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ON THE FEKETE-SZEGÖ PROBLEM FOR ALPHA-QUASI-CONVEX

FUNCTIONS

H. R. ABDEL-GAWAD

Abstract. Let Qα(α ≥ 0) denote the class of normalized analytic alpha-quasi-convex functions

f , defined in the unit disc, D = {z : |z| < 1}, by the condition

Re

[

(1 − α)
f ′(z)

g′(z)
+ α

(zf ′(z))′

g′(z)

]

> 0,

Where f(z) = z +
∑

∞

n=2
anzn and where g(z) = z +

∑

∞

n=2
bnzn is a convex univalent function

in D. Sharp upper bounds are obtained for |a3 − µa2

2
|, when µ ≥ 0.

Introduction

Denote by S the class of functions f which are analytic and univalent in D = {z :
|z| < 1} and normalized so that f(0) = f ′(0) − 1 = 0. Thus for f ∈ S we may write

f(z) = z +

∞
∑

n=2

anzn (1)

Let C and K be those subsets of S, which are convex and close-to-convex respectively.

Then f ∈ K if, and only if, There exists g ∈ C such that for z ∈ D, Re f ′(z)
g′(z) > 0. In [3]

Noor considered a new subclass C∗ of univalent function that is f given by (1), belongs
to C∗ if, and only if, f is analytic in D and is such that there exists g ∈ C satisfying

Re
(zf ′(z))′

g′(z)
> 0 For z ∈ D.

The function in C∗ are called quasi-convex and C ⊂ C∗ ⊂ K ⊂ S. It is shown [3] that
f ∈ C∗ if, and only if, zf ′ ∈ K. Recently the function f called α-quasi-convex function
has been defined and its properties Studied in [4].

A function f , analytic in D, is said to be α-quasi-convex if, and only if, there exists
function g ∈ C such that, for α real and positive

Re

[

(1 − α)
f ′(z)

g′(z)
+ α

(zf ′(z))′

g′(z)

]

> 0. (2)
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The class of such functions will be denoted by Qα. A classical theorem of Fekete and

Szegö [1] states that for f ∈ S given by (1)

|a3 − µa2
2| ≤







3 − 4µ if µ ≤ 0.

1 + 2e−2µ(1−µ) if 0 ≤ µ ≤ 1.

4µ − 3 if µ ≥ 1.

This inequality is sharp in the sense that for each µ there exists a function in S such
that equality holds. The above inequalities can be improved [2]. In particular for f ∈ K
and given by (1), Keogh and Merkes [2] showed that

∣

∣a3 − µa2
2

∣

∣ ≤















3 − 4µ if µ ≤ 1
3 .

1
3 + 4

9µ
if 1

3 ≤ µ ≤ 2
3 .

1 if 2
3 ≤ µ ≤ 1.

4µ − 3 if µ ≥ 1.

(3)

Again, for each µ, there is a function in K such that equality holds. In this paper we
solve the Fekete-Szego problem for the class Qα of α-quasi-convex functions.

Results

Theorem. Let f ∈ Qα and be given by (1), then for 0 ≤ α ≤ 1

∣

∣a3 − µa2
2

∣

∣ ≤



























3
1+2α

− 4µ
(1+α)2 if µ ≤ (1+α)2

3(1+2α) .

1
3(1+2α) + 4(1+α)2

9(1+2α)2µ
if (1+α)2

3(1+2α) ≤ µ ≤ 2(1+α)2

3(1+2α) .

1
1+2α

if 2(1+α)2

3(1+2α) ≤ µ ≤ (1+α)2

(1+2α) .

4µ
(1+α)2 − 3

(1+2α) if µ ≥ (1+α)2

(1+2α) .

This inequality is sharp in the sense that for each α in [0, 1] and each µ in the appropriate
range of each part of the theorem, there is an f in Qα such that the “≤” symbol can be

replaced by the “=” symbol in the conclusion of that part of the theorem.

Special cases.

