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Several determinantal expressions of generalized
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Abstract. In the paper, the authors present several explicit formulas for the (p, ¢, 7)-
Tribonacci polynomials and generalized Tribonacci sequences in terms of the Hes-
senberg determinants and, consequently, derive several explicit formulas for the Tri-
bonacci numbers and polynomials, the Tribonacci-Lucas numbers, the Perrin num-
bers, the Padovan (Cordonnier) numbers, the Van der Laan numbers, the Narayana
numbers, the third order Jacobsthal numbers, and the third order Jacobsthal-Lucas
numbers in terms of special Hessenberg determinants.
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1 Motivations

The Tribonacci sequence {T,}22 , and Tribonacci-Lucas sequence {K,,}2°, are defined respec-
tively by the third order recurrence relations

Th=Th 1 +Th 2+Th_3 and K, =K, 1+ K, o+ Kn—3
for n > 3, with the initial values Tp =0, Ty =T, =1, Ky = 3, K1 = 1, and K5 = 3 respectively.

The Tribonacci numbers T, were defined in [11] for the first time and some properties for T,, have
been investigated in [6, 10, 11, 15, 17, 31, 34]. In [6, Example 3.3], the determinantal expression

1 1
-1 1 1
Tpy1i=|1 -1 1 . , n>1 (1.1)
Y
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was derived. There are many generalizations of the Tribonacci sequences T}, and K,. One of
these generalizations is the generalized Tribonacci sequence V,,(z,vy, z; a,b, ¢) defined for n > 3
by

Vn(m7yaz;aab7 C) = anfl(xayaz;a/a b, C)
+ yVTLfQ((Ea Yy, z5a, b7 C) + Zan?)(CU»ya Z;a, b7 C), (12)
where
Vo(z,y,z1a,b,¢) =a, Vi(z,y,z5a,b,c) =b, Va(z,y,250,b,c) =c

are arbitrary integers and x, y, z are real numbers. The generating function of the generalized
Tribonacci sequence V,,(z,y, z;a, b, ¢) is

> b— ax)t — zb — ya)t?
> Valzy,zia,bot" = T (baa)t+ (02 s ya) (1.3)
e 1 —at —yts — 2t

There have been many studies on the generalized Tribonacci numbers V,,(z,y, z; a,b,c¢). For
more information, please refer to [3, 9, 30, 31, 33, 34] and closely related references therein. Some
special cases of the generalized Tribonacci sequence V,,(z,y, z; a, b, ¢) are as follows:

1. V,(1,1,1;0,1,1 T, the Tribonacci sequence;

2. V,(1,1,1;3,1,3 K,,, the Tribonacci—-Lucas sequence;

3. Vn(0,1,1;3,0,2 the Perrin sequence;

Qn,
4. V,(0,1,1;1,1,1 P, the Padovan (Cordonnier) sequence;

5. V,(0,1,1;1,0,1 R, the Van der Laan sequence;

( ) =
( )=
( ) =
( ) =
( )=
( ) =

6. V,(1,0,1;0,1,1 N, the Narayana sequence;
7. Va(1,1,2;0,1,1) = J,(l?’), the third order Jacobsthal sequence;
8. Va(1,1,2;2,1,5) = ]7(, ), the third order Jacobsthal-Lucas sequence.

In [6, Example 3.4], the determinantal expression

2 1
-3 0 1
0 -1 1
Qn-i—l = 1 -1 0 3 n Z 1 (14)
1 -1 0

3

was derived.

