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AN INTEGRAL INEQUALITY FOR TWICE DIFFERENTIABLE
MAPPINGS AND APPLICATIONS

S. S. DRAGOMIR AND A. SOFO

Abstract. An integral inequality is developed from which when applied to composite quadrature
rules in numerical integration it is proved that there is a three fold improvement in the remainder
of the classical averages of the Midpoint and Trapezoidal quadratures. Inequalities for special
means are also given.

1. Introduction

In 1976, G. V. Milovanoié¢ and J. E. Pecari¢ [4] proved a generalization of Ostrowski’s
inequality for n-time differentiable mappings, from which for twice differentiable map-
pings, we may write:

Theorem 1. Let f : [a,b] — R be a twice differentiable mapping such that f" :
(a,b) — R is bounded on (a,b), i.e., ||f"|oc := SUPte(qp) |f”(t)| < 00. Then we have the
inequality

L)+ =S 0=0/0) /:f(t)dt

L, (@)’

€ "
T ﬁ] £ oo

for all x € [a, b].

In a more recent paper Cerone, Dragomir and Roumeliotis [1] proved the following
inequality:

Theorem 2. Let f : [a,b] — R be a twice differentiable mapping on (a,b) and
" (a,b) — R is bounded, i.e., ||f"|oc = SUPe(ap [f7(t)| < 00. Then we have the
inequality

s (2= ) ) [ s
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b—a)? 1 by 2 b—a)?
< |5 45 (e- ) 1 < S

for all x € [a,b].
Finally, Dragomir and Barnett [2] also prove the following inequality:

Theorem 3. Let f : [a,b] — R be a twice differentiable mapping on (a,b) and
" (a,0) — R is bounded, i.e., ||f"|lc = SuPie(ap [f”(t)] < 0o. Then we have the
inequality

2
(b_a)2 T — aJQFb 1 1 " (b_a)Q "
< — — < X 7
< o | T2l Tl = =l

for all x € [a, b].

In this paper we point out an integral inequality, similar in a sense, to that of Cerone,
Dragomir and Roumeliotis [1], or Dragomir and Barnett [2], and apply it to special means
and numerical integration. We begin with the following result.

2. An Integral Inequality

The following theorem is now proved and subsequently applied to numerical integra-
tion and special means.

Theorem 4. Let g : [a,b] — R be a mapping whose first derivative is absolutely
continuous on [a,b] and assume that the second derivative g"" € Loo[a,b]. Then we have
the inequality

[ o0 3ot + 20H 0Ny 4 CoO (o g

1 a+bp3  (b—a)?
< |1g" . 2.1
<l (- 22+ O 1)

for all x € [a,b].

Proof. Let us start with the following integral equality

b b
f@) = 7 ( [ e [ p(m)f’(t)dt) (22)
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for all z € [a, b], provided f is absolutely continuous on [a, b], and the kernel p : [a, b]? — R
is given by

_Jt—a ifte]a,x],
ple.t) = {tb if t € (,b];

where ¢ € [a,b]. A simple proof using the integration by parts formula can be found in
Dragomir and Wang [3]. Now choose in (2.2), f(z) = (z — %F2)¢/(z) to get

(I -2 ;L b)Q’(I)
=7 i . (/ab (t _ a;rb)g/(t)dtJr /abp(x,t) [g’(t) + (t - aTer)g”(t)]dt> . (2.3)

Integrating by parts we have

b u b
/a <t “;b) g (t)dt = (g(“Hgg’))(b )/a g(t)dt. (2.4)

Also upon using (2.2), we have that

/abp(x, t) [g'(t) + (t - ;r b)g”(t)} dt
_ /abp(x,t)g’(t)dt+/abp($,t)(t— a+b)g"(t)dt

_a+tb

2
(ba)g(:c)/abg(t)dtJr/abp(x,t)(t . )g”(t)dt. (2.5)

Now by (2.3), (2.4) and (2.5) we deduce that

—a b b
- a)(o— 50)g ) = LLEIDOZD [yt 0 ang(o) - [ glori

+ /abp(ac, £) (t 4 ;L b)g”(t)dt

from where we get the identity

[ st =3 ot + 2240 )

