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ANALYTICAL TREATMENT FOR NONLINEAR OSCILLATION

EQUATIONS AND VIBRATORY SYSTEM OF WAVES

M. NAJAFI, M. MOGHIMI AND H. MASSAH

Abstract. Analytical approximate solutions of Duffing and Van der Pol equations as well as the system of coupled

Euler-Bernoulli beams and wave equations are under consideration. To this end, the Adomian Decomposition

Method (ADM) and variational iteration method (VIM) have been employed to obtain analytical solutions to these

differential equations. The results are compared with accurate numerical computations, which show that ADM is a

high performance and accurate method to use for the analytical solution of nonlinear physical problems.

1. Introduction

Achievement of the exact solution for nonlinear equations is an ambitious and perfect

goal for engineers, scientists, and mathematicians. However, computational finite discrete

approaches such as Finite Volume Method, Finite Difference Method, and Finite Element

Methods have been widely used to solve any physical problem in the past decades. As an

example, computational methodologies have been the only way to solve the Navier-Stokes

(N-S) equation (White, 1991) for predicting flow behavior in most flows.

Any type of approximate solution would be very valuable for mathematicians and engi-

neers. To this end, the Adomian Decomposition Method (ADM) by Adomian (1988) is one

the techniques which was introduced to solve nonlinear ordinary or partial differential equa-

tions. An advantage of this method is that it can provide an approximate solution to a rather

wide class of nonlinear (and stochastic) equations without linearization, perturbation, clo-

sure approximation, or discretization methods. Unlike the common methods, i.e., weak non-

linearity and small perturbation which are changing the physics of the problem due to simpli-

fication, ADM gives the approximate analytical solution of the problem without any simpli-

fication. Thus, the results are more realistic. Recently, several researchers have used ADM to

solve a wide range of physical phenomena (Adomian (1994), He (1997, 1998, 1999) and Pamuk

(2005)) in various engineering and science fields.

In this work, the effort has been made to find the analytical solutions, via ADM and VIM,

of oscillating systems in engineering and science, respectively, which are represented by mü+
f (u, u̇,c,k) = 0. By employing an especial approximation for restoring force, f (u), Duffing’s

differential equation produces results, which models a large number of dynamic systems. The
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Duffing double-well oscillator was first developed to model forced vibrations of industrial ma-

chinery. Even though Van der Pol’s equation was originally developed to describe the dynam-

ics of a triode electronic oscillation, it demonstrates many of the basic properties of a non-

linear system representing a mechanical self-exited mechanism. For nonlinear models, the

methods have shown reliable results in analytical approximation that converges very rapidly

(Abbaoui, K. and Cherruault, Y. (1999)). Finally, devotion goes to searching for an approxi-

mate solution of a system of coupled Euler-Bernoulli beams and wave equations analytically

via ADM.

This paper is organized as follows: in Section 2, the basics and application of ADM as

well as VIM will be discussed. Approximate solutions of Duffing and Van der Pol equations

will be found analytically via ADM and VIM in Sections 3 and 4, respectively. In Section 5,

numerical computations are pursued via the Runge-Kutta method in order to compare the

results. Sections 6 and 7 devote to the applications of ADM for partial differential equations,

i.e., the system of Euler-Bernoulli beam equations and wave equations in parallel followed by

the conclusion in Section 8.

2. Basics and application of ADM and VIM

The principal algorithm of ADM when applied to a general nonlinear equation is in the

following form by Adomian (1994):

Lu+Ru+Nu = g . (1)

The linear terms are decomposed into L +R, while the nonlinear terms are represented by

Nu. Note, L is taken as the highest order derivative to avoid difficult integration involving

complicated Green’s functions, and R is the remainder of the linear operator. In addition, L−1

is a definite integration from 0 to t , i.e.,

L−1[·] =
∫t

0

∫t

0
[·]d td t . (2)

Obviously, if L is a second-order operator, L−1 is a two-fold indefinite integral as:

L−1Lu = u(x, t)−u(x,0)−
∂u(x,0)

∂t
t . (3)

Operating on both sides of (1) with L−1 yields:

L−1Lu = L−1g −L−1Ru−L−1Nu, (4)

and finally

u(x, t) = u(x,0)+ut (x,0)t +L−1g −L−1Ru−L−1Nu. (5)

The decomposition method represents the solution of (4) as the following series is:

u(x, t) =
∞
∑

n=0

un (x, t). (6)
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The non-linear operator Nu is decomposed as

Nu =
∞
∑

n=0

Pn . (7)