1) When α = 0. Then f ∈ K and we have a result given in [2].
2) Let a = 1. Then f ∈ Q, quasi-convex function given by (1). Then

∣

∣a3 − µa2
2

∣

∣ ≤



















1 − µ if µ ≤ 4
9 .

1
9 + 16

81µ
if 4

9 ≤ µ ≤ 8
9 .

1
3 if 8

9 ≤ µ ≤ 4
3 .

µ − 1 if µ ≥ 4
3 .

Again for each µ, there is a function in Q such that equality holds.
We shall require the following
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Lemma 1 ([5], p.166). Let h ∈ p, i.e., let h be analytic in D and satisfy Re h(z) > 0
for z ∈ D, with h(z) = 1 + c1z + c2z

2 + · · · Then

∣

∣

∣

∣

c2 −
c2
1

2

∣

∣

∣

∣

≤ 2 −
|c1|

2

2
.

Lemma 2 ([2]). Let g ∈ C, with g(z) = z + b2z
2 + b3z

3 + · · ·, then for µ real,

|b3 − µb2
2| ≤ max(1/3, |1 − µ|).

Proof of Theorem. It follows from (2) that we can write

(1 − α)f ′(z) + α(zf ′(z))′ = g′(z)h(z). (4)

For g ∈ C and h ∈ p. Equating coefficients in (4) we obtain

2(1 + α)a2 = c1 + 2b2.

and
3(1 + 2α)a3 = c2 + 2c1b2 + 3b3.

so that

a3 − µa2
2 =

1

(1 + 2α)

[

b3 −
(1 + 2α)µ

(1 + α)2
b2
2

]

+
1

3(1 + 2α)

[

c2 −
3(1 + 2α)µ

4(1 + α)2
c2
1

]

+

[

2

3(1 + 2α)
−

µ

(1 + α)2

]

c1b2. (5)

We consider first the case (1+α)2

3(1+1α) ≤ µ ≤ 2(1+α)2

3(1+2α) .

Equation (5) gives

∣

∣a3 − µa2
2

∣

∣ ≤
1

(1 + 2α)

∣

∣

∣

∣

b3 −
(1 + 2α)µ

(1 + α)2
b2
2

∣

∣

∣

∣

+
1

3(1 + 2α)

∣

∣

∣

∣

c2 −
3(1 + 2α)u

4(1 + α)2
c2
1

∣

∣

∣

∣

+

[

2

3(1 + 2α)
−

µ

(1 + α)2

]

|c1||b2|
′

≤
1

(1 + 2α)

[

1 −
(1 + 2α)

(1 + α)2
µ

]

+
1

3(1 + 2α)

∣

∣

∣

∣

c2 −
1

2
c2
1

∣

∣

∣

∣

+
1

3(1 + 2α)

∣

∣

∣

∣

1

2
−

3(1 + 2α)µ

4(1 + α)2

∣

∣

∣

∣

|c1|
2 +

[

2

3(1 + 2α)
−

µ

(1 + α)2

]

|c1|
′

≤
1

(1 + 2α)

[

1 −
(1 + 2α)

(1 + α)2
µ

]

+
1

3(1 + 2α)

[

2 −
|c1|

2

2

]

+
1

3(1 + 2α)

∣

∣

∣

∣

1

2
−

3(1 + 2α)

4(1 + α)2
µ

∣

∣

∣

∣

|c1|
2 +

[

2

3(1 + 2α)
−

µ

(1 + α)2

]

|c1|
′

= Φ(t), say, with t = |c1|.
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Where we have used lemmas 1 and 2 and the fact that |b2| ≤ 1. Since the function Φ

attains its maximum at t0 = 2[2(1+α)2−3(1+2α)µ]
3(1+2α)µ , it follows that the second inequality

in the theorem is established, if µ ≤ 2(1+α)2

3(1+2α) . Choosing b2 = b3 = 1, c2 = 1, c1 =
2[2(1+α)2−3(1+2α)µ]

3(1+2α)µ in (5), shows that the result is sharp if µ ≥ (1+α)2

3(1+2α) , since |c1| ≤ 2.