In [12], the Tribonacci polynomials T, (x) were defined for n > 3 by

To(z) = 2*Tp_1(z) + 2T —o(z) + Thos(z),
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where Ty(z) = 0, Th(x) = 1, and Tz(z) = 2. In [6, Theorem 3.10], the determinant

x? 1
—z 1
Tpia(z)=|1 -z 2% . , n>1 (1.5)
1
1 —z 22

was established. In [32], the Tribonacci polynomials T, (z) were extended to the (p, ¢, r)-Tribonacci
polynomials, denoted by T}, 4.r:n (), defined for n > 3 by

Tpqrn(®) = p(@)Tp g rin-1(2) + () Tp g .rimn—2(x) + 7(2) T} g rin—3(T) (1.6)
with initial values T}, ¢ ri0(2) = 0, Tp g.r1(x) = Fp g1 (), and T 4 r.0(x) = Fp g:2(2), where p(x),

g(z), r(z) are non-zero polynomials with real coefficients and F), 4.,(x) are the (p, ¢)-Fibonacci
polynomials defined for n > 2 by

Fp (@) = p(@) Fp gin—1(z) + q(2) Fp gn—2(2)

with F}, g.0(z) = 0 and F, 41(z) = 1. For more information on (p, ¢)-Fibonacci polynomials,
please refer to [16]. The generating function of the (p, ¢, r)-Tribonacci polynomials is

t
N Ty g (@)t = .
~ parin(?) 1 —p(x)t — q(x)t2 —r(x)t3

(1.7)

One of anonymous referees pointed out that the papers [4, 5, 7] are also connected with this
topic and provide the motivations of this topic.

A determinant H = |h;j|nxn is called a Hessenberg determinant if h;; = 0 for all pairs (g, j)
such that i+ 1 < j or j+ 1 < 4. For more information, see the papers [13, 20, 24, 29] and closely
related references therein. A determinant H = |hij\an is called a tridiagonal determinant if
hi; = 0 for all pairs (7, 7) such that |i — j| > 1. For more details, see [21, 25] and closely related
references therein. Tridiagonal determinants are special Hessenberg determinants.

In mathematics, a closed form is a mathematical expression that can be evaluated in a fi-
nite number of operations. It may contain constants, variables, four arithmetic operations, and
elementary functions, but usually no limit. It is clear that a determinant with closed elements
is a closed expression. In combinatorics and number theory, representing the general term for
a sequence of numbers or a sequence of polynomials as a determinant is a significant and im-
portant topic, because different closed forms demonstrate different information in mathematics.
Generally, doing this is difficult.

In this paper, we will present explicit formulas for (p, ¢, 7)-Tribonacci polynomials T}, 4 . ()
and for generalized Tribonacci sequences V,(z,y, z; a, b, ¢) in terms of Hessenberg determinants
and, consequently, derive explicit formulas for the Tribonacci numbers T,,, for the Tribonacci
polynomials T}, (x), for the Tribonacci-Lucas numbers K, for the Perrin numbers @,,, for the
Padovan (Cordonnier) numbers P, for the Van der Laan numbers R, for the Narayana numbers
N, for the third order Jacobsthal numbers J7(13), and for the third order Jacobsthal-Lucas num-
bers jr(?) in terms of special Hessenberg determinants. By the way, those determiantal expressions
for T,,, @y, and T,,(x) derived in this paper are different from (1.1), (1.4), and (1.5).
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2 Main results and their proofs

Our main results can be stated as the following theorems.

Theorem 2.1. The (p,q,r)-Tribonacci polynomials Tp, 4 r.n(x) for n > 0 can be represented by
the special Hessenberg determinant

Tp,qrin(x) =
0 -1 0 0 0 0 0
1 p(x)((lj; —1 0 0 0 0
0 2q(a:)(g) p(a:)(ig ~1 0 0 0
0 6r(z)(y) 2q(x) (EL) p(x) (;2 0 0 0
1o 0 eat) ) 0 0 LI,
0 0 0 0 -1 0 0
0 0 0 0 p(z)("73) ~1 0
0 0 0 0 20(2)(2"5) p@)(73) -1
0 0 0 0 6r(x) (nfg) 2q(x)( " ) p(x)(nfl)

Proof. Let u(t) and v(t) # 0 be two differentiable functions, let U(,41)x1(t) be an (n +1) x 1
matrix whose elements are ug,1 () = u¥ =1 (t) for 1 <k <n+1,let Vi,11)xn(t) be an (n+1) xn

matrix whose elements are
i—1 o
(i—3) (¢ i— >0
(j B 1)@ (t), i-j=>
0, 1—3<0

v5(t) =
forl1 <i<n+landl < j <n, and let |W(n+1)x(n+1)(t){ denote the determinant of the
(n+1) x (n+ 1) matrix
Wity x 1)) = (Uns1yx1 () Vingryxn(t)) -