(o - a) (m _a ;r b)g'(x) + %/abp(x,t) (t - %M)g"(t)dt (2.6)

for all = € [a,b]. Now using (2.6) we have
b a —a a
[ st = 3o+ L2 6o L2 (- D) g

g%ﬁﬂﬂamkﬁgﬁm%ma. (2.7)
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Obviously, we have

a+b

/ab p(x, )] ‘t - ‘%b‘ lg" (t)|dt < |g”||oo/ab p(z, )] ‘t - ‘dt,

IIH

where [ g"||co := SUPse (41 9" (£)] < 00. Also

b T
I::/ |p(x,t)|‘t—a—2|—b‘dt:/ (t—a)

We have two cases:

a). For z € [a, “£2] we obtain

S o I I R O

2

b b b
po 40 dt+/ (b—t)‘t—ChL ‘dt.
2 . 2

We have

Il/ax(ta)<a;rbt)dt (a+3b7;12:c)(:c—a)2’

12:/ (-0 —t)dt=(5b_“_4f”ié?x—a—b)2

and

R RCTICE ST

and hence, upon simplification

3 _4)3
I:g<a+b—:p) +(b a) a+b}
3 2
b). For z € (%2, b] we obtain

a+b

I:/a ’ (t—a)(a;rb—t)dtJr/;(tfa)(t—a;rb)dt

(b—a)? n (4z — 5a + b)(2z — a — b)? n (4z — 3a — b)(z — b)?
48 48 12

2 a+b\3 (b—a)?

—5(e-5)

and referring to (2.7), we obtain the result (2.1) of Theorem 4.
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Remark 1. In (2.1) if we investigate the end points z = a, © = b and the midpoint

T = “T“’ we find that the midpoint gives us the best estimator, so that we have
I Lp ra+by  gla)+g(b) (b—a)’
— [ gyt — = [ ( ) } <|g” .
= | a0 = g[o(57) + LU0 < g

3. Application to Composite Quadrature Rules

We may utilize the previous inequality to give us estimates of composite quadrature
rules which, it turns out have a markedly smaller error than that which may be obtained
by the classical results.

Theorem 5. Let I, :a =29 < x1 < -+ < Tp_1 < T, = b be a partition of the

interval [a,b], h; = ;41 — x;, v(h) :=max{h; :i=1,...,n}, & € [z5,Ti1],
15 ; ; S i+ ,
S(0.1.6) = 5 3 [oe) + P F I, 52 (6 - 2 g6
=0 =0
then .
| gta)is = 5G9 1,6 + R(g. 1.0
and

1 n—1
1R(9, T, ) < 119" ]l [g >
=0

T; + Xigp1 3
o-maf 15
Proof. Applying (2.1) on &; € [z;, x;+1] we have

J I R e R L1

2
1
smwme

3
N
48 | -

Now summing over ¢ from 0 to n — 1 and utilizing the triangle inequality, we have

T; + Tigq

-2

b
/ g(t)dt — S(g, I, §)

n—1 Tit1 n—1
Z/ g(t)ydt| = > h;
i Ti =0

1=0
n—1
1 T; + Tit1

=0

AR R TCEE S VI

3 h3
T8

& —
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and therefore

n—1
T; + $z+1

&- 2

)

1
[R(g, In, &) < 19" || oo <§
1=0

it Tiq
Corollary 1. If & = Z55HL then

[

n—

_1 Iz+$z+1 g(:i) + g(xit1)7,
=52 [s( )+
and )
e
R(g, 1,)| < 191l 3. (3.1)
’ — 48 = ¢

S(g,I,) may be thought of as the arithmetic mean of the Midpoint and the Trapezoidal
quadrature rules.

