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ON THE FEKETE-SZEGO PROBLEM FOR ALPHA-QUASI-CONVEX
FUNCTIONS

H. R. ABDEL-GAWAD

Abstract. Let Qq(a > 0) denote the class of normalized analytic alpha-quasi-convex functions
f, defined in the unit disc, D = {z : |z| < 1}, by the condition
(=) (zf'(»)

+ «

g'(2) g'(z)

Where f(z) =2z + ZOO R anz™ and where g(z) = z+ ZOO R by 2™ is a convex univalent function
n= n=
in D. Sharp upper bounds are obtained for |az — pa3|, when u > 0.

Re [(1 — ) >0,

Introduction

Denote by S the class of functions f which are analytic and univalent in D = {z :
|z| < 1} and normalized so that f(0) = f/(0) — 1 =0. Thus for f € S we may write

f(z) =z+2anz" (1)
n=2

Let C and K be those subsets of S, which are convex and close-to-convex respectively.
Then f € K if, and only if, There exists g € C such that for z € D, Reg,/gg > 0. In [3]
Noor considered a new subclass C* of univalent function that is f given by (1), belongs
to C* if, and only if, f is analytic in D and is such that there exists g € C satisfying

/ /
RoC2)
9'(z)
The function in C* are called quasi-convex and C' C C* C K C S. It is shown [3] that
f € C*if, and only if, zf’ € K. Recently the function f called a-quasi-convex function
has been defined and its properties Studied in [4].

A function f, analytic in D, is said to be a-quasi-convex if, and only if, there exists
function g € C' such that, for « real and positive

F2) . PR
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>0 For zeD.

Re [(1 —a) > 0. (2)
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The class of such functions will be denoted by Q.. A classical theorem of Fekete and
Szegd [1] states that for f € S given by (1)

3—4p if p<o0.
laz — pa3] < 14272001 if 0<pu<1.
dp—3 if pu>1.

This inequality is sharp in the sense that for each p there exists a function in S such
that equality holds. The above inequalities can be improved [2]. In particular for f € K
and given by (1), Keogh and Merkes [2] showed that

3—dp if p<g.

1 4 i 1 2

,—+— lf ,—</,L<—.
a2l < ¢ 37T o 3 =F =73

dp—3 if p>1.

Again, for each u, there is a function in K such that equality holds. In this paper we
solve the Fekete-Szego problem for the class @, of a-quasi-convex functions.

Results
Theorem. Let f € Q, and be given by (1), then for 0 < a <1

3 4 . (1+a)®
120 (1+I;)2 if 1S 30073y
1 4(1+0a)? . (1+a)? 2(1+a)?
stea T stiteaTn i <p<

9 31+2a) = 3(1+20)
ag — paz| < 1 i 2040)® o (14a)?
I+2a I 30520) S H = 0520)

4 3 . (1+a)?

(1+€;)2 T t2a) if B2 Teay

This inequality is sharp in the sense that for each « in [0, 1] and each p in the appropriate
range of each part of the theorem, there is an f in @, such that the “<” symbol can be

“ 2

replaced by the “=" symbol in the conclusion of that part of the theorem.
Special cases.

1) When oo = 0. Then f € K and we have a result given in [2].
2) Let a =1. Then f € @, quasi-convex function given by (1). Then

1—p if ugg
1, 16 ¢ 4 8
}a— a2}< 5T 81, if g<pu<g.
3T HR2I=Y 1 if 8<u<4
3 g S M= 3
p—1 if n> 3

Again for each p, there is a function in @ such that equality holds.
We shall require the following
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Lemma 1 ([5], p.166). Let h € p, i.e., let h be analytic in D and satisfy Re h(z) > 0
for z € D, with h(z) =1+ c12 + c22? + - -+ Then

i
— 2 .

Lemma 2 ([2]). Let g € C, with g(z) = 2z + baz? + b3z + - -+, then for p real,

|bs — pb3| < max(1/3, |1 — ul).

Proof of Theorem. It follows from (2) that we can write
1= a)f'(z) + a(zf'(2)) = g'(2)h(2). (4)
For g € C and h € p. Equating coefficients in (4) we obtain

2(1 4+ a)ag = ¢1 + 2bs.