Substituting (6) and (7) into (5), one gets

∞
∑

n=0

un (x, t) = u0 −L−1R
∞
∑

n=0

un −L−1
∞
∑

n=0

Pn , (8)

where

u0 = u(x,0)+ut (x,0)t +L−1g . (9)

Consequently, Equation (8) can be calculated as:

u1 = −L−1Ru0 −L−1P0,

u2 = −L−1Ru1 −L−1P1,

... (10)

un = −L−1Run −L−1Pn , n ≥ 0,

where Pn are the Adomian’s polynomials of u0,u1, . . . ,un and are obtained from the following

formula by Adomian (1988):

Pn =
1

n!

dn

dλn

[

F
( ∞
∑

i=0

λi ui

)]

λ=0
, n = 0,1,2, . . . . (11)

Equation (11) gives:

P0 = f (u0),

P1 = u1
d

du0
f (u0),

P2 = u2
d

du0
f (u0)+

u2
1

2!

d2

du2
0

f (u0), (12)

P3 = u3
d

du0
f (u0)+u1u2

d2

du2
0

f (u0)+
u3

1

3!

d3

du3
0

f (u0),

...

The accuracy level of the approximation of u(x, t) in (6) can be dramatically enhanced by

computing coefficients (as many as we would like). Here, u0 can be obtained using initial

conditions; and, consequently, all of un are calculable. Since the series conveges very rapidly,

the k-term approximation can be used as a practical solution:

ϕk =
k−1
∑

n=0

un , where lim
k→∞

ϕk = u. (13)

Convergence has been rigorously established (Abbaoui, K. and Cherruault, Y. (1999)).
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2.1. Variational iteration method

Having considered (1) and to illustrate the basic concepts of the variational iteration method,

one can, according to He’s variational iteration method (1999), construct a correction func-

tional as follows:

uu+1(t)= un (t)+
∫t

0
λ
[

Lun (τ)+N un(τ)− g (τ)
]

dτ (14)

where λ is a general Lagrangian multiplier, which can be identified optimally via the varia-

tional theory, the subscript n denotes the nth order approximation, un is considered as a re-

stricted variation, i.e., un = 0. Equation (14) is called a correction functional. The variational

iteration method proposed by He, J. H., (1999), has been shown to solve effectively, easily, and

accurately a large class of nonlinear problems with approximations converging repidly to ac-

curate solutions. For linear problems, its exact solution can be obtained by only one iteration

step due to the fact that the Lagrange multiplier can be exactly identified.

3. Solution to Duffing equation via ADM and VIM

Now in this section, we are in the position to apply these methods, ADM and VIM, to our

nonlinear differential equations as well as to partial differential equation in Section 6.

The following problem is motivated by an analogous problem in ordinary differential equa-

tions and widely used in many perturbation techniques:

ü +u+εu3 = 0, (15)

with initial onditions,

u(0) = 1, u̇(0) = 5. (16)

Rewriting (15) in the following operator form:

Lt (u)+u+εN (u) = 0. (17)

The highest order linear derivative operator is Lt , where Lt is a second order differential oper-

ator with respect to t . The nonlinear operator is represented by N . The integral operator, L−1
t ,

is a twofold integration with respect to t . Applying the L−1
t to (17) and using initial conditions

in (16) yields

u(t) = 1+5t −L−1
t (u)−εL−1

t N (u). (18)

The solution, u(t), can be decomposed as

u(t) =
∞
∑

n=0

un (t). (19)

Substituting (19) into (18) gives

∞
∑

n=0

un (t)= 1+5t −L−1
t

( ∞
∑

n=0

un (t)
)

−εL−1
t N

( ∞
∑

n=0

un (t)
)

. (20)
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Equation (20) is transformed to a set of recursive relations given by
{

u0(t) = 1+5t ,

un+1(t) =−L−1
t (un )−εL−1

t N (un), n ≥ 0
(21)

where u0 is obtained using initial conditions and the un+1 terms are calculated using the pre-

ceding relations. Hence, the summation of the un terms is the desired solution, which con-

verges rapidly. In practice, we can calculate the first k terms of the summation in place of the
whole. Therefore, the approximate solution is

ϕk =
k−1
∑

n=0

un (t). (22)

The procedure is clear to follow and to calculate. Below, you will find the first two terms of the

analytical approximation to (15):

u1(t) = −
1

2
t 2 −

5

6
t 3 −

1

500
ε(1+5t)5,

u2(t) =
( 3

1000
t 2 +

7

200
t 3 +

21

80
t 4 +

21

16
t 5 +

35

8
t 6 +

75

8
t 7 +

375

32
t 8 +

625

96
t 9

)

ε2

+
( 1

1000
t 2 +

1

120
t 3 +

1

6
t 4 + t 5 +

55

24
t 6 +

275

168
t 7

)

ε+
1

24
t 4 +

1

24
t 5, (23)

u3(t) = ·· · ,

...