Then the nth derivative of the ratio % can be computed [1, p. 40, Exercise 5] by

A" [u®)] _ o Wasnxmen ()]
7 | — U 22
Applying u(t) =t and v(t) = 1 — p(x)t — q(x)t?> — r(2)t? in (2.2) yields
e e e
dtm [1=p(@)t — q(@)t = r(@)t* ] (1= p(a)t — q(a)2 — r(2)t3)" "
t 1—p(a)t—q(@)? —r()
L —(p(z) +2(x )t+37’(11?) (o)
0 —(2¢(x) + 6r(x)t) )
0 ~6r( >( )
X
0 ;
0 0
0 0
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0 0
0 0
0 0
0 0
1 —p(z)t — q(x)t? — r(z)t3 0
—(p(x) +2q(2)t + 3r()t2) (12,) 1 —pla)t —q(a)t* —r(z)t®
—(2q(z) + 6r(2)t)(,,",) —(p(z) + 2q(2)t + 3r(2)t*)(," )
0 1 0 0
1 —p(x) ((1)2 0 0
0 —2q(x) (g) 0 0
0 —6r(x) 0 0
e & .
0 0 e 1 0
0 0 s —p(a) (Z:%) 1
0 0 I *2q($) (n7—12) *p(l’) (nil)
as t — 0 for n € N. By the generating function in (1.7), we see that
1 da" t
T)orm(r)=— lim —
pairin(2) nl 1550 dtn {1 —p(x)t — q(x)t? — r(x)t3
0 1 0 0
1 —p(x) ((1)2 0 0
0 —2¢(x) (Q) 0 0
(- 0 —6r(x) (0) 0 0
-l : : :
0 0 S 1 0
0 0 e (@) (37)
which can be rewritten as the expression (2.1). The required proof is complete. O

Theorem 2.2. The generalized Tribonacci numbers V,(z,y, z;a,b,¢) forn > 0 can be represented
by the special Hessenberg determinant

Va(z,y,2;a,b,¢)

a ~1 0 0 0 0 0
b—az m(é) -1 0 0 0 0
2(c —bx —ay) 2y (9,) x(]? -1 0 0 0
0 62(7) 2y(i) w@) 0 0 0
1 0 0 62(}) 2y(3) 0 0 0
n: : :
0 0 0 0 -1 0 0
0 0 0 0 (773 -1
0 0 0 0 2(ns) w(ha) -1
0 0 0 0 62(,, 3) 2y nT_LQ) x(nﬁl)
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Proof. Applying u(t) = a+ (b—ax)t+ (¢ — xb—ya)t? and v(t) = 1 — xt — yt? — 213 in (2.2) gives

d" [a+ (b—ax)t+ (c —ab—ya)t*] (="
dzn 1—at —yt? — 2t3 N (1 — ot — yt? — zt3)n+1
a+ (b—ax)t+ (c—ab—ya)t> 1 —at—yt? —2t3
(b—ax) +2(c— xb—ya)t —(z + 2yt + 32t?) ((1))
2
2(c — xb — ya) —(2y + 621)(;)
x : :
0 0
0 0
0 0
0 0
0 0
0 0
1—xt —yt? — 2t3 0
—(z + 2yt + 32t%) (")) 1—at —yt? — 23
—(2y + 62t)(,,",) — (= + 2yt + 32t%) (")
a 1 e 0 0
b—ax —x(é 0 0
2(c—zb—ya) —2y (Q) 0 0
0 —62(;) 0 0
- (=" :
0 0 1 0
n—1
0 0 —x(n_ﬁ) 1 .
0 _2y(n 2) _x(nfl)
as t — 0 for n € N. By the generating function in (1.3), we have
) 1. d"[a+ (b—ax)t+ (c—xb—ya)t?
Vn(x,y,z,a,b,c)—m,}g%m{ 1= at— yi2 — 213
a 1 0 0 . 0 0
b—za —x(é) 1 0 0 0
2(¢ — bz — ya) —2y(g) —m(@ 1 0 0
3
o (=nn 0 —62() —2() -—=(2) 0 0
~ ol s z L z
0 0 0 0 e 1 0
0 0 0 0 —z("7}) 1
0 0 0 0 72y(n7—L2) 7x(n7—11)
which can be rewritten as the expression (2.3). O