Remark 2. However it is clear that inequality (3.1) is much better than the classical
averages of the remainders of the Midpoint and Trapezoidal quadratures. Consider

b
/ F@)dz = Ap(f.1) + Re(f. )

where Ap(f, I;) is the Trapezoidal rule

n—1

Ar(fidn) ==Y [W}hz (3.2)
=0
and the remainder term Ry (f, Ir,) satisfies
1"l 7
|[Br(f,1n)| < 5= ) hi (3.3)
i=0
Also .
[ #@de = Aui(1.10) + Raf. 1)
where

wlf ) Z[ (5 | (3.4)

is the Midpoint quadrature rule and the remainder term Ry (f, I;,) satisfies the estimation

" n—1
a1l < = S 5.5)
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Now we see from (3.2) (3.3) (3.4) and (

/f

from the remainders and using the triangle inequality we have

3.5)

AM(f, In) + Ar(f, In) + Ra (f, In) + R (f, In)),

SIBAF 1) + B (f, 1)l < 5IRa(f, 1) + 5 R, )]

|wng|wmzm
:szs

It can be clearly seen that (3.1) is a three fold better estimator than (3.6)

I /\

The conclusion of Corollary 1 can also be obtained from the Milovanovié¢-Pecarié
result, Theorem 1, upon setting x = “T'H’.
4. Applications for Some Special Means

Let us recall the following means
(a) The Arithmetic mean:

A:A(a,b)::a;rb, a,b>0.

(b) The Geometric mean:

G = G(a,b) := Vab, a,b > 0.

(¢) The Harmonic mean:

2
H=H(a,b) = +—, a,b> 0.
aTw
(d) The Logarithmic mean:
a ifa=10
L =L(a,b) := , a,b>0.
(@) {mb e fa#d

(e) The Identric mean:

ifa=5
I=1(a,b):= =
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(f) The p-logarithmic mean:

a ifa=5
LP = Lp(a7 b) = ppt1_pt1 % . ’ a, b>0.
[7@“)(‘5%)} ifa#b

where p € R\{—1,0}. The following is well known in the literature:
H<GLSLLI<A
It is also well known that L, is monotonically increasing over p € R (assuming that

Lo:=TITand L_,:=1L).
The inequality (2.1) may be rewritten as

b
\—(z — Al () + 3 [ote) + LI L [
<19l (gl — At + L), (4.1

We may now apply (4.1) to deduce some inequalities for special means given above, by
the use of some particular mappings as follows.
(1) Consider g(x) =Inz, z € [a,b] C (0,00) then

1 b
. / g(t)dt =1InI(a,b),

g(a) ;r 9 _ . Gla,b)

and
1
1 1
9"lls = sup |g"(t)] = —.
19"l te(a,b)l O] = —
From (4.1) we have that

1
3(b—a)

A(a,b 2
% —14+Inz+InG(a,d) —21nI(a,b)‘ < = (

(b—a)?
|z — A(a,b)|® + 18 )

form which we obtain the best estimate at the centre point x = *3= b so that
|In A(a,b) + InG(a,b) —2InI( b)|<7(b s
nAa nG(a nl(a
b) bl ) - 2 2 b

or

(49 s
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(2) Consider g(z) =1, z € [a,b] C (0,00) then

1 b
= [ ot =L @),

gla) +g(b)  Ala,b)

2 G%(a,b)

and

2
1 1
g = sup |¢"(H)] = =.
19" lloo te(a,b)| O] = —

From (4.1) we have that

x G?*(a,b)

and the best estimate is obtained at the centre point x = “T'H’, so that

1 A(a,b)
—  24a3

1 (b - a)2
Aad) b~ (“”’)‘ = '

(3) Consider g(x) = 2P g: (0,00) — R where p € R\{—1,0} then for a < b

1 b
—_JpP
= | ottt = I3lab)

g(a) +g(b)
2

= A(a?, bP)

and ) [ )
1 _ B P~ if pe (2,00

From (4.1) we have that

P (1= p) + 2pA(a,b)) + M 12, b)‘
< olp = Dyl (57l - Alad) + O

where ) :
o ifpe(2,00)
Op(a,b) = {a”_Q if pe (—o0,2)\{-1,0}

At x = “T'H’ the best estimate is

[A47(a,b) + AP, 1)  2L2(a,8)| < p(p - DIsyla, ) L

24

L(z- Aled)y, Aw) —L_l(a,b)‘ < % (poalo - AwhP+

(b

—a)?

48

)
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