So, the result can be presented as a series solution in the form of

ϕ=
∞
∑

n=0

un (t) = u0(t)+u1(t)+u2(t)+u3(t)+·· · . (24)

Summation of the first three-term of un (t), as in (22), gives a partial sum solution in a series

form as follows:

ϕ3 =
2

∑

n=0

un (t) = −
1

2
t 2 −

5

6
t 3 −

1

500
ε(1+5t)5

+
( 3

1000
t 2 +

7

200
t 3 +

21

80
t 4 +

21

16
t 5 +

35

8
t 6 +

75

8
t 7 +

375

32
t 8 +

625

96
t 9

)

ε2

+
( 1

1000
t 2 +

1

120
t 3 +

1

6
t 4 + t 5 +

55

24
t 6 +

275

168
t 7

)

ε+
1

24
t 4 +

1

24
t 5,

In practice, due to the rapid convergence of the solution, the first few terms will provide the

required accuracy.

3.1. Duffing solution via VIM

Following the variational iteration method in Section 2, its correction variational func-

tional in t-direction can be expressed as follows:

un+1(t)= un (t)+
∫t

0
λ
[d2un

dτ2
+un +εu3

n

]

dτ. (25)
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Here δun is considered as a restricted variation, i.e., δun = 0. Making the correction func-

tional, Equation (25), stationary, noticing the δun = 0,

δun+1(t) = δun (t)+δ

∫t

0
λ
[d2un

dτ2
+un +εu3

n

]

dτ, (26)

δun+1(t) = δun (t)+δ

∫t

0
λ
[d2un

dτ2

]

dτ, (27)

δun+1(t) = δun (t)(1−λ′(τ))+δ
d2un

dτ2
λ(τ)+

∫t

0
δun (τ)λ′n(τ)dτ= 0, (28)

yields the following stationary conditions:

δun : 1−λ′(τ) = 0

δ
dun

dτ
: λ(τ) = 0 (29)

δun : λ′′(τ) = 0

Therefore, the Lagrange multiplier can be identified as

λ(τ) = τ− t . (30)

As a result, we obtain the following iteration formula in t-direction:

un+1(t) = un (t)+
∫t

0
(τ− t)

{d2un

dτ2
+un +εu3

n

}

dτ. (31)

We start with the initial condition given by (16), one can find for u0

u0(t) = 1+5t .

Now, using (31), the following results can be obtained via symbolic packages such as Maple:

u0 = 1+5t ,

u1 = 1+5t −
25

4
εt 2 −

25

4
εt 4 −

5

6
t 3 −

5

2
εt 3 −

1

2
t 2 −

1

2
εt 2,

u2 = ·· · ,

...

In Section 5, you will find the comparison of these two methods with its corresponding nu-

merical computation for Duffing Equation.

4. Solution of van der Pol equation by ADM and VIM
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This equation, which arises in the study of circuits containing vacuum tubes and widely

used in many perturbation techniques, is describing self-sustaining oscillations in which en-

ergy is fed into small oscillations and removed from large oscillations,

ü+u−ε(1−u2)u̇ = 0, (32)

with initial conditions,

u(0) = 2, u̇ = 3. (33)

Rewriting the equation in the following operator form:

Lt (u)+u+εN (u) = 0. (34)

Following procedures in Section 2, one can find the analytical solution for (32) as

u(t) = 2+3t −L−1
t (u)−εL−1

t N (u). (35)

According to ADM, u(t) can be decomposed to

u(t) =
∞
∑

n=0

un (t). (36)

Introducing (36) into (35) gives

∞
∑

n=0

un (t)= 2+3u−L−1
t

( ∞
∑

n=0

un (t)
)

−εL−1
t N

( ∞
∑

n=0

un (t)
)

. (37)

The following sets of relations are recursive and acquired by applying ADM to (37):

{

u0(t) = 2+3t ,

un+1(t) =−L−1
t (un )−εL−1

t N (un), n ≥ 0
(38)

By employing the initial conditions, u0 is calculated and the other terms, un+1, are obtained

recursively using the preceding result. The final solution is the summation of un terms, which

converges quickly. Because of its behavior, that is, its fast convergence, it will suffice to calcu-

late only the first k terms as the solution:

