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S-LATTICES

C. JAYARAM

Abstract. In this paper we study S-elements in C-lattices and characterize almost principal

element lattices and principal element lattices in terms of S-lattices.

An element e of a multiplicative lattice L is said to be principal if it satisfies the dual

identities (i) a ∧ be = ((a : e) ∧ b)e and (ii) (a ∨ be) : e = (a : e) ∨ b. Elements satisfying

(i) are called meet principal and elements satisfying (ii) are called join principal. By

a C-lattice is meant a (not necessarily modular) complete multiplicative lattice, with

least element 0 and compact greatest element 1 (a multiplicative identity), which is

generated under joins by a multiplicatively closed subset C of compact elements. In a

principally generated C-lattice, principal elements are compact ([1], Theorem 1.3) and a

finite product of principal elements is again a principal element [5].

Throughout in this paper, we assume that L is a C-lattice generated by compact join

principal elements. L∗ denotes the set of all compact elements of L. C-lattices can be

localized. For any prime element p of L, Lp denotes the localization at F = {x ∈ C|x 6≤
p}. For basic properties of localization, the reader is referred to [10]. A prime element p

of L is said to be an ℓ-prime if the set of all p-primary elements of L is linearly ordered.

For any prime p of L, p∆ denotes the meet of all p-primary elements of L. A prime

element p of L is said to be branched (unbranched) if p > p∆(p = p∆). Let p, m be two

prime elements of L. We say m covers p if m > p and there is no prime element p1 of L

such that m > p1 > p. Following [11], a prime element p of L is said to be a d-prime if

Lp is a discrete valuation lattice (i.e., consists just of the elements 0,1, and the powers

of p all of which are distinct). L is said to be an almost discrete valuation lattice if Lm

is a discrete valuation lattice (i.e., m is a d-prime) for every maximal prime m of L [11].

L is said to be reduced if 0 is the only nilpotent element of L. Principal elements were

introduced into multiplicative lattices by R. P. Dilworth [5]. A multiplicative lattice L

in which every element is principal is called a principal element lattice. Similarly, L is

said to be an almost principal element lattice if Lm is a principal element lattice for

every maximal element m of L. For various characterizations of almost principal element

lattices and principal element lattices, the reader is referred to [4], [8] and [9]. L is said

to be a Prüfer lattice if every compact element is principal. It is well known that a

principally generated C-lattice L is a Prüfer lattice if and only if Lp is totally ordered
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for every prime p of L. For more information on Prüfer lattices, the reader is refereed to
([1, Theorem 3.4] and [13]).

In this paper, we introduce S-elements and study S-lattices. Next we prove that a
principally generated reduced C-lattice L is a Prüfer lattice satisfying the a.c.c (ascending
chain condition) for prime elements if and only if L is an S-lattice in which every non
minimal prime is branched if and only if every prime is an ℓ-prime and every non minimal
prime is minimal over some x ∈ L∗. Using these results, almost principal element lattices
are characterised. Finally, it is established that if L is principally generated, then L is
a finite direct product of principal element domains if and only if every maximal prime
element is a strong compact S-element. For general back-ground and terminology, the
reader may consult [1], [3] and [10].

We shall begin with the following definitions.

Definition 1. An element p of L is said to be an S-element if p satisfies the following
conditions:

(i) p is an l-prime.
(ii) p∆ is a prime element.
(iii) p∆ contains each prime element properly contained in p.

Definition 2. L is said to be an S-lattice if every prime element is an S-element.

Observe that by definition 1, every S-element is an l-prime. Note that almost discrete
valuation lattices ([11], Theorem 3) and regular lattices [2, Theorem 7] are examples of
S-lattices. Also complemented prime elements and non minimal principal prime elements
[4, Lemma 1.4] are examples of S-elements. If R is an integral domain, then an ideal I

of R is an S-ideal (in the sense of [6]) if and only if I is an S-element of L(R)(L(R) is
the lattice of ideals of R). Therefore R is an S-domain (in the sense of [6]) if and only if
L(R) is an S-domain.

Lemma 1. Let m be an l-prime element of L and let m be minimal over m0 ∨ x for

some prime element m0 < m and for some compact element x ∈ L. Then m0 ≤ m∆,

m∆ is prime and m covers m∆.