3 Special cases

In this section, we will derive special cases of our main results in the form of corollaries.
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Corollary 3.1. The Tribonacci polynomials T, (x) for n > 0 can be represented by the special
Hessenberg determinant

T (z) =
0 -1 0 0 0 0 0 0
1 mz(é) -1 0 0 0 0 0
0 () () -1 o000
0 6(p) 22(y) 502(2) 0 0 0 0
110 0 6(;) 22(3) 0 0 0 0
n! | : : : : : : (3.1)
0 0 0 0 22 -1 0 0
0 0 0 0 20(75) 2*(073) -1 0
0 0 0 0 6(n-y) 2¢(773) 27(77, —1
0 0 0 0 0 6 (niS) 2 (nn 2) x’ (nil)

2

Proof. This follows from substituting p(x) = z*, ¢(z) = z, and r(z) = 1 in the equation (2.1). O

Remark 1. The determiantal expressions (1.5) and (3.1) are different from each other.

Corollary 3.2. The Tribonacci numbers T, forn > 0 can be represented by the special Hessenberg
determinant

0 -1 0 0 0 0 0 0
1 (1)2 -1 0 0 0 0 0
0 2(8) @2 ~1 0 0 0 0
0 6() 2(i) 5 0 0 0 0

(o0 603 2635 - o0 0 0 0

Tn=—1 : : A : : : o (3:2)

0 0 0 0 () | 0 0
00 0 0 2 (P2 ~1 0
0 0 0 0 6(0) 205 (o) -1

Proof. This follows from substituting x =y =2z =1, a =0, and b = ¢ = 1 in the equation (2.3).
Alternatively, the equation (3.2) can also be derived from (3.1) as x tends to 1. O

Remark 2. The determiantal expressions (1.1) and (3.2) are different from each other.

Corollary 3.3. The Tribonacci—Lucas numbers K, for n > 0 can be represented by the special
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Hessenberg determinant

3. -1 0 0 0 0 0 0
—2 }Q -1 0 0 0 0
—2 2(g) -1 0 0 0 0
0 6 2() () N
110 0 60 20 0 0 0 0
K, =— : .
n! :
o 0 0 0 () I 0 0
00 00 2y G L
0 0 0 0 6(n—4) 2(n7—13) (n—nZ) 711
o 0 0 0 0 6(%) 2(.%) ()

Proof. This follows from substituting t =y =2 =1, a = ¢ =3, and b =1 in the equation (2.3).
O

Corollary 3.4. The Perrin numbers Q, for n > 0 can be represented by the special Hessenberg
determinant

3 -1 0 0 0 0 0 0
o 0 -1 0 0 0 0 0
-2 2(3) 0 -1 0 0 0 0
0 6(%) 2(1) 0 0 0 0 0
0o 0 6() 2 0 0 0 0
Qn:% S W 26 : (3.3)
o 0 0 0 0 ~1 0 0
o 0 0 0 2% 0 -1 0
o 0 0 0 6(""y) 20075 0 -1
o 0 0 0 0 6(,"5) 2(,y 0

Proof. This follows from substituting = 0, y = 2z = 1, a = 3, b = 0, and ¢ = 2 in the
equation (2.3). O

Remark 3. The determinantal expressions (1.4) and (3.3) are different from each other.