ϕk =
k−1
∑

n=0

un (t). (39)

Maple V is utilized to calculate un ’s in symbolic fashion as follows:

u1(t) = −
9

4
εt 4 −

1

6
(3+36ε)t 3 − t 2 −

9

2
εt 2,

u2(t) =
81

28
ε2t 7 +

(33

40
ε+

27

2
ε2

)

t 6 +
( 1

40
ε+

33

10
ε+

477

20
ε2

)

t 5 +
(15

4
ε+

1

12
ε+18ε2

)

t 4

+
(

ε+
9

2
ε2

)

t 3, (40)

u3 = ·· · ,
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...

Summation of the first three-terms of un (t), as in (40), gives a partial sum solution in a series

form as follows:

ϕ3 =
2

∑

n=0

un (t) = 2+
81

28
ε2t 7 +

(33

40
ε+

27

2
ε2

)

t 6 +
( 1

40
+

33

10
ε+

477

20
ε2

)

t 5

+
(3

2
ε+

1

12
+18ε2

)

t 4 +
(

−5ε+
9

2
ε2 −

1

2

)

t 3 −
(

1+
9

2
ε
)

t 2 +3t . (41)

4.1. Van der Pol solution by VIM

According to the variational iteration method, its correction variational functional can be

expressed as follows:

un+1(t) = un (t)+
∫t

0
λ

[

d2un

dτ2
+un −ε(1−u2

n )
dun

dτ

]

dτ. (42)

Here δun is considered as a restricted variation, i.e., δun = 0. Making the correction func-

tional, Equation (42), stationary, noticing that δun = 0.

δun+1(t) = δun (t)+δ

∫t

0
λ

[

d2un

dτ2
+un −ε(1−u2

n )
dun

dτ

]

dτ (43)

δun+1(t) = δun (t)+δ

∫t

0
λ
[d2un

dτ2

]

dτ (44)

δun+1(t) = δun (t)(1−λ′(τ))+δ
d2un

dτ2
λ(τ)+

∫t

0
δun (τ)λ′′(τ)dτ= 0, (45)

yields the following stationary conditions:

δun : 1−λ′(τ) = 0

δ
dun

dτ
: λ(τ) = 0 (46)

δun : λ′′(τ) = 0

Therefore, the Lagrange multiplier, therefore, can be identified as

λ(τ) = τ− t . (47)

Hence, the following iteration formulae in t-direction will be obtained:

un+1(t) = un (t)+
∫t

0
(τ− t)

{d2un

dτ2
+un −ε(1−u2

n )
dun

dτ

}

dτ. (48)

When we start with the initial condition given by (33), one gets for u0

u0 = 2+3t . (49)
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The following results can be obtained by (48):

u0 = 2+3t ,

u1 = 2−
9

4
εt 4 −

(1

2
+6ε

)

t 3 −
(9

2
ε+1

)

t 2 +3t ,

(50)u2 = ·· · ,

...

5. Numerical calculations

ADM and VIM results for Duffing and Van der Pol equations are presented in Tables 1−5.

Tables 1 and 2 contain the ADM and VIM results for various points in time for ε = 0.1. As

seem in Tables 1 and 3, the 3-term and 4-term ADM solutions for both of the aforementioned

equations are in good agreement with the corresponding numerical results. In addition, in

Table 2 and 4, the results of two iterations of VIM are presented. It was observed that when

t increases the error is increased too but not in ADM results. It is evident that computation

of more terms would result in better approximation. In Table 5, the results of the Van der Pol

equation using ADM with ε= 10 are compared with those VIM of the 2-iterations solution. It

is shown that ADM is better than VIM.

6. Application of ADM for PDE

In the following two sections, we would like to apply ADM method to the system of linear

partial differential equations, i.e., Euler-Benoulli beams as well as the system of waves in R
2,

respectively. These problems are motivated by an analogous problem in ordinary differential

equations for coupled oscillators and has potential application in isolating a vibrating object

from the outside disturbances. For example, rubber or rubberlike materials can be used to

either absorb or shield a structure from vibration. As an approximation, thses materials can

be modeled as distributed springs. For further applications of such a configuration, interested

readers are referred to Najafi, M., (1997 and 2001).

Table 1. Comparison of the numerical results with ADM solution for Duffing equation at ε =
0.1 for different values of t .