Proof. Let Ψ = {p ∈ L|m0 ≤ p < m and p is a prime element}. By Zorn’s lemma,
Ψ contains a maximal element say p. We show that p = m∆. Let y ≤ m∆ be any
compact join principal element. If y 6≤ p, then (p ∨ y2)m is m-primary [10, Property
0.5] and y ≤ (p ∨ y2)m, a contradiction (see the proof of Lemma 12 of [9]) and therefore
m∆ ≤ p. Suppose m∆ < p. Then there exists an m-primary element q such that p 6≤ q.
We claim that q ≤ p. If q 6≤ p, then ((p ∨ z2))m is m-primary for some compact join
principal element z ≤ q and z 6≤ p. As m is an l-prime and (p∨ z2)m 6≤ q, it follows that
z ≤ q ≤ (p ∨ z2)m, a contradiction. Therefore q ≤ p and so m =

√
q ≤ p, which is again

a contradiction. This shows that p = m∆. Obviously m covers m∆. This completes the
proof of the lemma.

Theorem 1. Let m be a non minimal l-prime element of L. Then m is a branched

S-element if and only if m is a minimal prime over some x ∈ L∗.
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Proof. Suppose m is a minimal prime over some x ∈ L∗. By Lemma 1, m∆ is prime

and m covers m∆, so m is branched. Again if p < m is a prime element, then m is a

minimal prime over p∨x, so by Lemma 1, p ≤ m∆ and hence m is a branched S-element.

The converse part is obvious.

Theorem 2. L is an S-lattice if and only if every prime is an ℓ-prime and every

branched prime element is non minimal and minimal over x for some x ∈ L∗.

Proof. Note that every unbanched prime element is an S-element. Now the result

follows from Theorem 1.

Lemma 2. If p is an unbranched non minimal prime element of L, then p is the join

of a chain of branched prime elements properly contained in p.

Proof. Let p be an unbranched non minimal prime element of L. By lemma 12

of [9], p contains properly a branched prime element of L. Let Q be a maximal chain

of branched prime elements properly contained in p (its existence follows from Zorn’s

lemma). By Lemma 12 of [9], p = ∨{pα|pα ∈ Q}.

Theorem 3. L is an S-lattice if and only if L satisfies the following conditions:

(i) The minimal prime elements of L are unbranched.

(ii) Every prime is an ℓ-prime.

(iii) Every non minimal prime element p of L is unbranched if and only if it is the join

of a chain of prime elements properly contained in p.

Proof. Suppose L is an S-lattice. Clearly, L satisfies the conditons (i) and (ii). By

Lemma 2 and Theorem 2, L satisfies the conditon (iii).

Conversly, assume that L satisfies the conditons (i), (ii) and (iii). Note that every

unbranched prime element is an S-element. Let p be a branched prime element of L.

Let B be a maximal chain of prime elements properly contained in p (by Zorn’s lemma)

and let p0 = ∨pα, pα ∈ B. Chose any compact element x ≤ p such that x 6≤ p0. Then

p is a minimal prime over x and so by Theorem 1, p is an S-element and hence L is an

S-lattice. This completes the proof of the theorem.

Lemma 3. Let L be a reduced Prüfer lattice. Then L is an S-lattice.

Proof. As L is reduced it follows that the minimal prime elements of L are un-

branched [11, Lemma 3] and hence every minimal prime is an S-element. Obviously,

every unbranched prime element is an S-element. Let p be a non minimal branched

prime element. Choose any compact element x ≤ p such that x 6≤ p∆. Then p is minimal

over x. Therefore by Theorem 1, p is an S-element. This shows that L is an S-lattice.

Lemma 4. Suppose L is a quasi-local lattice such that for any non minimal prime

element p of L, there exists a prime element p0 < p such that if p1 < p is a prime
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element, then p1 ≤ p0. Then L satisfies the a.c.c. for prime elements and the prime

elements are linearly ordered (and conversely).

Proof. The proof of the lemma is similar to the proof of [7, Lemma 3.4].

For any a ∈ L, we denote aω = ∧∞

n=1a
n. We say a is a strong compact element if

both a and aω are compact elements. Strong compact elements have been studied in [12]

to characterize almost principal element lattices and principal element lattices.

Lemma 5. Let L be a principally generated quasi-local lattice and let m be the non

minimal maximal prime element. If m is strong compact S-element, then L is a discrete

valuation lattice.

Proof. By Lemma 1, m is a branched S-element. As m is compact, we have m 6= m2.

Choose any principal element x ≤ m such that x 6≤ m2. Then x is m-primary. Let y ≤ m

be any principal element. If y 6≤ m2, then y is m-primary, so x and y are comparable

and hence x = y. If y ≤ m2, then y ≤ m2 ≤ x, so m = x as L is principally generated.