Next, let us that µ ≤ (1+α)2

3(1+2α) . Then

∣

∣a3 − µa2
2

∣

∣ ≤
3(1 + 2α)

(1 + α)2
µ

∣

∣

∣

∣

a3 −
(1 + α)2

3(1 + 2α)
a2
2

∣

∣

∣

∣

+

[

1 −
3(1 + 2α)

(1 + α)2

]

|a3|
′

≤
3

(1 + 2α)
−

4µ

(1 + α)2
.

Where we have used the result already proved in the case µ = (1+α)2

3(1+2α) , and the fact that

for f ∈ Qα, the inequality |a3| ≤
3

1+2α
holds [4]. Equality is attained by the function f0,

which is defined by

f0(z) =
z

αz
1

α

∫ z

0

t
1

α

t(1 − t)2
dt = z +

2

1 + α
z2 +

3

1 + 2α
z3 + · · · ,

So that a3−µa2
2 = 3

1+2α
− 4µ

(1+α)2 (see e.g. [4]). Suppose next that 2(1+α)2

3(1+2α) ≤ µ ≤ (1+α)2

(1+2α) .

We deal first with the case µ = (1+α)2

(1+2α) . Thus (5) gives

a3 −
(1 + α)2

(1 + 2α)
a2
2 =

1

(1 + 2α)
(b3 − b2

2) +
1

3(1 + 2α)
(c2 −

3

4
c2
1) −

c1b2

3(1 + 2α)
,

and so,

∣

∣

∣

∣

a3−
(1 + α)2

(1 + 2α)
a2
2

∣

∣

∣

∣

≤
1

(1 + 2α)

∣

∣b3−b2
2

∣

∣+
1

3(1 + 2α)

∣

∣

∣

∣

c2 −
1

2
c2
1

∣

∣

∣

∣

+
|c1|

2

12(1 + 2α)
+

|c1||b2|

3(1 + 2α)
,

≤
1

3(1 + 2α)
(1−|b2|

2)+
1

3(1 + 2α)
(2−

|c1|
2

2
)+

|c1|
2

12(1 + 2α)
+

|c1||b2|

3(1 + 2α)

′

.

=
1

1 + 2α
−

1

3(1 + 2α)

[

|b2| −
|c1|

2

]2

≤
1

1 + 2α
.

Where we have used lemma 1, the fact |b2| ≤ 1 and the inequality |b3−b2
2| ≤ 1/3[1−|b2|

2].

See e.g. [6]. Now write,

a3 − µa2
2 =

(1 + 2α)

(1 + α)2

[

3µ −
2(1 + α)2

(1 + 2α)

] [

a3 −
(1 + α)2

(1 + 2α)
a2
2

]

+
3(1 + 2a)

(1 + α)2

[

(1 + α)2

(1 + 2α)
− µ

] [

a3 −
2(1 + α)2

3(1 + 2α)
a2
2

]

.
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and the result follows at once on using the theorem already proved for µ = (1+α)2

(1+2α) and

µ = 2(1+α)2

3(1+2α) . Equality is attained when f1 is given by

f1(z) =
1

α
z1− 1

α

∫ z

0

t
1

α
−1(1 − t2)−1dt = z +

1

1 + 2α
z3 +

1

1 + 4α
z5 + · · · ,

So that a3 − µa2
2 = 1

1+2α
. We finally assume that µ ≥ (1+α)2

(1+2α) . Write

a3 − µa2
2 =

[

a3 −
(1 + α)2

(1 + 2α)
a2
2

]

+

[

(1 + α)2

(1 + 2α)
− µ

]

a2
2.

and the result follows at once on using again the theorem already proved for µ = (1+α)2

(1+2α)

and the inequality |a2| ≤
2

1+α
, which was proved in [4]. Equality is attained by the

function f0, which is defined above.
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