3 terms of 4 terms of Numerical Numerical solution - 4 Absolute Error
t ADM ADM (Runge-Kutta) terms ADM (%)

0 0.99980019 0.99980019 1.00000000 0.00374053 0.37405285

0.001 1.00479465 1.00479465 1.00499941 0.00376856 0.37498171

0.01 1.04969418 1.04969418 1.04994019 0.00399432 0.38043308

0.1 1.49265918 1.49265918 1.49314227 0.00234472 0.15703271

0.5 3.18063997 3.18068685 3.17654735 0.00413950 0.13031443

1 3.71608038 3.83005787 3.79760816 0.03244971 0.85447748
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Table 2. Comparison of the numerical results with VIM solution for Duffing equation at ε = 0.1

for different values of t .

2 iterations of Numerical Numerical solution - 2 Absolute Error
t VIM (Runge-Kutta) iterations of VIM (%)

0 1 1.00000000 0 0

0.001 1.004999 1.00499941 -0.00000004 0.00000398

0.01 1.049944 1.04994019 -0.00000372 0.00035431

0.1 1.493348 1.49314227 -0.00020565 0.01377274

0.5 3.16849 3.17654735 0.00805777 0.25366430

1 3.116667 3.79760816 0.68094149 17.93079919

Table 3. Comparison of the numerical results with ADM solution for Van der Pol equation at

ε= 0.1 for different values of t .

4 terms of Numerical Numerical solution - 4 Absolute Error
t 3 terms of ADM ADM (Runge-Kutta) terms ADM (%)

0.001 2 2 2 0 0

0.01 2.002999 2.002999 2.003 0.00000145 0.00007244

0.1 2.0299 2.029854 2.0298 -0.00005405 0.00266277

0.5 2.2895 2.284589 2.2842 -0.00038930 0.01704330

1 3.1875 3.049955 3.049 -0.00095492 0.03131915

Table 4. Comparison of the numerical results with VIM solution for Van der Pol equation at

ε= 0.1 for different values of t .

2 iterations of Numerical Numerical solution - 2 Absolute Error
t VIM (Runge-Kutta) iterations of VIM (%)

0.001 2.002999 2 0.00000145 0.00007244

0.01 2.029854 2.003 -0.00005390 0.00265534

0.1 2.284378 2.0298 -0.00017750 0.00777077

0.5 2.985938 2.2842 0.06306250 2.06830108

1 2.225 3.049 0.93700000 29.63314358

Table 5. Comparison of the numerical results with ADM and VIM solutions of Van der Pol

equation at ε= 10 for different values of t .

4 terms 2 Numerical Difference between Difference between
t iterations Numerical solution Numerical solution

of ADM of VIM (Runge-Kutta) and ADM and VIM

0 2 2 2 0 0

0.001 2.002954 2.002954 2.003 0.00004560 0.00229955

0.01 2.02578 2.025339 2.0257 -0.00008025 0.01780742

0.1 1.699198 1.77725 2.0863 0.38710178 14.81330585
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Dynamics of the system under consideration are governed by the following set of partial

differential equations:

ut t +a4
1uxxxx = k(v −u)−β1ut , 0 < x < 1, t > 0,

(51)
vt t +a4

2 vxxxx = k(u− v)−β2vt , 0 < x < 1, t > 0,

with initial conditions,

u(x,0) = p1(x), v(x,0) = q1(x) 0 ≤ x ≤ 1
(52)

ut (x,0) = p2(x), vt (x,0) = q2(x)

and boundary conditions,

u(0, t) = uxx (0, t) = 0, v(0, t) = vxx (0, t) = 0, t > 0
(53)

u(1, t) = uxx (1, t) = 0, v(1, t) = vxx (1, t) = 0

where t and x represent the time and space variables, respectively, and u = u(x, t) and v =
v(x, t) are the vertical displacements of the beams measured from the horizontal equilibrium

positions. The system parameters, ai ≥ 0, i = 1,2, are described in terms of flexural rigidity

coefficient, Ei Ii , and mass density, mi , as a4
i
= Ei Ii /mi , where Ei denotes Young modulus of

elasticity and Ii denotes the cross-sectional area. Uniform beam properties are assumed; that

is, mi , Ei and Ii are constants. The terms ±k(u − v) represent the coupling between the two

beams and k denotes the elastic coupling constant. The terms −β1ut and −β2vt represent

the velocity feedback controllers.

Having considered the procedures in Section 2 for ADM, one can rewrite (51) in the fol-

lowing operator form:
{

Lt (u)+a4
1Lx (u)+R1(u, v) = 0,

Lt (v)+a4
2Lx (v)+R2(u, v) = 0.