Corollary 3.5. The Padovan (Cordonnier) numbers P, for n > 0 can be represented by the
special Hessenberg determinant

1 -1 0 0 0 0 0 0

1 0 -1 0 0 0 0 0

023 o0 -1 0 0 0 0

0 6(%) 2(1) 0 0 0 0 0

110 0 6(;) 20 0 0 0 0
Pp=— . ) :

0 0 0 0 0 -1 0 0

00 0 0 220 -1 0

00 0 0 6("") 207 0 -1

0 0 0 0 0 6(,"y) 2(,",) 0
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Proof. This follows from substituting © =0, y = 2 = 1, and a = b = ¢ = 1 in the equation (2.3).
O

Corollary 3.6. The Van der Laan numbers R, for n > 0 can be represented by the special
Hessenberg determinant

1 -1 0 0 0 0 0 0
0 0 -1 0 0 0 0 0
0 2(§) 0 -1 0 0 0 0
0 6()) 2@) 0 0 0 0 0
110 0 6() 20) 0 0 0 0
R”_ﬁ : ; ; :
0o 0 0 0 0 -1 0 0
0 0 0 0 2(n %) -1 0
0 0 0 0 6"~ 2007y o0 -1
0 0 0 0 0 6(,"5) 2(,%5) O

Proof. This follows from substitutingz =0,y = z =1, a = ¢ = 1, and b = 0 in the equation (2.3).
O

Corollary 3.7. The Narayana numbers N,, for n > 0 can be represented by the special Hessenberg
determinant

0 -1 0 0 0 0 0 0
1 () -1 0 0 0 0 0
0o 0 (3 -1 0 0 0 0
065 o0 (3 0 0 0 0
110 0 63 o0 0 0 0 0
AT
o 0 0 0 ey -1 0 0
0o 0 0 0 0 "2 -1 0
0 0 0 0 6y 0 () -l
0 0 0 0 0 6(n7—13) 0 (717—11)

Proof. This follows from substituting x = z = 1, y = 0, a = 0, and b = ¢ = 1 in the equation (2.3).
O

Corollary 3.8. The third order Jacobsthal numbers JS’) for n > 0 can be represented by the
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special Hessenberg determinant

0 -1 0 0 0 0 0 0
1o -1 0 0 0 0 0

0 2(; @ -1 0 0 0 0

0 12() 2()) () 0 0 0 0

o 100 0 12(3) 2(3) 0 0 0 0
0 0 0 0 () -1 0 0

0 0 0 0 207 () -1 0

0 0 0 0 12007 2007 (o) -1

Proof. This follows from substitutingz =y =1, 2 = 2, a = 0, and b = ¢ = 1 in the equation (2.3).
O

Corollary 3.9. The third order Jacobsthal-Lucas numbers j,(13) for n >0 can be represented by
the special Hessenberg determinant

2 -1 0 0 0 0 0 0
-1 (; -1 0 0 0 0
4 2(02 @2 -1 0 0 0 0
0 12(;) 2(12 () 0 0 0 0
o1 0o o 12(9) 2(3) 0 0 0 0
o= . ) .
0 0 0 0 ("3 -1 0 0
0 0 0 0 207 (M2 —1 0
0 0 0 0 12(:7) 2007 (Do) -1
0 0 0 0 0 12(,%) 20,2, (20
Proof. This follows from substituting = y = 1, 2 = 2, a = 2, b = 1, and ¢ = 5 in the
equation (2.3). O

4 Some comments

Our authors have written down several explicit determinants which give the Tribonacci num-
bers (or more generally, generalized tribonacci polynomials). Determinantal expressions are well
known for sequences like the Fibonacci and Tribonacci sequences defined by linear recursions
using their companion matrices and raising the matrix to an appropriate power, see [2, 6, 21].
On the first glance, the expressions in this paper seem like variations of these well known ex-
pressions, but, after comparing them for a while, it is sure that they are not the same. Firstly,
the matrices are not tridiagonal. For tridiagonal matrices, the nth determinant is expressible as
a linear combination of the previous two determinants. Therefore, tridiagonal determinants are
easy to be computed. In this sense, the determinantal expressions in this paper are new and
different from the known ones.