Therefore m is principal. Again by Lemma 1.4 of [4], mω = m∆ and mmω = mω, so by

Theorem 1.4 of [1], mω = 0. Again by [12, Lemma 3(iii)], L is a discrete valuation lattice

and the proof is complete.

Theorem 4. Let L be a principally generated reduced lattice. Then the following

statements on L are equivalent:

(i) L is a Prüfer lattice satisfying the ascending chain condition for prime elements.

(ii) L is an S-lattice in which every non minimal prime element is branched.

(iii) Every prime is an ℓ-prime and every non minimal prime element is minimal over

some x ∈ L∗.

Proof. (i)⇒(ii). Suppose (i) holds. By (i) and Lemma 3, L is an S-lattice. Let p be

a non minimal prime element. Let p0 < p be a prime element maximal with respect to

properly contained in p (by the a.c.c for prime elements). Choose any compact element

x ≤ p such that x 6≤ p0. Then p is minimal over x ∨ p0 and hence by Lemma 12 of [9], p

is branched. Therefore (ii) holds.

(ii)⇔(iii) follows from Theorem 1.

(ii)⇒(i). Suppose (ii) holds. As L is reduced, by Lemma 4, Lp is a domain for every

prime element p of L. By localising if necessary, we may assume that L is a quasi-local

domain in which the a.c.c for prime elements is valid and the prime elements are linearly

ordered (by Lemma 4). It is enough if we show that any two principal elements are

comparable. Suppose there exist non comparable principal elements. Let Ψ = {p ∈ L|p
is the radical of two non comparable principal elements}. By our assumption, Ψ 6= ∅. As

the prime elements are linearly ordered, it follows that every p ∈ Ψ is a prime element.

Again by the a.c.c for prime elements, Ψ contains a maximal elements say m. Let

m =
√

x ∨ y, where x and y are non comparable principal elements. As m is branched,

m > m∆. Again since m is an S-element, it follows that either x 6≤ m∆ or y 6≤ m∆,

so either xm or ym is m-primary and hence xm and ym are comparable. Since L is
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quasi-local, every principal element is (completely) join irreducible. Using this fact, it
can be easily shown that there exist two principal elements z, z1 ∈ L such that xz = yz1,
and either z 6≤ m or z1 6≤ m. (see also [3, Theorem 9]). Note that z and z1, are non
comparable as x and y are non-comparable. Let m0 =

√
z ∨ z1. Then m0 ∈ Ψ and

m < m0, a contradiction. Therefore L is a Prüfer lattice and the proof is complete.

Theorem 5. Suppose L is a principally generated reduced lattice. Then L is an

almost principal element lattice if and only if every prime is an S-element and locally

compact.

Proof. The “only if” part is clear [8, Theorem 2.]. Conversely, assume that every
prime is a locally compact S-element. We claim that L satisfies the a.c.c for prime
elements. Let p1 ≤ p2 ≤ · · · ≤ pn ≤ · · · be a chain of prime elements. Then p = ∨∞

i=1pi

is a prime element. Let m be any maximal prime element such that p ≤ m. Note that
p1m

≤ p2m
≤ · · · is a chain of prime elements in Lm whose join is pm. As p is locally

compact, it follows that p = pi for some i. Therefore L satisfies the a.c.c for prime
elements. Let p be a non minimal prime element. Again by the a.c.c for prime elements,
there exists a prime element q such that p covers q. Therefore p is minimal over q ∨ x

for any principal element x ≤ p such that x 6≤ q. Consequently, by lemma 12 of [9], p is
branched. By Theorem 4, L is a Prüfer lattice. Now the result follows from [1, Theroem
2.5] and [8, Theorem 2].

Theorem 6. Suppose L is principally generated. Then L is a finite direct product

of principal element domains if and only if every maximal prime element is a strong

compact S-element.

Proof. The “only if” part is clear. Now we prove the “if” part. Let m be a maximal
prime element. If m is unbranched, then m = m2, so by Theorem 1.4 of [1], Lm is a two
element chain. If m is branched, then by Lemma 5, Lm is a discrete valuation lattice and
hence L is a reduced almost principal element lattice. Therefore dimL ≤ 1 [9, Lemma
2 and Theorem 1]. Again if p < m are prime elements, then by [9, Theorem 1] and [10,
Lemma 5], p = mω. So by hypothesis, every prime element is compact. As L is a Prüfer
lattice, it follows that every prime element is principal and hence every element principal.
Now the result follows from [11, Theorem 10]. This completes the proof of the theorem.
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