(54)

The linear term is decomposed to L and R, where L is the highest order derivative and R is

the reminder of the linear operator. Lt and Lx are considered second order and forth-partial

differential operator in t and x, respectively. L−1
t is twofold integration with respect to t from

0 to t . Applying the L−1
t to system (54) and using initial conditions (52) yields

u(x, t) = p1(x)+ t p2(x)−a4
1L−1

t Lx (u)−L−1
t R1(u, v),

(55)
v(x, t) = q1(x)+ t q2(x)−a4

2L−1
t Lx (v)−L−1

t R2(u, v).

The first two terms of (55) are integration constants. According to ADM, u(x, t) and v(x, t) can

be decomposed as follows:

u(x, t) =
∞
∑

n=0

un (x, t),

(56)

v(x, t) =
∞
∑

n=0

vn(x, t).
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Substituting (56) into (55) gives

∞
∑

n=0

un (x, t) = p1(x)+t p2(x)−a4
1L−1

t Lx

( ∞
∑

n=0

un (x, t)
)

−L−1
t R1

( ∞
∑

n=0

un (x, t),
∞
∑

n=0

vn(x, t)
)

,

(57)
∞
∑

n=0

vn(x, t) = q1(x)+t q2(x)−a4
1L−1

t Lx

( ∞
∑

n=0

vn(x, t)
)

−L−1
t R2

( ∞
∑

n=0

un (x, t),
∞
∑

n=0

vn(x, t)
)

,

The system in (57) is transformed to a set of recursive relations given by

u0(x, t) = p1(x)+ t p2(x),
(58)

un+1(x, t) =−a4
1L−1

t Lx (un)−L−1
t R1(un , vn), n ≥ 0,

and similarly

v0(x, t) = q1(x)+ t q2(x),
(59)

vn+1(x, t) =−a4
2L−1

t Lx (vn)−L−1
t R1(un , vn), n ≥ 0.

Here, u0 and v0 can be obtained using (52). The terms un+1 and vn+1 are calculated using

preceding terms. Consequently, the summation of un and vn terms is the desired solution

which converges rapidly. In real world, we can calculate k terms of the summation, so the

analytical approximate solution is

ϕk =
k−1
∑

n=0

un (x, t), ψk =
k−1
∑

n=0

vn(x, t). (60)
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7. Examples

Example 1. The system we are dealing with is a parallel system of Euler-Bernoulli beams

with distributed springs and dampers. Without loss of generality, let k = β1 = β2 = 1 and also

a1 = a2 = 1, then (51) becomes

{

un +uxxxx = v −u−ut 0 < x < 1, t > 0

vn + vxxxx = u− v − vt 0 < x < 1, t > 0
(61)

and initial conditions are

u(x,0) = p1(x) = sin(πx), v(x,0) = q1(x) =−sin(πx),

ut (x,0) = p2(x) = 0, vt (x,0) = q2(x) = 0,
(62)

and with prescribed boundary conditions

u(0, t) = uxx (0, t) = 0, v(0, t) = vxx (0, t) = 0

u(1, t) = uxx (1, t) = 0, v(1, t) = vxx (1, t) = 0.
(63)

After decomposition u(x, t) and v(x, t), according to (57), the system (61) can be rewritten as

∞
∑

n=0

un (x, t) = sin(πx)+
Ï

[

−
( ∞
∑

n=0

un

)

xxxx
+

∞
∑

n=0

vn −
∞
∑

n=0

un −
( ∞
∑

n=0

un

)

t

]

d td t ,

(64)∞
∑

n=0

vn(x, t) = −sin(πx)+
Ï

[

−
( ∞
∑

n=0

vn

)

xxxx
+

∞
∑

n=0

un −
∞
∑

n=0

vn −
( ∞
∑

n=0

vn

)

t

]

d td t .

Each of equations in (64) can be rewritten in a set of the following recrusive relations:

u0(x, t) = sin(πx),
(65)

un+1(x, t) =
Ï

[−(un )xxxx + vn −un − (un)t ]d td t , n ≥ 0.

Similarly,

v0(x, t) =−sin(πx),
(66)

vn+1(x, t) =
Ï

[−(vn)xxxx +un − vn − (vn)t ]d td t , n ≥ 0.

