
investigation, 102 (1998), 1125–1131.

[5] H. B. Young and W. Kwan, The Finite Element Method Using MATLAB, CRC Press,
(1997).

[6] J. Koplik, H. Levine and A. Zee, Viscosity Renormalization in the Brinkman Equation, The
Physics of fluids, 26 (1983), 2864–2870.

[7] J. R. Cotton and J. W. Grant, A Finite Element Method for Mechanical Response of Hair
Cell Ciliary Bundlez, Journal of biomechanical engineering, 122 (2000), 44–50.

[8] K. Chamsri, Formulation of a Well-Posed Stokes-Brinkman Problem with a Permeability
Tensor, Journal of Mathematics, 1 (2015), 1–7.

[9] K. Chamsri, Modeling the Flow of PCL Fluid due to the Movement of Lung Cilia, Ph.D
thesis, University of Colorado Denver, 2012.

[10] K. Chamsri, N-Dimensional Stokes-Brinkman Equations using a Mixed Finite Element
Method, Australian Journal of Basic and Applied Sciences, 8(11) Special (2014), 30–36.

[11] K. Chamsri and L.S. Benethum, Permeability of Fluid Flow Through a Preiodic Array of
Cylinders, Applied Mathematical Modelling, 39(1) (2015), 244–254.



120 N. Oangwatcharaparkan and K. Wuttanachamsri

[12] K. Wuttanachamsri and L. Schreyer, Effects of Cilia Movement on Fluid Velocity: II
Numerical Solutions over a Fixed Domain, Transport in Porous Media, 134 (2020), 471–
489.

[13] L. Guta and S. Sundar, Navier-Stokes-Brinkman System for Interaction of Viscous Waves
with a Submerged Porous Structure, Tamkang journal of mathematics, 41 (2010), 217–243.

[14] L.S. Benethum and J.H. Cushman, Multiphase, Hybrid Mixture Theory for Swelling
Systems-I: Balance Laws, International Journal of Engineering Science, 34 (1996), 125–
145.

[15] O. Iliev, Z. Lakdawala and V. Starikovicius, On a Numerical Subgrid Upscaling Algorithm
for Stokes–Brinkman Equations, Computers & Mathematics with Applications, 65 (2013),
435–448.

[16] P. Kurbatova, N. Bessonov, V. Volpert, H. Tiddens, C. Cornu, P. Nony and D. Caudri,
Model of Mucociliary Clearance in Cystic Fibrosis Lungs, Journal of theoretical biology,
372 (2015), 81–88.

[17] P. G. Jayathilake, Z. Tan, D. V. Le, H. P. Lee and B.C. Khoo, Three-Dimensional Numerical
Simulations of Human Pulmonary Cilia in The Periciliary Liquid Layer by the Immersed
Boundary Method, Computers & Fluids, 67 (2012), 130–137.

[18] P. N. Kaloni and J. Guo, Steady Nonlinear Double-Diffusive Convection in a Porous Medium
Based Upon the Brinkman–Forchheimer Model, Journal of Mathematical Analysis and
Applications, 204 (1996), 138–155.

[19] P. R. Sears, K. Thompon, M. R. Knowles and C. W. Davis, Human Airway Ciliary Dynamics
American Journal of Physiology : Lung Cellular and Molecular Physiology, 304(3) (2012),
170–183.

[20] S. M. Mitran, Metachronal Wave Formation in a Model of Pulmonary Cilia, Computers &
structures, 85 (2007), 763–774.

[21] T. F. Weinstein and L. S. Benethum, On the Derivation of the Transport Equation for
Swelling Porous Materials with Finite Deformation, International Journal of Engineering
Science, 44 (2006), 1408–1422.

[22] X. Xie, J. Xu and G. Xue, Uniformly-Stable Finite Element Methods for Darcy-Stokes-
Brinkman Models, Journal of Computational Mathematics, 26 (2008), 437–455.

Nattapol Oangwatcharaparkan Department of Mathematics, King Mongkut’s Institute of
Technology Ladkrabang, Ladkrabang, Bangkok, 10520, Thailand.

E-mail: 63605006@kmitl.ac.th

Kanognudge Wuttanachamsri Department of Mathematics, King Mongkut’s Institute of
Technology Ladkrabang, Ladkrabang, Bangkok, 10520, Thailand.

E-mail: whychamsri@hotmail.com

mailto:63605006@kmitl.ac.th
mailto:whychamsri@hotmail.com

	Introduction
	Mathematical Model
	Model Discretization
	Exact Solution
	Numerical Results
	Conclusion