and
3(1 4+ 2a)as = ca + 2¢1be + 3bs.
so that
az — paz = L 3 — U+ 20)p,, ! 2 — 3L+ QQ)MCQ
27 (14 20) (1+a)2 2| " 3(1+2a) 41+ )2
2 %
— bo. 5
+[3(1+2a) (1+a)2}cl 2 ©)
. (1+a)2 2(14a)?
We consider first the case WO&&) <u< 3(T;~)
Equation (5) gives
1 (14 2a)p 1 3(1+20)u
2 — pall < - 2 -
@ =] S Ty B T Trar 2t S0z 2T aatap O
2 7
_ b’
Jr[3(1—|—2oz) (1+oz)2} fevllbz]
1 [ (1+2a) ] 1 1,
< 1-— -3
SUr2a) | Grae! T30r2a) | 29
1 1 3(1+42a)u s [ 2 w1,
T30 2a) |2 ATt fer” + 13(1+20) (14 )?] &
1 [ (1+42a) ] 1 >
< 1_(—1—04)#_'_ 2_|C1|
(14+20) [ (4w 3(142a) 2
1 1 3(1+2a) s [ 2 bl
31+2a) |2 41 +a2” jer"+ 31+2a) (1+a)2] 1]

+
= ®(t), say, with t = |¢1].
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Where we have used lemmas 1 and 2 and the fact that |b2| < 1. Since the function ®
2[2(14a)?—3(14+2a) ]

attains its maximum at t, = , it follows that the second inequality

3(1+2a)p )
in the theorem is established, if p < % Choosing by = b3 = 1, c0 = 1, ¢ =
2[2(1+;()12+_23;()1:2“)“] in (5), SEOWS that the result is sharp if y > 3((1%“2);, since |cq] < 2.
Next, let us that pu < % Then
3(1+ 2a) (1+«)? 3(1+2a)
— na?| < 0 — 2 11— " |as|
az NQQ‘ = (1+a)2 pias 3(1—1—204)&2 + (1+a)2 |a3|
3 4p

U120 Uxar

Where we have used the result already proved in the case yu = 3((1;;_&25), and the fact that

for f € Qa, the inequality |as| < H% holds [4]. Equality is attained by the function fo,
which is defined by

1

z 7 ta 2 3 -
= dt = 2 34,
fo(z) azi/o t(1 — )2 Py Yyt e

So that a3 — pa3 = H%a - (li—i)? (see e.g. [4]). Suppose next that

We deal first with the case u = (t) g (5) gives

2(1+a)? (1+a)?
30420 = M S (Tr2ay

(1+2c) *
(1+a)2 2 1 9 1 3 2 c1bs
0 — = ba — b T (ee— 22y 172
% e~ Tr2e) %) T 3aaa @ T 19 T 3 2ay
and so,
1+a)? , 1 > 1 1, lea]? |1 [be|
T e pae b2 ey — =
BT 020" = 11 20) b3 2‘+3(1+2a) 2N T R+ 20) T 3(1+20)
1 lea|? [ |c1|[b2]
< ————(1—1|bo)? 2— :
= 3(1+2a)( 102 )+3(1+2a)( 2 )+12(1—|—2a) 3(1 4 20)
1 1 lea|1? 1
- - lbo] — 1| < .
1+2a  3(1+2a) 2 1+ 20

Where we have used lemma 1, the fact [by| < 1 and the inequality |b3 —b3| < 1/3[1—|b2|?].
See e.g. [6]. Now write,

az—uaézw[ _MHB_M 2}

1+ a)? 1+ 2a) 1+ 20) "
3(1 + 2a) {(1 +a)? } [a: 20+ a)Qag]
1+a)? |[(1+20) 731 +2a) 2
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and the result follows at once on using the theorem already proved for p = 81;);; and
2
w= 381;1) Equality is attained when f; is given by
1 1—1 ? ER 2\ —1 1 3 1 5
= -3 a1 —¢ dt = e
file) = 3278 [T =) = s o
So that a3z — pa3 = ﬁ We finally assume that u > 81—2&5) Write
2 _(1+a)2 2 (1+a)2_ 2
3~ Ha2 = [“3 A+2a)™ " {T+2a) M| ™
and the result follows at once on using again the theorem already proved for u = gigo)f)

and the inequality |as| < H%, which was proved in [4]. Equality is attained by the
function fy, which is defined above.

References

[1] M. Fekete and G. Szego, Eine Bermerkung Uber ungerade schlichte Funktionen, J. London
Math. Soc., 8(1933), 85-89.

[2] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic func-
tions, Pro. Amer. Math. Soc., 20(1969), 8-12.

[3] K. I. Noor and D. K. Thomas, On quasi-convez univalent functions, Inter. J. Math. and
Math. Sci, 3(1980), 255-266.

[4] K.I. Noor and F. M. Alobudi, Alpha-quasi-convex functions, Caribb J. Math., 3(1984), 1-8.

[5] Ch. Pommerenke, Univalent functions, Van denhoeck and Ruprecht, Gottingen, 1975.

[6] S. Y. Trimble, A coefficient inequality for convexr univalent functios, Proc. Amer. Math.
Soc., 48(1975), 266-267.

Mathematics Department, Faculty of Science, Aswan-Egypt.