Now, having considered (60), one can find the following analytical approximate solution for u

and v , respectively:
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ϕ3 =
2

∑

n=0

un (t) =
[

1−
1

2
(π4 +2)t 2 +

1

6
(π4 +2)t 3 +

1

24
(π8 +4π4 +4)t 4

]

sin(πx),

(67)
ψ3 =

2
∑

n=0

vn(t) =−
[

1−
1

2
(π4 +2)t 2 +

1

6
(π4 +2)t 3 +

1

24
(π8 +4π4 +4)t 4

]

sin(πx).

Our attempt is now to find the closed form solution to system (61). To do this, we use Af-
tertreatment (AT) technique by Jiao (2002) that leads to a closed form solution. This technique
uses Laplace transform and Padé approximation (Adomian, G., Kluwer Academic, 1994), which

approximates a function by ratio of two polynomials. Due to AT technique, Laplace transform
is applied to the coefficients of sin(πx) in (67) yields

ℓ(ϕ3(x, t)) =
{ 1

s5

[

(π8 +4π4 +π)+ (π4 +2)s − (π4 +2)s2 + s4
]}

sinπx. (68)

For the sake of simplicity, let s = 1/ξ; then (68) becomes

ℓ(ϕ3(x, t)) =
{[

ξ− (π4 +2)ξ3 + (π4 +2)ξ4 + (π8 +4π4 +4)
]

ξ5
}

sinπx. (69)

Equation (69) is now approximated by Padé approximation
[2

2

]

yields

[2

2

]

ξ
=

ξ(1+ξ)

1+ξ+ (2+π4)ξ2
. (70)

Let ξ= 1/s, then (70) becomes
[2

2

]

s
=

s + s2

(2+π2)+ s + s2
. (71)

Finally, applying the inverse Laplace transform to (71) results to the following analytical ap-
proximate solution to the system (61) for u(x, t):

u(x, t) = e(− t
2 )

[

cosh
(1

2

√

−7−4π4
)

t +
sinh( 1

2

p
−7−4π4)t

(
p
−7−4π4)

]

sin(πx). (72)

Similarly for v(x, t),

v(x, t) =−e(− t
2 )

[

cosh
(1

2

√

−7−4π4
)

t +
sinh( 1

2

p
−7−4π4)t

(
p
−7−4π4)

]

sin(πx). (73)

Due to the bounded ness of the complex hyperbolic trigonometric functions as well as sine
function, one can see from (72) and (73) that as t →∞, the solutions u, v → 0, which implies
that the system (61) is stable, as it was proved by Najafi (Journal of Vibration and Control. Vol.
3, 1997).

Example 2. The governing equation for coupled wave equations in Ω⊂R
2 and boundary

∂Ω is as follows:

un = c2
1∆u+k(v −u)−β1ut ,
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in Ω× (0,∞), (74)
vn = c2

2∆v +k(u− v)−β2vt ,

with initial conditions,

u(0) = v(0) = sin(πx)sin(πy),
in Ω (75)

ut (0) = vt (0) = 0,

and boundary conditions,

u = v = 0, on ∂Ω× (0,∞).

Having considered the procedures in Section 2 for ADM and following the steps in Section 6,

one can rewrite (74) in the following operator form:

Lt u = c2
1Lu+R1(u, v),

(76)
Lt v = c2

2 Lv +R1(u, v),

where Lt =
∂2(·)

t 2
, L =

∂2(·)
x2

+
∂2(·)

y2
, and R is the reminder of the linear Operator. Applying

L−1
t , which is twofold integration with respect to t from 0 to t , to system (76) and using initial

conditions (75) yields

u = sin(πx)sin(πy)+c2
1L−1

t L(u)−L−1
t R1(u, v),

(77)
v = sin(πx)sin(πy)+c2

2L−1
t L(v)−L−1

t R2(u, v).

According to ADM, u and v can be decomposed as follows:

u =
∞
∑

0

un , v =
∞
∑

0

vn . (78)

Substituting (78) into (77) gives

u =
∞
∑

n=0

u = sin(πx)sin(πy)+
Ï[

c2
1

[( ∞
∑

n=0

un

)

xx
+

( ∞
∑

n=0

un

)

y y

]

+k
[ ∞

∑

n=0

vn −
∞
∑

n=0

un

]

−β1

( ∞
∑

n=0

un

)

t

]

d td t ,

(79)

v =
∞
∑

n=0

v = sin(πx)sin(πy)+
Ï[

c2
2

[( ∞
∑

n=0

vn

)

xx
+

( ∞
∑

n=0

vn

)

y y

]

+k
[ ∞

∑

n=0

un −
∞
∑

n=0

vn

]

−β2

( ∞
∑

n=0

vn

)

t

]

d td t .