The proof of the main result is really easy and is an immediate consequence of the for-
mula (2.2) appeared in [1], which expresses the nth derivative of the rational function (1.7) as a



Expressions of generalized Tribonacci polynomials 287

determinant. Our authors use the rational generating function (1.7) to find the Taylor coefficient
using this determinant. Using the formula (2.2), the proof of the main theorem is almost imme-
diate and very elementary. Although most of the contents of this paper are the special cases or
consequences of Theorems 2.1 and 2.2, but these expressions are new.

More generally, one can consider the generating function T and eas-

1
1—p1(z)t—p2(2)t>—--
ily and elementarily compute its nth derivative by the formula (2.2).

Let Dy =1 and

€1,1 €1,2 0 . 0 0
€1 €2,2 €2,3 0 0
€31 €3,2 €3,3 ce 0 0
D, =
€n—21 €n—22 €p—23 ... €Ep_2n—-1 0
€n—-1,1 €n—-12 €Enp—-13 ... En—_1n-1 En—-1n
€n,1 en,2 €n,3 s €En,n—1 €n,n

for n € N. In [2, p. 222, Theorem]|, it was proved that the sequence D, for n > 0 satisfies
D; =e1,; and

n n—1
D, = Z(—l)n—sems <H €j7j+1> D,_4 (4.1)
s=1 j=s

for n > 2, where the empty product is understood to be 1. See also [23, Lemma 5], [24, Lemma 2],
[28, Lemma 2], and [29, Remark 3].

Applying D,, in (4.1) to the determinant (n — 1)!T}, 4 rip—1(2z) for n > 1 in (2.1) and simpli-
fying lead to the recursion (1.6).

Applying D,, in (4.1) to the determinant (n — 1)!V;,_1(z,y, 2;a,b,¢) for n > 1 in (2.3) and
simplifying result in the recursion (1.2).

We think that one of the real aims of mathematics is to simply, concisely, straightforwardly,
immediately, standardly, intrinsicly, concretely, and beautifully solve difficult, complicated, com-
plex, abstract, confused, general, and applicable problems.

The third author of this paper knew the formula (2.2), a general formula of any higher order
derivative for a ratio of two differentiable functions on 25 September 2014. As acknowledged
in [19, Acknowledgments] and [27, Acknowledgments], we here thank again Sergei M. Sitnik at
Voronezh Institute of the Ministry of Internal Affairs of Russia for his providing the formula (2.2)
and the reference [1] on 25 September 2014. Till now it seems that the general and fundamen-
tal formula (2.2) has not been extensively known and not considerably used in mathematical
community.

Using the formula (2.2) together with (4.1), one can simply, elementarily, easily, standardly,
and immediately obtain determinantal expressions in terms of some Hessenberg determinants
and can simply, elementarily, easily, standardly, and immediately derive recursive relations of
coefficients in power series expansions of functions in the form of a ratio of two infinitely dif-
ferentiable functions. We believe that this approach should be useful and applicable in analytic
combinatorics, analytic number theory, the theory of matrices, the theory of special functions,
and other mathematical branches, as done in [8, 18, 20, 22, 23, 24, 25, 26, 28, 29] and closely
related references therein.
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5 Conclusions

The formula (2.2) is a direct and effectual tool to compute and express higher order derivatives
of a ratio of two differentiable functions in terms of the Hessenberg determinants. In this paper,
utilizing the formula (2.2) and considering the generating functions (1.3) and (1.7) as ratios,
we present explicit formulas for (p, g, r)-Tribonacci polynomials T}, 4 ., (z) and generalized Tri-
bonacci sequences V,,(z,y, z; a, b, ¢) in terms of special Hessenberg determinants, derive explicit
formulas for the Tribonacci polynomials T;,(z), the Tribonacci numbers 7, the Tribonacci-Lucas
numbers K,,, the Perrin numbers @Q,,, the Padovan (Cordonnier) numbers P, the Van der Laan

numbers R,, the Narayana numbers N,,, the third order Jacobsthal numbers Jf(l?’), and the third

order Jacobsthal-Lucas numbers j,(LS) in terms of special Hessenberg determinants.
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