Each of equations in (79) can be rewritten in a set of the following recursive relations:

u0 = sin(πx)sin(πy),
(80)

un+1 =
Ï

[

c2
1 ((un)xx + (un )y y )+k[vn −un ]−β1(un )t

]

d td t , n ≥ 0.



92 M. NAJAFI, M. MOGHIMI AND H. MASSAH

Similarly,

v0 = sin(πx)sin(πy),
(81)

vn+1 =
Ï

[

c2
2 ((vn)xx + (vn)y y )+k[un − vn ]−β2(vn)t

]

d td t , n ≥ 0.

Here, u0 and v0 can be obtained using (75). The terms un+1 and vn+1 are calculated using
preceding terms. Consequently, the summation of un and vn terms is the desired solution
which converges rapidly. We can calculate k terms of the summation to find approximate
analytical solution as:

ϕk =
k−1
∑

n=0

un , ψk =
∞
∑

n=0

vn . (82)

For the purpose of the calculation, let, without loss of generality, c1 = c2 = 1 and k =β1 =β2 =
1, then the following calculations are the first three terms of (80):

u1 = −sin(πx)sin(πy)π2t 2,

u2 = sin(πx)sin(πy)
[1

6
π4t 4 +

1

3
π2t 3

]

,

(83)
u3 = sin(πx)sin(πy)

[

−
1

90
π6t 6 −

1

15
π4t 5 −

1

12
π2t 4

]

.

...

From (82), one can write the following analytical approximate solution for (74):

ϕ4 = sin(πx)sin(πy)
[

1−π2t 2 +
1

3
π2t 3 +

1

15
π4t 4 −

1

6
π2t 4 −

1

15
π4t 5 −

1

90
π6t 6

]

,

(84)

ψ4 = sin(πx)sin(πy)
[

1−π2t 2 +
1

3
π2t 3 +

1

15
π4t 4 −

1

6
π2t 4 −

1

15
π4t 5 −

1

90
π6t 6

]

.

Dur to AT technique, see Example 1, Laplace transform is applied to the coefficiets of sin(πx)sin(πy)
in (84) yields

ℓ(ϕ4) =
{ 1

s7

[

− (4π2 +8π4 +8π6)− (8π4 +4π2)s +4s2 +2π2s3

−2π2s4 + s6
]}

sin(πx)sin(πy). (85)

For the sake of simplicity, let s = 1/ξ; then (85) becomes

ℓ(ϕ4) =
[

− (4π2 +8π4 +8π6)ξ7 − (8π4 +4π2)ξ6 +4ξ5 +2π2ξ4

−2π2ξ3 +ξ
]}

sin(πx)sin(πy). (86)

Equation (86) is now approximated by Padé approximation
[2

2

]

yields

[2

2

]

ξ
=

ξ(1+ξ)

1+ξ+2π2ξ2
. (87)
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Let ξ= 1/s, then (87) becomes
[2

2

]

s
=

s +1

s2 + s +2π2
. (88)

Finally, applying the inverse Laplace transform to (88) results to the following analytical ap-
proximate solution in the closed form for (74) in R

2, respectively:

u = e(− t
2 )

[

cos
(1

2

√

−1+8π2
)

t +
sin( 1

2

p
−1+8π2)t

(
p
−1+8π)

]

sin(πx)sin(πy).

Similarly for v ,

v = e(− t
2 )

[

cos
(1

2

√

−1+8π2
)

t +
sin( 1

2

p
−1+8π2)t

(
p
−1+8π)

]

sin(πx)sin(πy).

One can see from above solutions that u, v → 0, as t →∞, which implies that the system in
(74) is a stabilized system. This phenomenon was expected to happen, since (74) is exposed
to the velocity feedback controllers, see Najafi (IEEE Transaction on Automatic Control. Vol.
42, 1997).

8. Conclusion

In this paper, the standard Adomian Decomposition Mehod (ADM) is used, which is the

focal point of this work, to solve nonlinear oscillation equations such as Duffing and Van der
Pol equations analytically. In addition, we found the solution of the system of coupled wave
equations in a closed form and by using the initial conditions only. In comparison with per-
turbation or linearization methods, this method gives the analytical solution in series form
which converges rapidly. Unlike other common methods for solving any physical problem,
linear or nonlinear, ADM solves many types of problems without requiring linearization, dis-
cretization, perturbation, or unjustified assumptions that may slightly change the physics of

the problem. For a large number of problems, the decomposition method has shown reliable
results in providing analytical approximation that converges rapidly.
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